1
|
Wiart M, Tavakoli C, Hubert V, Hristovska I, Dumot C, Parola S, Lerouge F, Chauveau F, Canet-Soulas E, Pascual O, Cormode DP, Brun E, Elleaume H. Use of metal-based contrast agents for in vivo MR and CT imaging of phagocytic cells in neurological pathologies. J Neurosci Methods 2023; 383:109729. [PMID: 36272462 DOI: 10.1016/j.jneumeth.2022.109729] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 09/27/2022] [Accepted: 10/17/2022] [Indexed: 11/30/2022]
Abstract
The activation of phagocytic cells is a hallmark of many neurological diseases. Imaging them in their 3-dimensional cerebral environment over time is crucial to better understand their role in disease pathogenesis and to monitor their potential therapeutic effects. Phagocytic cells have the ability to internalize metal-based contrast agents both in vitro and in vivo and can thus be tracked by magnetic resonance imaging (MRI) or computed tomography (CT). In this review article, we summarize the different labelling strategies, contrast agents, and in vivo imaging modalities that can be used to monitor cells with phagocytic activity in the central nervous system using MRI and CT, with a focus on clinical applications. Metal-based nanoparticle contrast agents such as gadolinium, gold and iron are ideal candidates for these applications as they have favourable magnetic and/or radiopaque properties and can be fine-tuned for optimal uptake by phagocytic cells. However, they also come with downsides due to their potential toxicity, especially in the brain where they might accumulate. We therefore conclude our review by discussing the pitfalls, safety and potential for clinical translation of these metal-based neuroimaging techniques. Early results in patients with neuropathologies such as multiple sclerosis, stroke, trauma, cerebral aneurysm and glioblastoma are promising. If the challenges represented by safety issues are overcome, phagocytic cells imaging will be a very valuable tool for studying and understanding the inflammatory response and evaluating treatments that aim at mitigating this response in patients with neurological diseases.
Collapse
Affiliation(s)
- Marlène Wiart
- Univ. Lyon, CarMeN Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, 69003 Lyon, France; CNRS, Lyon, France.
| | - Clément Tavakoli
- Univ. Lyon, CarMeN Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, 69003 Lyon, France; Univ. Grenoble Alpes, INSERM UA7 STROBE, 38000 Grenoble, France
| | - Violaine Hubert
- Univ. Lyon, CarMeN Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, 69003 Lyon, France
| | | | - Chloé Dumot
- Univ. Lyon, CarMeN Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, 69003 Lyon, France; Hospices Civils de Lyon, Lyon, France
| | - Stéphane Parola
- Université de Lyon, Ecole Normale Supérieure de Lyon, CNRS UMR 5182, Université Lyon 1, Laboratoire de Chimie, 46 allée d'Italie, 69364 Lyon, France
| | - Frédéric Lerouge
- Université de Lyon, Ecole Normale Supérieure de Lyon, CNRS UMR 5182, Université Lyon 1, Laboratoire de Chimie, 46 allée d'Italie, 69364 Lyon, France
| | - Fabien Chauveau
- CNRS, Lyon, France; Univ. Lyon, Lyon Neurosciences Research Center, CNRS UMR5292, INSERM U1028, Université Claude Bernard Lyon 1, 69003 Lyon, France
| | - Emmanuelle Canet-Soulas
- Univ. Lyon, CarMeN Laboratory, INSERM, INRA, INSA Lyon, Université Claude Bernard Lyon 1, 69003 Lyon, France
| | | | - David P Cormode
- Department of Radiology, University of Pennsylvania, Pennsylvania, United States
| | - Emmanuel Brun
- Univ. Grenoble Alpes, INSERM UA7 STROBE, 38000 Grenoble, France
| | - Hélène Elleaume
- Univ. Grenoble Alpes, INSERM UA7 STROBE, 38000 Grenoble, France
| |
Collapse
|
2
|
Hubert V, Hristovska I, Karpati S, Benkeder S, Dey A, Dumot C, Amaz C, Chounlamountri N, Watrin C, Comte J, Chauveau F, Brun E, Marche P, Lerouge F, Parola S, Berthezène Y, Vorup‐Jensen T, Pascual O, Wiart M. Multimodal Imaging with NanoGd Reveals Spatiotemporal Features of Neuroinflammation after Experimental Stroke. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:e2101433. [PMID: 34197055 PMCID: PMC8425862 DOI: 10.1002/advs.202101433] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 05/12/2021] [Indexed: 05/09/2023]
Abstract
The purpose of this study is to propose and validate a preclinical in vivo magnetic resonance imaging (MRI) tool to monitor neuroinflammation following ischemic stroke, based on injection of a novel multimodal nanoprobe, NanoGd, specifically designed for internalization by phagocytic cells. First, it is verified that NanoGd is efficiently internalized by microglia in vitro. In vivo MRI coupled with intravenous injection of NanoGd in a permanent middle cerebral artery occlusion mouse model results in hypointense signals in the ischemic lesion. In these mice, longitudinal two-photon intravital microscopy shows NanoGd internalization by activated CX3CR1-GFP/+ cells. Ex vivo analysis, including phase contrast imaging with synchrotron X-ray, histochemistry, and transmission electron microscopy corroborate NanoGd accumulation within the ischemic lesion and uptake by immune phagocytic cells. Taken together, these results confirm the potential of NanoGd-enhanced MRI as an imaging biomarker of neuroinflammation at the subacute stage of ischemic stroke. As far as it is known, this work is the first to decipher the working mechanism of MR signals induced by a nanoparticle passively targeted at phagocytic cells by performing intravital microscopy back-to-back with MRI. Furthermore, using a gadolinium-based rather than an iron-based contrast agent raises future perspectives for the development of molecular imaging with emerging computed tomography technologies.
