1
|
Yel I, Booz C, D’Angelo T, Koch V, Gruenewald LD, Eichler K, Gökduman A, Giardino D, Gaeta M, Mazziotti S, Herrmann E, Vogl TJ, Mahmoudi S, Lanzafame LRM. Standardization of Dual-Energy CT Iodine Uptake of the Abdomen and Pelvis: Defining Reference Values in a Big Data Cohort. Diagnostics (Basel) 2024; 14:2051. [PMID: 39335730 PMCID: PMC11431114 DOI: 10.3390/diagnostics14182051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 09/05/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
Background: To establish dual-energy-derived iodine density reference values in abdominopelvic organs in a large cohort of healthy subjects. Methods: 597 patients who underwent portal venous phase dual-energy CT scans of the abdomen were retrospectively enrolled. Iodine distribution maps were reconstructed, and regions of interest measurements were placed in abdominal and pelvic structures to obtain absolute iodine values. Subsequently, normalization of the abdominal aorta was conducted to obtain normalized iodine ratios. The values obtained were subsequently analyzed and differences were investigated in subgroups defined by sex, age and BMI. Results: Overall mean iodine uptake values and normalized iodine ratios ranged between 0.31 and 6.08 mg/mL and 0.06 and 1.20, respectively. Women exhibited higher absolute iodine concentration across all organs. With increasing age, normalized iodine ratios mostly tend to decrease, being most significant in the uterus, prostate, and kidneys (p < 0.015). BMI was the parameter less responsible for variations in iodine concentrations; normal weighted patients demonstrated higher values of both absolute and normalized iodine. Conclusions: Iodine concentration values and normalized iodine ratios of abdominal and pelvic organs reveal significant gender-, age-, and BMI-related differences, underscoring the necessity to integrate these variables into clinical practice.
Collapse
Affiliation(s)
- Ibrahim Yel
- Division of Experimental Imaging, Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, 60596 Frankfurt, Germany
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, 60596 Frankfurt, Germany
| | - Christian Booz
- Division of Experimental Imaging, Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, 60596 Frankfurt, Germany
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, 60596 Frankfurt, Germany
| | - Tommaso D’Angelo
- Diagnostic and Interventional Radiology Unit, BIOMORF Department, University of Messina, 98124 Messina, Italy
- Department of Radiology and Nuclear Medicine, Erasmus MC, 3015 CE Rotterdam, The Netherlands
| | - Vitali Koch
- Division of Experimental Imaging, Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, 60596 Frankfurt, Germany
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, 60596 Frankfurt, Germany
| | - Leon D. Gruenewald
- Division of Experimental Imaging, Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, 60596 Frankfurt, Germany
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, 60596 Frankfurt, Germany
| | - Katrin Eichler
- Division of Experimental Imaging, Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, 60596 Frankfurt, Germany
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, 60596 Frankfurt, Germany
| | - Aynur Gökduman
- Division of Experimental Imaging, Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, 60596 Frankfurt, Germany
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, 60596 Frankfurt, Germany
| | - Davide Giardino
- Division of Experimental Imaging, Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, 60596 Frankfurt, Germany
| | - Michele Gaeta
- Diagnostic and Interventional Radiology Unit, BIOMORF Department, University of Messina, 98124 Messina, Italy
| | - Silvio Mazziotti
- Diagnostic and Interventional Radiology Unit, BIOMORF Department, University of Messina, 98124 Messina, Italy
| | - Eva Herrmann
- Institute of Biostatistics and Mathematical Modelling, Goethe University Frankfurt, 60596 Frankfurt, Germany
| | - Thomas J. Vogl
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, 60596 Frankfurt, Germany
| | - Scherwin Mahmoudi
- Division of Experimental Imaging, Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, 60596 Frankfurt, Germany
- Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, 60596 Frankfurt, Germany
| | - Ludovica R. M. Lanzafame
- Division of Experimental Imaging, Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, 60596 Frankfurt, Germany
- Diagnostic and Interventional Radiology Unit, BIOMORF Department, University of Messina, 98124 Messina, Italy
| |
Collapse
|
2
|
Meloni A, Maffei E, Clemente A, De Gori C, Occhipinti M, Positano V, Berti S, La Grutta L, Saba L, Cau R, Bossone E, Mantini C, Cavaliere C, Punzo B, Celi S, Cademartiri F. Spectral Photon-Counting Computed Tomography: Technical Principles and Applications in the Assessment of Cardiovascular Diseases. J Clin Med 2024; 13:2359. [PMID: 38673632 PMCID: PMC11051476 DOI: 10.3390/jcm13082359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 04/15/2024] [Accepted: 04/16/2024] [Indexed: 04/28/2024] Open
Abstract
Spectral Photon-Counting Computed Tomography (SPCCT) represents a groundbreaking advancement in X-ray imaging technology. The core innovation of SPCCT lies in its photon-counting detectors, which can count the exact number of incoming x-ray photons and individually measure their energy. The first part of this review summarizes the key elements of SPCCT technology, such as energy binning, energy weighting, and material decomposition. Its energy-discriminating ability represents the key to the increase in the contrast between different tissues, the elimination of the electronic noise, and the correction of beam-hardening artifacts. Material decomposition provides valuable insights into specific elements' composition, concentration, and distribution. The capability of SPCCT to operate in three or more energy regimes allows for the differentiation of several contrast agents, facilitating quantitative assessments of elements with specific energy thresholds within the diagnostic energy range. The second part of this review provides a brief overview of the applications of SPCCT in the assessment of various cardiovascular disease processes. SPCCT can support the study of myocardial blood perfusion and enable enhanced tissue characterization and the identification of contrast agents, in a manner that was previously unattainable.
Collapse
Affiliation(s)
- Antonella Meloni
- Bioengineering Unit, Fondazione G. Monasterio CNR-Regione Toscana, 56124 Pisa, Italy; (A.M.); (V.P.)
- Department of Radiology, Fondazione G. Monasterio CNR-Regione Toscana, 56124 Pisa, Italy; (A.C.); (C.D.G.); (M.O.)
| | - Erica Maffei
- Department of Radiology, Istituto di Ricovero e Cura a Carattere Scientifico SYNLAB SDN, 80131 Naples, Italy; (E.M.); (C.C.); (B.P.)
| | - Alberto Clemente
- Department of Radiology, Fondazione G. Monasterio CNR-Regione Toscana, 56124 Pisa, Italy; (A.C.); (C.D.G.); (M.O.)
| | - Carmelo De Gori
- Department of Radiology, Fondazione G. Monasterio CNR-Regione Toscana, 56124 Pisa, Italy; (A.C.); (C.D.G.); (M.O.)
| | - Mariaelena Occhipinti
- Department of Radiology, Fondazione G. Monasterio CNR-Regione Toscana, 56124 Pisa, Italy; (A.C.); (C.D.G.); (M.O.)
| | - Vicenzo Positano
- Bioengineering Unit, Fondazione G. Monasterio CNR-Regione Toscana, 56124 Pisa, Italy; (A.M.); (V.P.)