Collapse
Affiliation(s)
- Violaine Hubert
- Univ‐LyonIRIS TeamCarMeN LaboratoryInserm U1060INRA U1397INSA LyonUniversité Claude Bernard Lyon 1Groupement Hospitalier Est59 bd. PinelBron69500France
| | - Ines Hristovska
- SYNATAC TeamInstitut NeuroMyoGèneUniversité Claude Bernard Lyon 1CNRS UMR 5310, INSERM U1217Faculté de Médecine et de Pharmacie8 avenue RockefellerLyon69008France
| | - Szilvia Karpati
- Université de LyonÉcole Normale Supérieure de LyonCNRS UMR 5182Université Claude Bernard Lyon 1Laboratoire de ChimieLyonF69342France
| | - Sarah Benkeder
- SYNATAC TeamInstitut NeuroMyoGèneUniversité Claude Bernard Lyon 1CNRS UMR 5310, INSERM U1217Faculté de Médecine et de Pharmacie8 avenue RockefellerLyon69008France
| | - Arindam Dey
- Institut pour l'Avancée des BiosciencesCentre de Recherche UGA / Inserm U 1209 / CNRS UMR 5309Site Santé ‐ Allée des AlpesLa Tronche38700France
| | - Chloé Dumot
- Univ‐LyonIRIS TeamCarMeN LaboratoryInserm U1060INRA U1397INSA LyonUniversité Claude Bernard Lyon 1Groupement Hospitalier Est59 bd. PinelBron69500France
| | - Camille Amaz
- Clinical Investigation CenterHospices Civils de LyonLouis Pradel Hospital28 avenue Doyen LépineBron69500France
| | - Naura Chounlamountri
- SYNATAC TeamInstitut NeuroMyoGèneUniversité Claude Bernard Lyon 1CNRS UMR 5310, INSERM U1217Faculté de Médecine et de Pharmacie8 avenue RockefellerLyon69008France
| | - Chantal Watrin
- SYNATAC TeamInstitut NeuroMyoGèneUniversité Claude Bernard Lyon 1CNRS UMR 5310, INSERM U1217Faculté de Médecine et de Pharmacie8 avenue RockefellerLyon69008France
| | - Jean‐Christophe Comte
- FORGETTING TeamLyon Neuroscience Research Center (CRNL)CNRS UMR5292INSERM U1028Université Claude Bernard Lyon 1Centre Hospitalier Le Vinatier ‐ Bâtiment 462 ‐ Neurocampus Michel Jouvet95 boulevard PinelBron69675France
| | - Fabien Chauveau
- Université de LyonLyon Neuroscience Research Center (CRNL)CNRS UMR5292INSERM U1028Université Claude Bernard Lyon 1Groupement Hospitalier Est ‐ CERMEP59 bd PinelBron Cedex69677France
| | - Emmanuel Brun
- Synchrotron Radiation for Biomedical Research (STROBE)UA7 INSERMUniversité Grenoble AlpesMedical Beamline at the European Synchrotron Radiation Facility71 Avenue des MartyrsGrenoble Cedex 938043France
| | - Patrice Marche
- Institut pour l'Avancée des BiosciencesCentre de Recherche UGA / Inserm U 1209 / CNRS UMR 5309Site Santé ‐ Allée des AlpesLa Tronche38700France
| | - Fréderic Lerouge
- Université de LyonÉcole Normale Supérieure de LyonCNRS UMR 5182Université Claude Bernard Lyon 1Laboratoire de ChimieLyonF69342France
| | - Stéphane Parola
- Université de LyonÉcole Normale Supérieure de LyonCNRS UMR 5182Université Claude Bernard Lyon 1Laboratoire de ChimieLyonF69342France
| | - Yves Berthezène
- Univ‐LyonCreatis LaboratoryCNRS UMR5220Inserm U1044INSA LyonVilleurbanne Cedex69621France
| | - Thomas Vorup‐Jensen
- Department of BiomedicineBiophysical Immunology LaboratoryAarhus UniversityAarhus CDK‐8000Denmark
| | - Olivier Pascual
- SYNATAC TeamInstitut NeuroMyoGèneUniversité Claude Bernard Lyon 1CNRS UMR 5310, INSERM U1217Faculté de Médecine et de Pharmacie8 avenue RockefellerLyon69008France
| | - Marlène Wiart
- Univ‐LyonIRIS TeamCarMeN LaboratoryInserm U1060INRA U1397INSA LyonUniversité Claude Bernard Lyon 1Groupement Hospitalier Est59 bd. PinelBron69500France
| |
Collapse
|
3
|
Zhuang L, Kong Y, Yang S, Lu F, Gong Z, Zhan S, Liu M. Dynamic changes of inflammation and apoptosis in cerebral ischemia‑reperfusion injury in mice investigated by ferumoxytol‑enhanced magnetic resonance imaging. Mol Med Rep 2021; 23:282. [PMID: 33604682 PMCID: PMC7905325 DOI: 10.3892/mmr.2021.11921] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 03/13/2020] [Indexed: 01/21/2023] Open
Abstract
The inflammatory response and apoptosis are key factors in cerebral ischemia-reperfusion injury. The severity of the inflammatory reaction and apoptosis has an important impact on the prognosis of stroke. The ultrasmall superparamagnetic iron oxide particle has provided an effective magnetic resonance molecular imaging method for dynamic observation of the cell infiltration process in vivo. The aims of the present study were to investigate the inflammatory response of cerebral ischemia-reperfusion injury in mice using ferumoxytol-enhanced magnetic resonance imaging, and to observe the dynamic changes of inflammatory response and apoptosis. In the present study a C57BL/6n mouse cerebral ischemia-reperfusion model was established by blocking the right middle cerebral artery with an occluding suture. Subsequently, the mice were injected with ferumoxytol via the tail vein, and magnetic resonance scanning was performed at corresponding time points to observe the signal changes. Furthermore, blood samples were used to measure the level of serum inflammatory factors, and histological staining was performed to assess the number of iron-swallowing microglial cells and apoptotic cells. The present results suggested that there was no significant difference in the serum inflammatory factors tumor necrosis factor-α and interleukin 1β between the middle cerebral artery occlusion (MCAO) and MCAO + ferumoxytol groups injected with ferumoxytol and physiological saline. The lowest signal ratio in the negative enhancement region was decreased 24 h after reperfusion in mice injected with ferumoxytol. The proportion of iron-swallowing microglial cells and TUNEL-positive cells were the highest at 24 h after reperfusion, and decreased gradually at 48 and 72 h after reperfusion. Therefore, the present results indicated that ferumoxytol injection of 18 mg Fe/kg does not affect the inflammatory response in the acute phase of cerebral ischemia and reperfusion. Ferumoxytol-enhanced magnetic resonance imaging can be used as an effective means to monitor the inflammatory response in the acute phase of cerebral ischemia-reperfusion injury. Furthermore, it was found that activation of the inflammatory response and apoptosis in the acute stage of cerebral ischemia-reperfusion injury is consistent.