- Department of Radiology, Fondazione G. Monasterio CNR-Regione Toscana, 56124 Pisa, Italy; (A.C.); (C.D.G.); (M.O.)
| | - Sergio Berti
- Diagnostic and Interventional Cardiology Department, Fondazione G. Monasterio CNR-Regione Toscana, 54100 Massa, Italy;
| | - Ludovico La Grutta
- Department of Radiology, University Hospital “P. Giaccone”, 90127 Palermo, Italy;
| | - Luca Saba
- Department of Radiology, University Hospital of Cagliari, 09042 Monserrato (CA), Italy; (L.S.); (R.C.)
| | - Riccardo Cau
- Department of Radiology, University Hospital of Cagliari, 09042 Monserrato (CA), Italy; (L.S.); (R.C.)
| | - Eduardo Bossone
- Department of Cardiology, Ospedale Cardarelli, 80131 Naples, Italy;
| | - Cesare Mantini
- Department of Radiology, “G. D’Annunzio” University, 66100 Chieti, Italy;
| | - Carlo Cavaliere
- Department of Radiology, Istituto di Ricovero e Cura a Carattere Scientifico SYNLAB SDN, 80131 Naples, Italy; (E.M.); (C.C.); (B.P.)
| | - Bruna Punzo
- Department of Radiology, Istituto di Ricovero e Cura a Carattere Scientifico SYNLAB SDN, 80131 Naples, Italy; (E.M.); (C.C.); (B.P.)
| | - Simona Celi
- BioCardioLab, Fondazione G. Monasterio CNR-Regione Toscana, 54100 Massa, Italy;
| | - Filippo Cademartiri
- Department of Radiology, Fondazione G. Monasterio CNR-Regione Toscana, 56124 Pisa, Italy; (A.C.); (C.D.G.); (M.O.)
| |
Collapse
|
3
|
Böttcher B, Zsarnoczay E, Varga-Szemes A, Schoepf UJ, Meinel FG, van Assen M, De Cecco CN. Dual-Energy Computed Tomography in Cardiac Imaging. Radiol Clin North Am 2023; 61:995-1009. [PMID: 37758366 DOI: 10.1016/j.rcl.2023.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/03/2023]
Abstract
Dual-energy computed tomography (DECT) acquires images using two energy spectra and offers a variation of reconstruction techniques for improved cardiac imaging. Virtual monoenergetic images decrease artifacts improving coronary plaque and stent visualization. Further, contrast attenuation is increased allowing significant reduction of contrast dose. Virtual non-contrast reconstructions enable coronary artery calcium scoring from contrast-enhanced scans. DECT provides advanced plaque imaging with detailed analysis of plaque components, indicating plaque stability. Extracellular volume assessment using DECT offers noninvasive detection of myocardial fibrosis. This review aims to outline the current cardiac applications of DECT, summarize recent literature, and discuss their findings.
Collapse
Affiliation(s)
- Benjamin Böttcher
- Division of Cardiothoracic Imaging, Department of Radiology and Imaging Sciences, Emory University Hospital, 1364 Clifton Road NE, Suite D112, Atlanta, GA 30322, USA; Institute of Diagnostic and Interventional Radiology, Pediatric Radiology and Neuroradiology, University Medical Centre Rostock, Ernst-Heydemann-Strasse 6, 18057 Rostock, Germany
| | - Emese Zsarnoczay
- Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Clinical Science Building, 96 Jonathan Lucas Street, Suite 210, MSC 323 Charleston, SC 29425, USA; MTA-SE Cardiovascular Imaging Research Group, Medical Imaging Center, Semmelweis University, Üllői út 26, 1085 Budapest, Hungary
| | - Akos Varga-Szemes
- Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Clinical Science Building, 96 Jonathan Lucas Street, Suite 210, MSC 323 Charleston, SC 29425, USA
| | - Uwe Joseph Schoepf
- Division of Cardiovascular Imaging, Department of Radiology and Radiological Science, Medical University of South Carolina, Clinical Science Building, 96 Jonathan Lucas Street, Suite 210, MSC 323 Charleston, SC 29425, USA
| | - Felix G Meinel
- Institute of Diagnostic and Interventional Radiology, Pediatric Radiology and Neuroradiology, University Medical Centre Rostock, Ernst-Heydemann-Strasse 6, 18057 Rostock, Germany
| | - Marly van Assen
- Division of Cardiothoracic Imaging, Department of Radiology and Imaging Sciences, Emory University Hospital, 1364 Clifton Road NE, Suite D112, Atlanta, GA 30322, USA
| | - Carlo N De Cecco
- Division of Cardiothoracic Imaging and Imaging Informatics, Department of Radiology and Imaging Sciences, Emory University Hospital, Emory Healthcare, Inc. 1365 Clifton Road NE, Suite - AT503, Atlanta, GA 30322, USA.
| |
Collapse
|
4
|
Vrbaski S, Bache S, Rajagopal J, Samei E. Quantitative performance of photon-counting CT at low dose: Virtual monochromatic imaging and iodine quantification. Med Phys 2023; 50:5421-5433. [PMID: 37415402 PMCID: PMC10897956 DOI: 10.1002/mp.16583] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 06/11/2023] [Accepted: 06/12/2023] [Indexed: 07/08/2023] Open
Abstract
BACKGROUND Quantitative imaging techniques, such as virtual monochromatic imaging (VMI) and iodine quantification (IQ), have proven valuable diagnostic methods in several specific clinical tasks such as tumor and tissue differentiation. Recently, a new generation of computed tomography (CT) scanners equipped with photon-counting detectors (PCD) has reached clinical status. PURPOSE This work aimed to investigate the performance of a new photon-counting CT (PC-CT) in low-dose quantitative imaging tasks, comparing it to an earlier generation CT scanner with an energy-integrating detector dual-energy CT (DE-CT). The accuracy and precision of the quantification across size, dose, material types (including low and high iodine concentrations), displacement from iso-center, and solvent (tissue background) composition were explored. METHODS Quantitative analysis was performed on two clinical scanners, Siemens SOMATOM Force and NAEOTOM Alpha using a multi-energy phantom with plastic inserts mimicking different iodine concentrations and tissue types. The tube configurations in the dual-energy scanner were 80/150Sn kVp and 100/150Sn kVp, while for PC-CT both tube voltages were set to either 120 or 140 kVp with photon-counting energy thresholds set at 20/65 or 20/70 keV. The statistical significance of patient-related parameters in quantitative measurements was examined using ANOVA and pairwise comparison with the posthoc Tukey honest significance test. Scanner bias was assessed in both quantitative tasks for relevant patient-specific parameters. RESULTS The accuracy of IQ and VMI in the PC-CT was comparable between standard and low radiation doses (p < 0.01). The patient size and tissue type significantly affect the accuracy of both quantitative imaging tasks in both scanners. The PC-CT scanner outperforms the DE-CT scanner in the IQ task in all cases. Iodine quantification bias in the PC-CT (-0.9 ± 0.15 mg/mL) at low doses in our study was comparable to that of DE-CT (range -2.6 to 1.5 mg/mL, published elsewhere) at a 1.7× higher dose, but the dose reduction severely biased DE-CT (4.72 ± 0.22 mg/mL). The accuracy in Hounsfield units (HU) estimation was comparable for 70 and 100 keV virtual imaging between scanners, but PC-CT was significantly underestimating virtual 40 keV HU values of dense materials in the phantom representing the extremely obese population. CONCLUSIONS The statistical analysis of our measurements reveals better IQ at lower radiation doses using new PC-CT. Although VMI performance was mostly comparable between the scanners, the DE-CT scanner quantitatively outperformed PC-CT when estimating HU values in the specific case of very large phantoms and dense materials, benefiting from increased X-ray tube potentials.