Collapse
Affiliation(s)
- Lihua Zhuang
- Department of Radiology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Yingnan Kong
- Department of Radiology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Shuohui Yang
- Department of Radiology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Fang Lu
- Department of Radiology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Zhigang Gong
- Department of Radiology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Songhua Zhan
- Department of Radiology, Shuguang Hospital, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, P.R. China
| | - Mengxiao Liu
- MR Scientific Marketing, Siemens Healthcare, Shanghai 201318, P.R. China
| |
Collapse
|
4
|
Perrelli A, Fatehbasharzad P, Benedetti V, Ferraris C, Fontanella M, De Luca E, Moglianetti M, Battaglia L, Retta SF. Towards precision nanomedicine for cerebrovascular diseases with emphasis on Cerebral Cavernous Malformation (CCM). Expert Opin Drug Deliv 2021; 18:849-876. [PMID: 33406376 DOI: 10.1080/17425247.2021.1873273] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Introduction: Cerebrovascular diseases encompass various disorders of the brain vasculature, such as ischemic/hemorrhagic strokes, aneurysms, and vascular malformations, also affecting the central nervous system leading to a large variety of transient or permanent neurological disorders. They represent major causes of mortality and long-term disability worldwide, and some of them can be inherited, including Cerebral Cavernous Malformation (CCM), an autosomal dominant cerebrovascular disease linked to mutations in CCM1/KRIT1, CCM2, or CCM3/PDCD10 genes.Areas covered: Besides marked clinical and etiological heterogeneity, some commonalities are emerging among distinct cerebrovascular diseases, including key pathogenetic roles of oxidative stress and inflammation, which are increasingly recognized as major disease hallmarks and therapeutic targets. This review provides a comprehensive overview of the different clinical features and common pathogenetic determinants of cerebrovascular diseases, highlighting major challenges, including the pressing need for new diagnostic and therapeutic strategies, and focusing on emerging innovative features and promising benefits of nanomedicine strategies for early detection and targeted treatment of such diseases.Expert opinion: Specifically, we describe and discuss the multiple physico-chemical features and unique biological advantages of nanosystems, including nanodiagnostics, nanotherapeutics, and nanotheranostics, that may help improving diagnosis and treatment of cerebrovascular diseases and neurological comorbidities, with an emphasis on CCM disease.
Collapse
Affiliation(s)
- Andrea Perrelli
- Department of Clinical and Biological Sciences, University of Torino, Orbassano, Torino Italy.,CCM Italia Research Network, National Coordination Center at the Department of Clinical and Biological Sciences, University of Torino, Orbassano, Torino Italy
| | - Parisa Fatehbasharzad
- Department of Clinical and Biological Sciences, University of Torino, Orbassano, Torino Italy.,CCM Italia Research Network, National Coordination Center at the Department of Clinical and Biological Sciences, University of Torino, Orbassano, Torino Italy
| | - Valerio Benedetti
- Department of Clinical and Biological Sciences, University of Torino, Orbassano, Torino Italy.,CCM Italia Research Network, National Coordination Center at the Department of Clinical and Biological Sciences, University of Torino, Orbassano, Torino Italy
| | - Chiara Ferraris
- Department of Drug Science and Technology, University of Torino, Torino, Italy.,Nanostructured Interfaces and Surfaces (NIS) Interdepartmental Centre, University of Torino, Torino, Italy
| | - Marco Fontanella
- CCM Italia Research Network, National Coordination Center at the Department of Clinical and Biological Sciences, University of Torino, Orbassano, Torino Italy.,Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Brescia, Italy
| | - Elisa De Luca
- Nanobiointeractions & Nanodiagnostics, Center for Biomolecular Nanotechnologies, Arnesano, Lecce, Italy.,Institute for Microelectronics and Microsystems (IMM), CNR, Lecce, Italy
| | - Mauro Moglianetti
- Nanobiointeractions & Nanodiagnostics, Center for Biomolecular Nanotechnologies, Arnesano, Lecce, Italy.,Istituto Italiano Di Tecnologia, Nanobiointeractions & Nanodiagnostics, Genova, Italy
| | - Luigi Battaglia
- Department of Drug Science and Technology, University of Torino, Torino, Italy.,Nanostructured Interfaces and Surfaces (NIS) Interdepartmental Centre, University of Torino, Torino, Italy
| | - Saverio Francesco Retta
- Department of Clinical and Biological Sciences, University of Torino, Orbassano, Torino Italy.,CCM Italia Research Network, National Coordination Center at the Department of Clinical and Biological Sciences, University of Torino, Orbassano, Torino Italy
| |
Collapse
|
5
|
MRI coupled with clinically-applicable iron oxide nanoparticles reveals choroid plexus involvement in a murine model of neuroinflammation. Sci Rep 2019; 9:10046. [PMID: 31296913 PMCID: PMC6624288 DOI: 10.1038/s41598-019-46566-1] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2019] [Accepted: 06/25/2019] [Indexed: 02/06/2023] Open
Abstract
Choroid plexus (ChPs) are involved in the early inflammatory response that occurs in many brain disorders. However, the activation of immune cells within the ChPs in response to neuroinflammation is still largely unexplored in-vivo. There is therefore a crucial need for developing imaging tool that would allow the non-invasive monitoring of ChP involvement in these diseases. Magnetic resonance imaging (MRI) coupled with superparamagnetic particles of iron oxide (SPIO) is a minimally invasive technique allowing to track phagocytic cells in inflammatory diseases. Our aim was to investigate the potential of ultrasmall SPIO (USPIO)-enhanced MRI to monitor ChP involvement in-vivo in a mouse model of neuroinflammation obtained by intraperitoneal administration of lipopolysaccharide. Using high resolution MRI, we identified marked USPIO-related signal drops in the ChPs of animals with neuroinflammation compared to controls. We confirmed these results quantitatively using a 4-points grading system. Ex-vivo analysis confirmed USPIO accumulation within the ChP stroma and their uptake by immune cells. We validated the translational potential of our approach using the clinically-applicable USPIO Ferumoxytol. MR imaging of USPIO accumulation within the ChPs may serve as an imaging biomarker to study ChP involvement in neuroinflammatory disorders that could be applied in a straightforward way in clinical practice.
Collapse
|
6
|
Ross AM, Mc Nulty D, O'Dwyer C, Grabrucker AM, Cronin P, Mulvihill JJ. Standardization of research methods employed in assessing the interaction between metallic-based nanoparticles and the blood-brain barrier: Present and future perspectives. J Control Release 2019; 296:202-224. [DOI: 10.1016/j.jconrel.2019.01.022] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2018] [Revised: 01/16/2019] [Accepted: 01/17/2019] [Indexed: 01/31/2023]
|
7
|
Ugga L, Romeo V, Tedeschi E, Brunetti A, Quarantelli M. Superparamagnetic iron oxide nanocolloids in MRI studies of neuroinflammation. J Neurosci Methods 2018; 310:12-23. [PMID: 29913184 DOI: 10.1016/j.jneumeth.2018.06.008] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2017] [Revised: 06/14/2018] [Accepted: 06/14/2018] [Indexed: 02/06/2023]
Abstract
Iron oxide (IO) nanocolloids are being increasingly used to image cellular contribution to neuroinflammation using MRI, as these particles are capable of labeling circulating cells with phagocytic activity, allowing to assess cell trafficking from the blood to neuroinflammation sites. The use of IOs relies on the natural phagocytic properties of immune cells, allowing their labeling either in vitro or directly in vivo, following intravenous injection. Despite concerns on the specificity of the latter approach, the widespread availability and relatively low cost of these techniques, coupled to a sensitivity that allows to reach single cell detection, have promoted their use in several preclinical and clinical studies. In this review, we discuss the results of currently available preclinical and clinical IO-enhanced MRI studies of immune cell trafficking in neuroinflammation, examining the specificity of the existing findings, in view of the different possible mechanisms underlying IO accumulation in the brain. From this standpoint, we assess the implications of the temporal and spatial differences in the enhancement pattern of IOs, compared to gadolinium-based contrast agents, a clinically established MRI marker blood-brain barrier breakdown. While concerns on the specificity of cell labeling obtained using the in-vivo labeling approach still need to be fully addressed, these techniques have indeed proved able to provide additional information on neuroinflammatory phenomena, as compared to conventional Gadolinium-enhanced MRI.
Collapse
Affiliation(s)
- Lorenzo Ugga
- Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy
| | - Valeria Romeo
- Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy
| | - Enrico Tedeschi
- Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy
| | - Arturo Brunetti
- Department of Advanced Biomedical Sciences, Federico II University, Naples, Italy
| | - Mario Quarantelli
- Biostructure and Bioimaging Institute, National Research Council, Naples, Italy.