Collapse
Affiliation(s)
- Stevan Vrbaski
- Department of Radiology, Carl E. Ravin Advanced Imaging Laboratories, Duke University Medical Center, Durham, North Carolina, USA
- Department of Physics, University of Trieste, Trieste, Italy
- Elettra-Sincrotrone Trieste, Basovizza, Trieste, Italy
| | - Steve Bache
- Clinical Imaging Physics Group, Department of Radiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Jayasai Rajagopal
- Department of Radiology, Carl E. Ravin Advanced Imaging Laboratories, Duke University Medical Center, Durham, North Carolina, USA
- Radiology and Imaging Sciences,Clinical Center, National Institutes of Health, Bethesda, Maryland, USA
| | - Ehsan Samei
- Department of Radiology, Carl E. Ravin Advanced Imaging Laboratories, Duke University Medical Center, Durham, North Carolina, USA
- Clinical Imaging Physics Group, Department of Radiology, Duke University Medical Center, Durham, North Carolina, USA
| |
Collapse
|
5
|
Patel P, Emrich T, Schoepf UJ, Mehta V, Bayer RR, von Assen M, Giovagnoli V, Jeudy J, Varga-Szemes A, White C. Comprehensive Computed Tomography Imaging of Vessel-specific and Lesion-specific Myocardial Ischemia. J Thorac Imaging 2023; 38:212-225. [PMID: 34029280 DOI: 10.1097/rti.0000000000000592] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Coronary computed tomographic angiography (CCTA) has emerged as a fast and robust tool with high sensitivity and excellent negative predictive value for the evaluation of coronary artery disease, but is unable to estimate the hemodynamic significance of a lesion. Advances in computed tomography (CT)-based diagnostic techniques, for example, CT-derived fractional flow reserve and CT perfusion, have helped transform CCTA primarily from an anatomic assessment tool to a technique that is able to provide both anatomic and functional information for a stenosis. With the results of the ISCHEMIA trial published in 2019, these advanced techniques can elevate CCTA into the role of a better gatekeeper for decision-making and can help guide referral for invasive management. In this article, we review the principles, limitations, diagnostic performance, and clinical utility of these 2 functional CT-based techniques in the evaluation of vessel-specific and lesion-specific ischemia.
Collapse
Affiliation(s)
- Pratik Patel
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD
- Department of Radiology, University of Florida College of Medicine, Gainesville, FL
| | - Tilman Emrich
- Department of Radiology and Radiological Science, Division of Cardiovascular Imaging
- Department of Diagnostic and Interventional Radiology, University Medical Center Mainz
- German Center for Cardiovascular Research (DZHK), Partner Site Rhine Main, Mainz, Germany
| | - U Joseph Schoepf
- Department of Radiology and Radiological Science, Division of Cardiovascular Imaging
| | - Varun Mehta
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD
- Department of Radiology, Donald and Barbara Zucker School of Medicine at Hofstra/Northwell, Hempstead, NY
| | - Richard R Bayer
- Department of Radiology and Radiological Science, Division of Cardiovascular Imaging
- Department of Medicine, Division of Cardiology, Medical University of South Carolina, Charleston, SC
| | - Marly von Assen
- Department of Radiology and Imaging Sciences, Division of Cardiothoracic Imaging, Emory University Hospital, Atlanta, GA
| | - Vincent Giovagnoli
- Department of Radiology and Radiological Science, Division of Cardiovascular Imaging
| | - Jean Jeudy
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD
| | - Akos Varga-Szemes
- Department of Radiology and Radiological Science, Division of Cardiovascular Imaging
| | - Charles White
- Department of Diagnostic Radiology and Nuclear Medicine, University of Maryland School of Medicine, Baltimore, MD
| |
Collapse
|
6
|
Ghetti C, Ortenzia O, Bertolini M, Sceni G, Sverzellati N, Silva M, Maddalo M. Lung dual energy CT: Impact of different technological solutions on quantitative analysis. Eur J Radiol 2023; 163:110812. [PMID: 37068414 DOI: 10.1016/j.ejrad.2023.110812] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 03/30/2023] [Accepted: 04/03/2023] [Indexed: 04/19/2023]
Abstract
PURPOSE To evaluated the accuracy of spectral parameters quantification of four different CT scanners in dual energy examinations of the lung using a dedicated phantom. METHOD Measurements were made with different technologies of the same vendor: one dual source CT scanner (DSCT), one TwinBeam (i.e. split filter) and two sequential acquisition single source scanners (SSCT). Angular separation of Calcium and Iodine signals were calculated from scatter plots of low-kVp versus high-kVp HUs. Electron density (ρe), effective atomic number (Zeff) and Iodine concentration (Iconc) were measured using Syngo.via software. Accuracy (A) of ρe, Zeff and Iconc was evaluated as the absolute percentage difference (D%) between reference values and measured ones, while precision (P) was evaluated as the variability σ obtained by repeating the measurement with different acquisition/reconstruction settings. RESULTS Angular separation was significantly larger for DSCT (α = 9.7°) and for sequential SSCT (α = 9.9°) systems. TwinBeam was less performing in material separation (α = 5.0°). The lowest average A was observed for TwinBeam (Aρe = [4.7 ± 1.0], AZ = [9.1 ± 3.1], AIconc = [19.4 ± 4.4]), while the best average A was obtained for Flash (Aρe = [1.8 ± 0.4], AZ = [3.5 ± 0.7], AIconc = [7.3 ± 1.8]). TwinBeam presented inferior average P (Pρe = [0.6 ± 0.1], PZ = [1.1 ± 0.2], PIconc = [10.9 ± 4.9]), while other technologies demonstrate a comparable average. CONCLUSIONS Different technologies performed material separation and spectral parameter quantification with different degrees of accuracy and precision. DSCT performed better while TwinBeam demonstrated not excellent performance. Iodine concentration measurements exhibited high variability due to low Iodine absolute content in lung nodules, thus limiting its clinical usefulness in pulmonary applications.
Collapse
Affiliation(s)
- Caterina Ghetti
- Medical Physics Unit - University Hospital of Parma, Via Gramsci 14, 43126 Parma, Italy
| | - Ornella Ortenzia
- Medical Physics Unit - University Hospital of Parma, Via Gramsci 14, 43126 Parma, Italy.
| | - Marco Bertolini
- Medical Physics Unit - AUSL-IRCCS of Reggio Emilia, Via Amendola 2, 42122 Reggio Emilia, Italy
| | - Giada Sceni
- Medical Physics Unit - AUSL-IRCCS of Reggio Emilia, Via Amendola 2, 42122 Reggio Emilia, Italy
| | - Nicola Sverzellati
- Unit of Scienze Radiologiche, Department of Medicine and Surgery, University of Parma, Via Gramsci 14, 43126 Parma, Italy
| | - Mario Silva
- Unit of Scienze Radiologiche, Department of Medicine and Surgery, University of Parma, Via Gramsci 14, 43126 Parma, Italy
| | - Michele Maddalo
- Medical Physics Unit - University Hospital of Parma, Via Gramsci 14, 43126 Parma, Italy
| |
Collapse
|
7
|
Geng D, Zhou Y, Su GY, Si Y, Shen MP, Xu XQ, Wu FY. Influence of sex, age and thyroid function indices on dual-energy computed tomography-derived quantitative parameters of thyroid in patients with or without Hashimoto's thyroiditis. BMC Med Imaging 2023; 23:25. [PMID: 36740672 PMCID: PMC9901076 DOI: 10.1186/s12880-023-00983-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2022] [Accepted: 02/01/2023] [Indexed: 02/07/2023] Open
Abstract
PURPOSE To study the influence of sex, age and thyroid function indices on dual-energy computed tomography (DECT)-derived quantitative parameters of thyroid in patients with or without Hashimoto's thyroiditis (HT). MATERIAL AND METHODS A total of 198 consecutive patients who underwent DECT scan of neck due to unilateral thyroid lesions were retrospectively enrolled. Iodine concentration (IC), total iodine content (TIC) and volume of normal thyroid lobe were calculated. Influences of sex, age and thyroid function indices on DECT-derived parameters in overall study population, subgroup patients with, and those without HT were assessed using Mann-Whitney U test, Student's T-test, and Spearman correlation analyses, respectively, as appropriate. RESULTS HT group showed significantly lower IC and TIC, while higher volume than No-HT group (all p < 0.001). The volume was larger in male than that in female in overall study population and No-HT group (p = 0.047 and 0.010, respectively). There was no significant difference in any DECT-derived parameters between low (≤ 35 years) and high (> 35 years) age group in all three groups (all p > 0.05). TPOAb and TgAb correlated positively with IC and TIC, and negatively with volume in overall study population (all p < 0.05). TPOAb and TgAb also correlated positively with IC in HT group (p = 0.002 and 0.007, respectively). CONCLUSION DECT-derived parameters of thyroid differed significantly between patients with and without HT. Sex and thyroid function indices could affect the DECT-derived parameters. Aforementioned physiological factors should be considered when analyzing the DECT-derived parameters of thyroid.