| |
Collapse
|
8
|
Brisset JC, Gazeau F, Corot C, Nighoghossian N, Berthezène Y, Canet-Soulas E, Wiart M. INFLAM – INFLAMmation in Brain and Vessels with Iron Nanoparticles and Cell Trafficking: A Multiscale Approach of Tissue Microenvironment, Iron Nanostructure and Iron Biotransformation. Ing Rech Biomed 2018. [DOI: 10.1016/j.irbm.2018.02.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
9
|
Valdora F, Cutrona G, Matis S, Morabito F, Massucco C, Emionite L, Boccardo S, Basso L, Recchia AG, Salvi S, Rosa F, Gentile M, Ravina M, Pace D, Castronovo A, Cilli M, Truini M, Calabrese M, Neri A, Neumaier CE, Fais F, Baio G, Ferrarini M. A non-invasive approach to monitor chronic lymphocytic leukemia engraftment in a xenograft mouse model using ultra-small superparamagnetic iron oxide-magnetic resonance imaging (USPIO-MRI). Clin Immunol 2016; 172:52-60. [DOI: 10.1016/j.clim.2016.07.013] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 07/10/2016] [Indexed: 01/25/2023]
|
10
|
Alam SR, Stirrat C, Richards J, Mirsadraee S, Semple SIK, Tse G, Henriksen P, Newby DE. Vascular and plaque imaging with ultrasmall superparamagnetic particles of iron oxide. J Cardiovasc Magn Reson 2015; 17:83. [PMID: 26381872 PMCID: PMC4574723 DOI: 10.1186/s12968-015-0183-4] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2014] [Accepted: 08/16/2015] [Indexed: 12/21/2022] Open
Abstract
Cardiovascular Magnetic Resonance (CMR) has become a primary tool for non-invasive assessment of cardiovascular anatomy, pathology and function. Existing contrast agents have been utilised for the identification of infarction, fibrosis, perfusion deficits and for angiography. Novel ultrasmall superparamagnetic particles of iron oxide (USPIO) contrast agents that are taken up by inflammatory cells can detect cellular inflammation non-invasively using CMR, potentially aiding the diagnosis of inflammatory medical conditions, guiding their treatment and giving insight into their pathophysiology. In this review we describe the utilization of USPIO as a novel contrast agent in vascular disease.
Collapse
Affiliation(s)
- Shirjel R Alam
- Centre for Cardiovascular Science, The University of Edinburgh, The Chancellor's Building, Little France Crescent, Edinburgh, EH16 5SA, UK.
- Department of Cardiology, Royal Infirmary of Edinburgh, Edinburgh, EH16 5SA, UK.
| | - Colin Stirrat
- Centre for Cardiovascular Science, The University of Edinburgh, The Chancellor's Building, Little France Crescent, Edinburgh, EH16 5SA, UK.
- Department of Cardiology, Royal Infirmary of Edinburgh, Edinburgh, EH16 5SA, UK.
| | - Jennifer Richards
- Centre for Cardiovascular Science, The University of Edinburgh, The Chancellor's Building, Little France Crescent, Edinburgh, EH16 5SA, UK.
| | - Saeed Mirsadraee
- Clinical Research Imaging Centre, University of Edinburgh, Edinburgh, EH16 5SA, UK.
- Department of Radiology, Royal Infirmary of Edinburgh, Edinburgh, EH16 5SA, UK.
| | - Scott I K Semple
- Clinical Research Imaging Centre, University of Edinburgh, Edinburgh, EH16 5SA, UK.
| | - George Tse
- MRC Centre for Inflammation Research, The University of Edinburgh, Edinburgh, EH16 5SA, UK.
| | - Peter Henriksen
- Centre for Cardiovascular Science, The University of Edinburgh, The Chancellor's Building, Little France Crescent, Edinburgh, EH16 5SA, UK.
- Department of Cardiology, Royal Infirmary of Edinburgh, Edinburgh, EH16 5SA, UK.
| | - David E Newby
- Centre for Cardiovascular Science, The University of Edinburgh, The Chancellor's Building, Little France Crescent, Edinburgh, EH16 5SA, UK.
- Department of Cardiology, Royal Infirmary of Edinburgh, Edinburgh, EH16 5SA, UK.
| |
Collapse
|
11
|
Mouhieddine TH, Itani MM, Nokkari A, Ren C, Daoud G, Zeidan A, Mondello S, Kobeissy FH. Nanotheragnostic applications for ischemic and hemorrhagic strokes: improved delivery for a better prognosis. Curr Neurol Neurosci Rep 2015; 15:505. [PMID: 25394858 DOI: 10.1007/s11910-014-0505-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Stroke is the second leading cause of death worldwide and a major cause of long-term severe disability representing a global health burden and one of the highly researched medical conditions. Nanostructured material synthesis and engineering have been recently developed and have been largely integrated into many fields including medicine. Recent studies have shown that nanoparticles might be a valuable tool in stroke. Different types, shapes, and sizes of nanoparticles have been used for molecular/biomarker profiling and imaging to help in early diagnosis and prevention of stroke and for drug/RNA delivery for improved treatment and neuroprotection. However, these promising applications have limitations, including cytotoxicity, which hindered their adoption into clinical use. Future research is warranted to fully develop and effectively and safely translate nanoparticles for stroke diagnosis and treatment into the clinic. This work will discuss the emerging role of nanotheragnostics in stroke diagnosis and treatment applications.
Collapse
Affiliation(s)
- Tarek H Mouhieddine
- Faculty of Medicine, American University of Beirut Medical Center, Beirut, Lebanon,
| | | | | | | | | | | | | | | |
Collapse
|
12
|
In vivo analysis of neuroinflammation in the late chronic phase after experimental stroke. Neuroscience 2015; 292:71-80. [PMID: 25701708 DOI: 10.1016/j.neuroscience.2015.02.024] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2014] [Revised: 02/09/2015] [Accepted: 02/11/2015] [Indexed: 01/28/2023]
Abstract
BACKGROUND AND PURPOSE In vivo imaging of inflammatory processes is a valuable tool in stroke research. We here investigated the combination of two imaging modalities in the chronic phase after cerebral ischemia: magnetic resonance imaging (MRI) using intravenously applied ultra small supraparamagnetic iron oxide particles (USPIO), and positron emission tomography (PET) with the tracer [(11)C]PK11195. METHODS Rats were subjected to permanent middle cerebral artery occlusion (pMCAO) by the macrosphere model and monitored by MRI and PET for 28 or 56 days, followed by immunohistochemical endpoint analysis. To our knowledge, this is the first study providing USPIO-MRI data in the chronic phase up to 8 weeks after stroke. RESULTS Phagocytes with internalized USPIOs induced MRI-T2(∗) signal alterations in the brain. Combined analysis with [(11)C]PK11195-PET allowed quantification of phagocytic activity and other neuroinflammatory processes. From 4 weeks after induction of ischemia, inflammation was dominated by phagocytes. Immunohistochemistry revealed colocalization of Iba1+ microglia with [(11)C]PK11195 and ED1/CD68 with USPIOs. USPIO-related iron was distinguished from alternatively deposited iron by assessing MRI before and after USPIO application. Tissue affected by non-phagocytic inflammation during the first week mostly remained in a viably vital but remodeled state after 4 or 8 weeks, while phagocytic activity was associated with severe injury and necrosis accordingly. CONCLUSIONS We conclude that the combined approach of USPIO-MRI and [(11)C]PK11195-PET allows to observe post-stroke inflammatory processes in the living animal in an intraindividual and longitudinal fashion, predicting long-term tissue fate. The non-invasive imaging methods do not affect the immune system and have been applied to human subjects before. Translation into clinical applications is therefore feasible.
Collapse
|
13
|
Podrouzkova H, Feitova V, Panovsky R, Meluzin J, Orban M. Superparamagnetic iron oxide-enhanced magnetic resonance for imaging cardiac inflammation. A minireview. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub 2014; 159:378-81. [PMID: 24993740 DOI: 10.5507/bp.2014.030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2013] [Accepted: 05/29/2014] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Advances in nanotechnology have lead to the development of a novel contrast media for Magnetic Resonance Imaging (MRI) - the superparamagnetic iron oxide nanoparticle (SPIO). SPIO nanoparticles are used to image inflammation on the cellular level in various settings. This review covers the physicochemical characteristics of SPIO particles as well as relevant animal and clinical studies and discusses the potential of SPIO particles to image cardiac inflammation including cardiac graft rejection. METHODS We searched the scientific biomedical databases Medline/PubMed, BioMedCentral, Google Scholar, Ovid and, ProQuest from to 2000 to 2013 for publications relevant to the topic. CONCLUSIONS SPIO nanoparticles due to their unique properties could become a useful tool in imaging cardiac inflammation. However, the task is to find a suitable particle size and coating with corresponding pharmacokinetics, establish the right dose and MRI scan timing for individual applications.
Collapse
Affiliation(s)
- Helena Podrouzkova
- Department of Cardiovascular Diseases, ICRC, St. Anne's University Hospital in Brno, Czech Republic.,ICRC, St. Anne's University Hospital in Brno
| | - Vera Feitova
- Department of Imaging Methods, ICRC, St. Anne's University Hospital in Brno.,ICRC, St. Anne's University Hospital in Brno
| | - Roman Panovsky
- Department of Cardiovascular Diseases, ICRC, St. Anne's University Hospital in Brno, Czech Republic.,ICRC, St. Anne's University Hospital in Brno
| | - Jaroslav Meluzin
- Department of Cardiovascular Diseases, ICRC, St. Anne's University Hospital in Brno, Czech Republic.,ICRC, St. Anne's University Hospital in Brno
| | - Marek Orban
- ICRC, St. Anne's University Hospital in Brno
| |
Collapse
|
14
|
Superparamagnetic iron oxide based nanoprobes for imaging and theranostics. Adv Colloid Interface Sci 2013; 199-200:95-113. [PMID: 23891347 DOI: 10.1016/j.cis.2013.06.007] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2013] [Revised: 06/21/2013] [Accepted: 06/27/2013] [Indexed: 12/11/2022]
Abstract
The need to target, deliver and subsequently evaluate the efficacy of therapeutics in the treatment of a disease has provided added impetus in developing novel and highly efficient contrast agents. Superparamagnetic iron oxide nanoparticles (SPIONs) have offered tremendous potential in designing advanced magnetic resonance imaging (MRI) diagnostic agents, due to their unique physicochemical properties. There has been tremendous effort devoted in the recent past in developing synthetic methodologies through which their size, hydrodynamic radii, chemical composition and morphologies could be tailored at the nanoscale. This enables one to fine tune their magnetic behavior, and thus their MRI response. While novel synthetic strategies are being assembled for directing SPIONs to the diseased site as well as imparting them stealth and biocompatibility, it is also essential to evaluate their biological toxicological profiles. This review highlights recent advances that have been made in the synthesis of SPIONs, subsequent functionalization with desired entities, and a discussion on their use as MRI contrast agents in cardiovascular research.