Collapse
Affiliation(s)
- Di Geng
- grid.412676.00000 0004 1799 0784Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, No. 300, Guangzhou Road, Nanjing, People’s Republic of China
| | - Yan Zhou
- grid.412676.00000 0004 1799 0784Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, No. 300, Guangzhou Road, Nanjing, People’s Republic of China
| | - Guo-Yi Su
- grid.412676.00000 0004 1799 0784Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, No. 300, Guangzhou Road, Nanjing, People’s Republic of China
| | - Yan Si
- grid.412676.00000 0004 1799 0784Department of Thyroid Surgery, First Affiliated Hospital of Nanjing Medical University, Nanjing, People’s Republic of China
| | - Mei-Ping Shen
- grid.412676.00000 0004 1799 0784Department of Thyroid Surgery, First Affiliated Hospital of Nanjing Medical University, Nanjing, People’s Republic of China
| | - Xiao-Quan Xu
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, No. 300, Guangzhou Road, Nanjing, People's Republic of China.
| | - Fei-Yun Wu
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, No. 300, Guangzhou Road, Nanjing, People's Republic of China.
| |
Collapse
|
8
|
D’Angelo T, Martin S, Micari A, Booz C, Steyer A, Blandino A, Lanzafame LR, Koch V, Ascenti G, Mazziotti S. Coronary angiography using spectral detector dual-energy CT: is it the time to assess myocardial first-pass perfusion? Eur Radiol Exp 2022; 6:60. [PMID: 36480065 PMCID: PMC9732170 DOI: 10.1186/s41747-022-00313-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Accepted: 10/30/2022] [Indexed: 12/13/2022] Open
Abstract
Coronary computed tomography angiography (CCTA) represents a common approach to the diagnostic workup of patients with suspected coronary artery disease. Technological development has recently allowed the integration of conventional CCTA information with spectral data. Spectral CCTA used in clinical routine may allow for improving CCTA diagnostic performance by measuring myocardial iodine distribution as a marker of first-pass perfusion, thus providing additional functional information about coronary artery disease.
Collapse
Affiliation(s)
- Tommaso D’Angelo
- grid.412507.50000 0004 1773 5724Department of Biomedical Sciences and Morphological and Functional Imaging, University Hospital Messina, Messina, Italy ,grid.5645.2000000040459992XDepartment of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Simon Martin
- grid.411088.40000 0004 0578 8220Division of Experimental Imaging, Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Antonino Micari
- grid.412507.50000 0004 1773 5724Department of Biomedical Sciences and Morphological and Functional Imaging, University Hospital Messina, Messina, Italy
| | - Christian Booz
- grid.411088.40000 0004 0578 8220Division of Experimental Imaging, Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Alexandra Steyer
- grid.411088.40000 0004 0578 8220Division of Experimental Imaging, Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Alfredo Blandino
- grid.412507.50000 0004 1773 5724Department of Biomedical Sciences and Morphological and Functional Imaging, University Hospital Messina, Messina, Italy
| | - Ludovica R. Lanzafame
- grid.412507.50000 0004 1773 5724Department of Biomedical Sciences and Morphological and Functional Imaging, University Hospital Messina, Messina, Italy
| | - Vitali Koch
- grid.411088.40000 0004 0578 8220Division of Experimental Imaging, Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Giorgio Ascenti
- grid.412507.50000 0004 1773 5724Department of Biomedical Sciences and Morphological and Functional Imaging, University Hospital Messina, Messina, Italy
| | - Silvio Mazziotti
- grid.412507.50000 0004 1773 5724Department of Biomedical Sciences and Morphological and Functional Imaging, University Hospital Messina, Messina, Italy
| |
Collapse
|
9
|
Accurate Image Reconstruction in Dual-Energy CT with Limited-Angular-Range Data Using a Two-Step Method. BIOENGINEERING (BASEL, SWITZERLAND) 2022; 9:bioengineering9120775. [PMID: 36550981 PMCID: PMC9774445 DOI: 10.3390/bioengineering9120775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/25/2022] [Revised: 11/21/2022] [Accepted: 11/29/2022] [Indexed: 12/13/2022]
Abstract
Dual-energy CT (DECT) with scans over limited-angular ranges (LARs) may allow reductions in scan time and radiation dose and avoidance of possible collision between the moving parts of a scanner and the imaged object. The beam-hardening (BH) and LAR effects are two sources of image artifacts in DECT with LAR data. In this work, we investigate a two-step method to correct for both BH and LAR artifacts in order to yield accurate image reconstruction in DECT with LAR data. From low- and high-kVp LAR data in DECT, we first use a data-domain decomposition (DDD) algorithm to obtain LAR basis data with the non-linear BH effect corrected for. We then develop and tailor a directional-total-variation (DTV) algorithm to reconstruct from the LAR basis data obtained basis images with the LAR effect compensated for. Finally, using the basis images reconstructed, we create virtual monochromatic images (VMIs), and estimate physical quantities such as iodine concentrations and effective atomic numbers within the object imaged. We conduct numerical studies using two digital phantoms of different complexity levels and types of structures. LAR data of low- and high-kVp are generated from the phantoms over both single-arc (SA) and two-orthogonal-arc (TOA) LARs ranging from 14∘ to 180∘. Visual inspection and quantitative assessment of VMIs obtained reveal that the two-step method proposed can yield VMIs in which both BH and LAR artifacts are reduced, and estimation accuracy of physical quantities is improved. In addition, concerning SA and TOA scans with the same total LAR, the latter is shown to yield more accurate images and physical quantity estimations than the former. We investigate a two-step method that combines the DDD and DTV algorithms to correct for both BH and LAR artifacts in image reconstruction, yielding accurate VMIs and estimations of physical quantities, from low- and high-kVp LAR data in DECT. The results and knowledge acquired in the work on accurate image reconstruction in LAR DECT may give rise to further understanding and insights into the practical design of LAR scan configurations and reconstruction procedures for DECT applications.
Collapse
|
10
|
Evaluation of myocardial viability in patients with myocardial ischemia reperfusion injury using the dual-energy CT myocardial blood pool imaging. Eur Radiol 2022; 33:3819-3831. [PMID: 36449059 DOI: 10.1007/s00330-022-09286-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 08/31/2022] [Accepted: 11/06/2022] [Indexed: 12/02/2022]
Abstract
OBJECTIVES To evaluate myocardial viability in patients with myocardial ischemia reperfusion injury (MIRI) via dual-energy computed tomography myocardial blood pool imaging (DECT MBPI). METHODS Between September 2017 and January 2019, we prospectively recruited 59 patients with acute myocardial infarction (AMI) who developed MIRI after revascularization during invasive coronary angiography (ICA). Then, they received DECT MBPI, SPECT, and PET sequentially within 1 week after the onset of MIRI. A total of 1003 myocardial segments of 59 patients were recruited for this study. The iodine reduction areas and delayed enhancement areas were calculated by cardiac iodine map with SPECT rest myocardial perfusion imaging (MPI) + PET myocardial metabolism imaging (MMI) as reference criteria. The paired sample t-test was used to measure the difference of the myocardial iodine value. Cohen's Kappa analysis was used to test the consistency among different observers. ROC analysis was used to calculate the myocardial viability of DECT MBPI. RESULTS ROC showed the AUCs of DECT MBPI iodine value to identify a normal myocardium, an ischemic myocardium, and an infarcted myocardium were 0.957, 0.900, and 0.906 (p < 0.001). The sensitivity, specificity, and accuracy of DECT MBPI in identifying an ischemic myocardium were 87.6%, 89.3%, and 97.9% (p < 0.001). The sensitivity, specificity, and accuracy of DECT MBPI in identifying an infarcted myocardium were 88.9%, 92.2%, and 98.6% (p < 0.001). The cutoff value for DECT MBPI to differentiate between an ischemic and a normal myocardium was 0.84 mg I/mL. The cutoff value for DECT MBPI to differentiate between an infarct and a normal myocardium was 2.01 mg I/mL. CONCLUSION DECT MBPI can be used to assess myocardial viability in patients with MIRI with high sensitivity and specificity. KEY POINTS • Dual-energy computed tomography myocardial blood pool imaging (DECT MBPI) can evaluate myocardial viability of myocardial ischemia-reperfusion injury (MIRI). • DECT MBPI is a non-invasive and timesaving method for evaluation on myocardial ischemia-reperfusion injury in patients with acute myocardial infarction after coronary intervention.
Collapse
|
11
|
Wu N, Cao QW, Wang CN, Hu HG, Shi H, Deng K. Association between quantitative spectral CT parameters, Ki-67 expression, and invasiveness in lung adenocarcinoma manifesting as ground-glass nodules. Acta Radiol 2022; 64:1400-1409. [PMID: 36131377 DOI: 10.1177/02841851221128213] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
BACKGROUND Few studies about lung ground-glass nodules (GGNs) have been done using non-enhancement spectral computed tomography (CT) imaging. PURPOSE To examine the association between spectral CT parameters, Ki-67 expression, and invasiveness in lung adenocarcinoma manifesting as GGNs. MATERIAL AND METHODS Spectral CT parameters were analyzed in 106 patients with lung GGNs. The Ki-67 labeling index (Ki-67 LI) was measured, and patients were divided into low expression and high expression groups according to the number of positive-stained cells (low expression ≤10%; high expression >10%). Spectral CT parameters were compared between low and high expression groups. The correlation between spectral CT parameters and Ki-67 LI was estimated by Spearman correlation analysis. Cases were divided into a preinvasive and minimally invasive adenocarcinoma (MIA) group (atypical adenomatous hyperplasia, adenocarcinoma in situ, and MIA) and invasive adenocarcinoma (IA) group. Spectral CT parameters were compared between the two groups. The diagnostic performance was evaluated using receiver operating characteristic analysis. RESULTS There were significant differences in water concentration of lesions (WCL) and monochromatic CT values between the low and high expression groups. CT 40 keV had the highest correlation coefficient with Ki-67 LI. WCL and monochromatic CT values were significantly higher in the IA group than in the pre/MIA group. The value of area under the curve of CT 40 keV was 0.946 (95% confidence interval=0.905-0.988) for differentiating the two groups; the cutoff was -280.66 Hu. CONCLUSION Spectral CT is an effective non-invasive method for the prediction of proliferation and invasiveness in lung adenocarcinoma manifesting as GGNs.
Collapse
Affiliation(s)
- Nan Wu
- Shandong Provincial Qianfoshan Hospital, 159393Shandong University, Jinan, PR China
| | - Qi-Wei Cao
- Department of Pathology, 66310The First Affiliated Hospital of Shandong First Medical University, Jinan, PR China
| | - Chao-Nan Wang
- Department of Cardiology, 66310The Affiliated Hospital of Shandong University of TCM, Jinan, PR China
| | - Hong-Guang Hu
- Department of Radiology, 66310The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, PR China
| | - Hao Shi
- Shandong Provincial Qianfoshan Hospital, 159393Shandong University, Jinan, PR China
| | - Kai Deng
- Department of Radiology, 66310The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, PR China
| |
Collapse
|
12
|
Li W, Liu M, Yu F, Zhu W, Yu X, Guo X, Yang Q. Detection of left atrial appendage thrombus by dual-energy computed tomography-derived imaging biomarkers in patients with atrial fibrillation. Front Cardiovasc Med 2022; 9:809688. [PMID: 35935656 PMCID: PMC9354661 DOI: 10.3389/fcvm.2022.809688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Accepted: 06/29/2022] [Indexed: 11/22/2022] Open
Abstract
Aims This study aimed to assess the diagnostic performances of dual-energy computed tomography (CT)-derived iodine concentration and effective atomic number (Zeff) in early-phase cardiac CT in detecting left atrial appendage (LAA) thrombus and differentiating thrombus from spontaneous echo contrast (SEC) in patients with atrial fibrillation using transesophageal echocardiography (TEE) as the reference standard. Methods and results A total of 389 patients with atrial fibrillation were prospectively recruited. All patients underwent a single-phase cardiac dual-energy CT scan using a third-generation dual-source CT. The iodine concentration, Zeff, and conventional Hounsfield units (HU) in the LAA were measured and normalized to the ascending aorta (AA) of the same slice to calculate the LAA/AA ratio. Of the 389 patients, TEE showed thrombus in 15 (3.9%), SEC in 33 (8.5%), and no abnormality in 341 (87.7%) patients. Using TEE findings as the reference standard, the respective sensitivity, specificity, positive predictive value, and negative predictive value of the LAA/AA HU ratio for detecting LAA thrombus were 100.0, 96.8, 55.6, and 100.0%; those of the LAA/AA iodine concentration ratio were 100.0, 99.2, 83.3, and 100.0%; and those of the LAA/AA Zeff ratio were 100.0, 98.9, 79.0, and 100.0%. The areas under the receiver operator characteristic curve (AUC) of the LAA/AA iodine concentration ratio (0.978; 95% CI 0.945–1.000) and Zeff ratio (0.962; 95% CI 0.913–1.000) were significantly larger than that of the LAA/AA HU ratio (0.828; 95% CI 0.714–0.942) in differentiating the thrombus from the SEC (both P < 0.05). Although the AUC of the LAA/AA iodine concentration ratio was larger than that of the LAA/AA Zeff ratio, no significant difference was found between them (P = 0.259). Conclusion The dual-energy CT-derived iodine concentration and the Zeff showed better diagnostic performance than the conventional HU in early-phase cardiac CT in detecting LAA thrombus and differentiating the thrombus from the circulatory stasis. However, these results need to be validated in large-cohort studies with late-phase images.