Collapse
|
15
|
Marinescu M, Langer M, Durand A, Olivier C, Chabrol A, Rositi H, Chauveau F, Cho TH, Nighoghossian N, Berthezène Y, Peyrin F, Wiart M. Synchrotron Radiation X-Ray Phase Micro-computed Tomography as a New Method to Detect Iron Oxide Nanoparticles in the Brain. Mol Imaging Biol 2013; 15:552-9. [DOI: 10.1007/s11307-013-0639-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
16
|
Durand A, Chauveau F, Cho TH, Bolbos R, Langlois JB, Hermitte L, Wiart M, Berthezène Y, Nighoghossian N. Spontaneous reperfusion after in situ thromboembolic stroke in mice. PLoS One 2012; 7:e50083. [PMID: 23166825 PMCID: PMC3500336 DOI: 10.1371/journal.pone.0050083] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2012] [Accepted: 10/15/2012] [Indexed: 11/19/2022] Open
Abstract
Injection of thrombin into the middle cerebral artery (MCA) of mice has been proposed as a new model of thromboembolic stroke. The present study used sequential multiparametric Magnetic Resonance Imaging (MRI), including Magnetic Resonance Angiography (MRA), Diffusion-Weighted Imaging (DWI) and Perfusion-Weighted Imaging (PWI), to document MCA occlusion, PWI-DWI mismatch, and lesion development. In the first experiment, complete MCA occlusion and reproducible hypoperfusion were obtained in 85% of animals during the first hour after stroke onset. In the second experiment, 80% of animals showed partial to complete reperfusion during a three-hour follow-up. Spontaneous reperfusion thus contributed to the variability in ischemic volume in this model. The study confirmed the value of the model for evaluating new thrombolytic treatments, but calls for extended MRI follow-up at the acute stage in therapeutic studies.
Collapse
Affiliation(s)
- Anne Durand
- Université de Lyon, CREATIS, CNRS UMR5220, INSERM U1044, INSA-Lyon, Université Lyon 1, Hospices Civils de Lyon, Lyon, France
| | - Fabien Chauveau
- Université de Lyon, CREATIS, CNRS UMR5220, INSERM U1044, INSA-Lyon, Université Lyon 1, Hospices Civils de Lyon, Lyon, France
| | - Tae-Hee Cho
- Université de Lyon, CREATIS, CNRS UMR5220, INSERM U1044, INSA-Lyon, Université Lyon 1, Hospices Civils de Lyon, Lyon, France
| | - Radu Bolbos
- CERMEP-Imagerie du Vivant, Animage, Lyon, France
| | | | - Laure Hermitte
- Université de Lyon, CREATIS, CNRS UMR5220, INSERM U1044, INSA-Lyon, Université Lyon 1, Hospices Civils de Lyon, Lyon, France
| | - Marlène Wiart
- Université de Lyon, CREATIS, CNRS UMR5220, INSERM U1044, INSA-Lyon, Université Lyon 1, Hospices Civils de Lyon, Lyon, France
| | - Yves Berthezène
- Université de Lyon, CREATIS, CNRS UMR5220, INSERM U1044, INSA-Lyon, Université Lyon 1, Hospices Civils de Lyon, Lyon, France
| | - Norbert Nighoghossian
- Université de Lyon, CREATIS, CNRS UMR5220, INSERM U1044, INSA-Lyon, Université Lyon 1, Hospices Civils de Lyon, Lyon, France
- * E-mail:
| |
Collapse
|