Collapse
Affiliation(s)
- Wenhuan Li
- Department of Radiology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Mingxi Liu
- Department of Radiology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Fangfang Yu
- Department of Radiology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Weiwei Zhu
- Department of Echocardiography, Heart Center, Capital Medical University, Beijing, China
| | - Xianbo Yu
- CT Collaboration, Siemens Healthineers Ltd., Beijing, China
| | - Xiaojuan Guo
- Department of Radiology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
- Xiaojuan Guo,
| | - Qi Yang
- Department of Radiology, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
- *Correspondence: Qi Yang,
| |
Collapse
|
13
|
Ahnfelt A, Dahlman P, Segelsjö M, Magnusson MO, Magnusson A. Accuracy of iodine quantification using dual-energy computed tomography with focus on low concentrations. Acta Radiol 2022; 63:623-631. [PMID: 33887965 DOI: 10.1177/02841851211009462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
BACKGROUND Iodine quantification using dual-energy computed tomography (DECT) is helpful in characterizing, and follow-up after treatment of tumors. Some malignant masses, for instance papillary renal cell carcinomas (p-RCC), are hard to differentiate from benign lesions because of very low contrast enhancement. In these cases, iodine concentrations might be very low, and it is therefore important that iodine quantification is reliable even at low concentrations if this technique is used. PURPOSE To examine the accuracy of iodine quantification and to determine whether it is also accurate for low iodine concentrations. MATERIAL AND METHODS Twenty-six syringes with different iodine concentrations (0-30 mg I/mL) were scanned in a phantom model using a DECT scanner with two different kilovoltage and image reconstruction settings. Iodine concentrations were measured and compared to known concentration. Absolute and relative errors were calculated. RESULTS For concentrations of 1 mg I/mL or higher, there was an excellent correlation between true and measured iodine concentrations for all settings (R = 0.999-1.000; P < 0.001). For concentrations <1.0 mg I/mL, the relative error was greater. Absolute and relative errors were smaller using tube voltages of 80/Sn140 kV than 100/Sn140 kV (P < 0.01). Reconstructions using a 3.0-mm slice thickness had less variance between repeated acquisitions versus 0.6 mm (P < 0.001). CONCLUSION Iodine quantification using DECT was in general very accurate, but for concentrations < 1.0 mg I/mL the technique was less reliable. Using a tube voltage with larger spectral separation was more accurate and the result was more reproducible using thicker image reconstructions.
Collapse
Affiliation(s)
- Anders Ahnfelt
- Department of Radiology, Uppsala University Hospital, Sweden
| | - Pär Dahlman
- Department of Radiology, Uppsala University Hospital, Sweden
| | - Monica Segelsjö
- Department of Radiology, Uppsala University Hospital, Sweden
| | | | | |
Collapse
|
14
|
Geng W, Gao Y, Zhao N, Yan H, Ma W, An Y, Jia L, Lu B. Dose Reduction of Dynamic Computed Tomography Myocardial Perfusion Imaging by Tube Voltage Change: Investigation in a Swine Model. Front Cardiovasc Med 2022; 9:823974. [PMID: 35310988 PMCID: PMC8927626 DOI: 10.3389/fcvm.2022.823974] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2021] [Accepted: 02/15/2022] [Indexed: 11/18/2022] Open
Abstract
Background It is unclear whether tube voltage influences the measurement of perfusion parameters. The present study sought to evaluate the influence of tube voltage change on myocardial blood flow (MBF) measurements in dynamic computed tomography myocardial perfusion imaging (CTP). Methods and Results Seven swine [mean weight 55.8 kg ± 1.6 (standard deviation)] underwent rest and stress dynamic CTP with tube voltages of 100 and 70 kV. The image noise, signal-to-noise ratio (SNR), contrast-to-noise ratio (CNR), radiation dose and MBF value were compared. The 70 kV images had higher CT attenuation and higher image noise (27.9 ± 2.4 vs. 21.5 ± 1.9, P < 0.001) than the 100 kV images, resulting in a higher SNR (20.5 ± 1.6 vs. 15.6 ± 1.8, P < 0.001) and CNR (17.6 ± 1.5 vs. 12.4 ± 1.7, P < 0.001). Compared to the use of conventional 100 kV, 70 kV yielded an approximately 64.6% radiation dose reduction while generating comparable MBF values, both at rest (88.3 ± 14.9 ml/100 g/min vs. 85.6 ± 17.4 ml/100 g/min, P = 0.21) and stress (101.4 ± 21.5 ml/100 g/min vs. 99.6 ± 21.4 ml/100 g/min, P = 0.58) states. Conclusion Dynamic CTP using 70 kV instead of 100 kV does not substantially influence the MBF value but significantly reduces the radiation dose. Additional research is required to investigate the clinical significance of this change.
Collapse
Affiliation(s)
- Wenlei Geng
- Department of Radiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Yang Gao
- Department of Radiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Na Zhao
- Department of Radiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Hankun Yan
- Department of Radiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Wei Ma
- Department of Radiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Yunqiang An
- Department of Radiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
| | - Liujun Jia
- Animal Experimental Center, Beijing Key Laboratory of Pre-Clinical Research and Evaluation for Cardiovascular Implant Materials, State Key Laboratory of Cardiovascular Disease, Beijing, China
| | - Bin Lu
- Department of Radiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing, China
- *Correspondence: Bin Lu,
| |
Collapse
|
15
|
Wang P, Tang Z, Xiao Z, Hong R, Wang R, Wang Y, Zhan Y. Dual-energy CT in differentiating benign sinonasal lesions from malignant ones: comparison with simulated single-energy CT, conventional MRI, and DWI. Eur Radiol 2021; 32:1095-1105. [PMID: 34427744 DOI: 10.1007/s00330-021-08159-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 06/11/2021] [Accepted: 06/15/2021] [Indexed: 12/21/2022]
Abstract
OBJECTIVES To explore the value of dual-energy CT (DECT) for differentiating benign sinonasal lesions from malignant ones, and to compare this finding with simulated single-energy CT (SECT), conventional MRI (cMRI), and diffusion-weighted imaging (DWI). METHODS Patients with sinonasal lesions (38 benign and 34 malignant) who were confirmed by histopathology underwent DECT, cMRI, and DWI. DECT-derived parameters (iodine concentration (IC), effective atomic number (Eff-Z), 40-180 keV (20-keV interval), virtual non-enhancement (VNC), slope (k), and linear-mixed 0.3 (Mix-0.3)), DECT morphological features, cMRI characteristics, and ADC value of benign and malignant tumors were compared using t test or chi-square test. Receiver operating characteristic (ROC) curve was performed to evaluate the diagnostic performance, and the area under the ROC curve (AUC) was compared using the Z test to select the optimal diagnostic approach. RESULTS Significantly higher DECT-derived single parameters (IC, Eff-Z, 40 keV, 60 keV, 80 keV, slope (k), Mix-0.3) were found in malignant lesions than those of benign sinonasal lesions (all p < 0.004, Bonferroni correction). Combined quantitative parameters (IC, Eff-Z, 40 keV, 60 keV, 80 keV, slope (k)) can improve the diagnostic efficiency for discriminating these two entities. Combination of DECT quantitative parameters and morphological features can further improve the overall diagnostic performance, with AUC, sensitivity, specificity, and accuracy of 0.935, 96.67%, 90.00%, and 93.52%. Moreover, the AUC of DECT was higher than those of Mix-0.3 (simulated SECT), cMRI, DWI, and cMRI+DWI. CONCLUSIONS Compared with simulated SECT, cMRI, and DWI, DECT appears to be a more accurate imaging technique for differentiating benign from malignant sinonasal lesions. KEY POINTS • DE can differentiate benign sinonasal lesions from malignant ones based on DECT-derived qualitative parameters. • DECT appears to be more accurate in the diagnosis of sinonasal lesions when compared with simulated SECT, cMRI, and DWI.
Collapse
Affiliation(s)
- Peng Wang
- Department of Radiology, Eye & ENT Hospital of Shanghai Medical School, Fudan University, 83 Fenyang Road, Shanghai, 200031, People's Republic of China.,Department of Radiology, The Affiliated Renmin Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212002, People's Republic of China
| | - Zuohua Tang
- Department of Radiology, Eye & ENT Hospital of Shanghai Medical School, Fudan University, 83 Fenyang Road, Shanghai, 200031, People's Republic of China.
| | - Zebin Xiao
- Department of Radiology, Eye & ENT Hospital of Shanghai Medical School, Fudan University, 83 Fenyang Road, Shanghai, 200031, People's Republic of China.,Department of Biomedical Sciences, University of Pennsylvania, Philadelphia, 19104, USA
| | - Rujian Hong
- Department of Radiology, Eye & ENT Hospital of Shanghai Medical School, Fudan University, 83 Fenyang Road, Shanghai, 200031, People's Republic of China
| | - Rong Wang
- The Shanghai Institution of Medical Imaging, Zhongshan Hospital, Fudan University, Shanghai, 200032, People's Republic of China
| | - Yuzhe Wang
- Department of Radiology, Eye & ENT Hospital of Shanghai Medical School, Fudan University, 83 Fenyang Road, Shanghai, 200031, People's Republic of China
| | - Yang Zhan
- The Shanghai Institution of Medical Imaging, Zhongshan Hospital, Fudan University, Shanghai, 200032, People's Republic of China
| |
Collapse
|
16
|
Qi RX, Shao J, Jiang JS, Ruan XW, Huang S, Zhang Q, Hu CH. Myocardial extracellular volume fraction quantitation using cardiac dual-energy CT with late iodine enhancement in patients with heart failure without coronary artery disease: A single-center prospective study. Eur J Radiol 2021; 140:109743. [PMID: 33971572 DOI: 10.1016/j.ejrad.2021.109743] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2021] [Revised: 04/19/2021] [Accepted: 04/22/2021] [Indexed: 11/18/2022]
Abstract
PURPOSE To evaluate the relationship between myocardial extracellular volume (ECV) fraction measured using dual-energy computed tomography with late iodine enhancement (LIE-DECT) and risk of heart failure (HF) in patients without coronary artery disease (CAD), and to evaluate the relationship between ECV and left ventricular structure and function. MATERIALS AND METHODS Sixty consecutive HF patients without CAD and 60 consecutive participants without heart disease who underwent coronary CT angiography (CCTA) following LIE-DECT were included. ECV of the left ventricle was calculated from the iodine maps and hematocrit levels using the American Heart Association (AHA) 16-segment model. Cardiac structural and functional parameters were collected including left ventricular end-systolic volume (LVESV), left ventricular end-diastolic volume (LVEDV), left ventricular ejection fraction (LVEF), left atrial volume (LAV), interventricular septal thickness (IVST), and N-terminal pro-brain natriuretic peptide (NT-pro-BNP). RESULTS ECV in HF patients without CAD (31.3 ± 4.0 %) was significantly higher than that in healthy subjects (27.1 ± 3.7 %) (P < 0.001). Multivariate linear analysis revealed that ECV was associated with age (β = 0.098, P = 0.010) and hypertension (β = 2.093, P = 0.011) in all participants. Binary logistic regression analysis showed that after adjusting for age, sex, body mass index (BMI), smoking, and drinking, ECV was a risk factor affecting the occurrence of HF in those without CAD (OR = 1.356, 95 %CI:1.178-1.561, P < 0.001). A positive correlation was found between ECV and NT-pro-BNP, LVEDV, LVESV, and LAV (r = 0.629, 0.329, 0.346, and 0.338, respectively; all P < 0.001) in all participants. CONCLUSIONS ECV could be measured using LIE-DECT iodine maps. ECV elevation was a risk factor for HF without CAD and correlated with cardiac structure and function.
Collapse
Affiliation(s)
- Rong-Xing Qi
- Department of Radiology, First Affiliated Hospital of Soochow University, Shizi Street No.188, Suzhou, 215002, China; Department of Radiology, Second Affiliated Hospital of Nantong University, Haierxiang (North) Road No.6, Nantong, 226001, China.
| | - Jun Shao
- Department of Radiology, Second Affiliated Hospital of Nantong University, Haierxiang (North) Road No.6, Nantong, 226001, China.
| | - Jia-Shen Jiang
- Department of Radiology, Second Affiliated Hospital of Nantong University, Haierxiang (North) Road No.6, Nantong, 226001, China.
| | - Xi-Wu Ruan
- Department of Radiology, Second Affiliated Hospital of Nantong University, Haierxiang (North) Road No.6, Nantong, 226001, China.
| | - Sheng Huang
- Department of Radiology, Second Affiliated Hospital of Nantong University, Haierxiang (North) Road No.6, Nantong, 226001, China.
| | - Qing Zhang
- Cardiology, Second Affiliated Hospital of Nantong University, Haierxiang (North) Road No.6, Nantong, 226001, China.
| | - Chun-Hong Hu
- Department of Radiology, First Affiliated Hospital of Soochow University, Shizi Street No.188, Suzhou, 215002, China; Institute of Medical Imaging, Soochow University, Shizi Street No.188, Suzhou, 215002, China.
| |
Collapse
|
17
|
Dubourg B, Dacher JN, Durand E, Caudron J, Bauer F, Bubenheim M, Eltchaninoff H, Serfaty JM. Single-source dual energy CT to assess myocardial extracellular volume fraction in aortic stenosis before transcatheter aortic valve implantation (TAVI). Diagn Interv Imaging 2021; 102:561-570. [PMID: 33903056 DOI: 10.1016/j.diii.2021.03.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2019] [Revised: 03/22/2021] [Accepted: 03/25/2021] [Indexed: 12/18/2022]
Abstract
PURPOSE To assess myocardial extracellular volume fraction (ECV) measurement provided by a single-source dual-energy computed tomography (SSDE-CT) acquisition added at the end of a routine CT examination before transcatether aortic valve implantation (TAVI) compared to cardiac magnetic resonance imaging (MRI). MATERIALS AND METHODS Twenty-one patients (10 men, 11 women; mean age, 86±4.9 years [SD]; age range: 71-92 years) with severe aortic stenosis underwent standard pre-TAVI CT with additional cardiac SSDE-CT acquisition 7minutes after intravenous administration of iodinated contrast material and myocardial MRI including pre- and post-contrast T1-maps. Myocardial ECV and standard deviation (σECV) were calculated in the 16-segments model. ECV provided by SSDE-CT was compared to ECV provided by MRI, which served as the reference. Analyses were performed on a per-segment basis and on a per-patient involving the mean value of the 16-segments. RESULTS ECV was slightly overestimated by SSDE-CT (29.9±4.6 [SD] %; range: 20.9%-48.3%) compared to MRI (29.1±3.9 [SD] %; range: 22.0%-50.7%) (P<0.0001) with a bias and limits of agreement of +2.3% (95%CI: -16.1%-+20.6%) and +2.5% (95%CI: -2.1%-+7.1%) for per-segment and per-patient-analyses, respectively. Good (r=0.81 for per-segment-analysis) to excellent (r=0.97 for per-patient-analysis) linear relationships (both P<0.0001) were obtained. The σECV was significantly higher at SSDE-CT (P<0.0001). Additional radiation dose from CT was 1.89±0.38 (SD) mSv (range: 1.48-2.47 mSv). CONCLUSION A single additional SSDE-CT acquisition added at the end of a standard pre-TAVI CT protocol can provide ECV measurement with good to excellent linear relationship with MRI.
Collapse
Affiliation(s)
- Benjamin Dubourg
- Department of Radiology, University Hospital of Rouen, 76031 Rouen, France; UNIROUEN, Inserm U1096 EnVI & FHU REMOD-VHF, Normandie Université, Rouen, France.
| | - Jean-Nicolas Dacher
- Department of Radiology, University Hospital of Rouen, 76031 Rouen, France; UNIROUEN, Inserm U1096 EnVI & FHU REMOD-VHF, Normandie Université, Rouen, France
| | - Eric Durand
- UNIROUEN, Inserm U1096 EnVI & FHU REMOD-VHF, Normandie Université, Rouen, France; Department of Cardiology, University Hospital of Rouen, 76031 Rouen, France
| | - Jérôme Caudron
- Department of Radiology, University Hospital of Rouen, 76031 Rouen, France; UNIROUEN, Inserm U1096 EnVI & FHU REMOD-VHF, Normandie Université, Rouen, France
| | - Fabrice Bauer
- UNIROUEN, Inserm U1096 EnVI & FHU REMOD-VHF, Normandie Université, Rouen, France; Department of Cardiology, University Hospital of Rouen, 76031 Rouen, France
| | - Michael Bubenheim
- Department of Biostatistics, University Hospital of Rouen, 76031 Rouen, France
| | - Hélène Eltchaninoff
- UNIROUEN, Inserm U1096 EnVI & FHU REMOD-VHF, Normandie Université, Rouen, France; Department of Cardiology, University Hospital of Rouen, 76031 Rouen, France
| | - Jean-Michel Serfaty
- Department of Radiology, Institut du Thorax, INSERM, CNRS, UNIV Nantes, CHU Nantes, 44000 Nantes, France
| |
Collapse
|
18
|
Jiang X, Yang X, Hintenlang DE, White RD. Effects of Patient Size and Radiation Dose on Iodine Quantification in Dual-Source Dual-Energy CT. Acad Radiol 2021; 28:96-105. [PMID: 32094030 DOI: 10.1016/j.acra.2019.12.027] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2019] [Revised: 11/27/2019] [Accepted: 12/17/2019] [Indexed: 12/20/2022]
Abstract
RATIONALE AND OBJECTIVES The purpose of this study was to investigate the potential effects of patient size and radiation dose on the accuracy of iodine quantification using dual-source dual-energy computed tomography (CT). MATERIALS AND METHODS Three phantoms representing different patient sizes were constructed, containing iodine inserts with concentrations from 0 to 20 mg/ml. Dual-energy CT scans were performed at six dose levels from 2 to 30 mGy. Iodine concentrations were measured using a three-material-decomposition algorithm and their accuracy was assessed. RESULTS In a small phantom, iodine quantification was accurate and consistent at all dose levels. In a medium phantom, minor underestimations were observed, and the results were consistent except at low dose. In the large phantom, more significant underestimation of iodine concentration was observed at higher doses (≥15 mGy), which was attributed to the beam-hardening effect. At lower doses, increasing upward bias was observed in the CT number, leading to significant overestimations of both iodine concentration and fat fraction, which was attributed to the photon-starvation effect. The severity of the latter effect was determined by mA instead of mAs, suggesting that the electronic noise, rather than the quantum noise, was responsible for the bias. Using higher kVp for the low-energy tube was found to alleviate these effects. CONCLUSION Reliable iodine quantification can be achieved using dual-source CT, but the result can be affected by patient size and dose rate. In large patients, biases may occur due to the beam-hardening and the photon-starvation effects, in which case higher dose rate and higher kVp are recommended to minimize these effects.
Collapse
Affiliation(s)
- Xia Jiang
- Department of Radiology, Ohio State University College of Medicine, 395 W 12th Ave, Columbus, OH 43210.
| | - Xiangyu Yang
- Department of Radiology, Ohio State University College of Medicine, 395 W 12th Ave, Columbus, OH 43210
| | - David E Hintenlang
- Department of Radiology, Ohio State University College of Medicine, 395 W 12th Ave, Columbus, OH 43210
| | - Richard D White
- Department of Radiology, Ohio State University College of Medicine, 395 W 12th Ave, Columbus, OH 43210
| |
Collapse
|
19
|
Punzo B, Cavaliere C, Maffei E, Bossone E, Saba L, Cademartiri F. Narrative review of cardiac computed tomography perfusion: insights into static rest perfusion. Cardiovasc Diagn Ther 2021; 10:1946-1953. [PMID: 33381436 DOI: 10.21037/cdt-20-552] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Cardiac or left ventricular perfusion performed with cardiac computed tomography (CCT) is a developing method that may have the potential to complete in a very straight forward way the assessment of ischemic heart disease by means of CT. Myocardial CT perfusion (CTP) can be achieved with a single static scan during the first-pass of the iodinate contrast agent, with the monoenergetic or dual-energy acquisition, or as a dynamic, time-resolved scan during stress by using coronary vasodilator agents. Several methods can be performed, and we focused on static perfusion. CTP may serve as a useful adjunct to coronary CT angiography (CTA) to improve specificity of detecting myocardial ischemia. Technological advances will reduce the radiation dose of myocardial CTP, such as low tube voltage imaging or new reconstruction algorithms, making it a more viable clinical option. The advantages of static first-pass non-stress perfusion are several; the main one is that it can be done to each and every patient who undergoes CCT for the assessment of coronary artery tree. Future advances in CTP will likely improve the diagnostic accuracy of CTP + CTA, and will better estimate the severity of ischemia Therefore, it is simple and comprehensive. However, it has several limitations. In this review we will discuss the technique with its advantages and limitations.
Collapse
Affiliation(s)
- Bruna Punzo
- Department of Radiology, SDN IRCCS, Naples, Italy
| | | | - Erica Maffei
- Department of Radiology, Area Vasta 1, ASUR Marche, Urbino (PU), Italy
| | - Eduardo Bossone
- Department of Cardiology, Ospedale Cardarelli, Naples, Italy
| | - Luca Saba
- Department of Radiology, University of Cagliari, Cagliari, Italy
| | | |
Collapse
|
20
|
Braig EM, Pfeiffer D, Willner M, Sellerer T, Taphorn K, Petrich C, Scholz J, Petzold L, Birnbacher L, Dierolf M, Pfeiffer F, Herzen J. Single spectrum three-material decomposition with grating-based x-ray phase-contrast CT. Phys Med Biol 2020; 65:185011. [PMID: 32460250 DOI: 10.1088/1361-6560/ab9704] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Grating-based x-ray phase-contrast imaging provides three simultaneous image channels originating from a single image acquisition. While the phase signal provides direct access to the electron density in tomography, there is additional information on sub-resolutional structural information which is called dark-field signal in analogy to optical microscopy. The additional availability of the conventional attenuation image qualifies the method for implementation into existing diagnostic routines. The simultaneous access to the attenuation coefficient and the electron density allows for quantitative two-material discrimination as demonstrated lately for measurements at a quasi-monochromatic compact synchrotron source. Here, we investigate the transfer of the method to conventional polychromatic x-ray sources and the additional inclusion of the dark-field signal for three-material decomposition. We evaluate the future potential of grating-based x-ray phase-contrast CT for quantitative three-material discrimination for the specific case of early stroke diagnosis at conventional polychromatic x-ray sources. Compared to conventional CT, the method has the potential to discriminate coagulated blood directly from contrast agent extravasation within a single CT acquisition. Additionally, the dark-field information allows for the clear identification of hydroxyapatite clusters due to their micro-structure despite a similar attenuation as the applied contrast agent. This information on materials with sub-resolutional microstructures is considered to comprise advantages relevant for various pathologies.
Collapse
Affiliation(s)
- Eva-Maria Braig
- Chair of Biomedical Physics, Department of Physics and Munich School of BioEngineering, Technical University of Munich, 85748 Garching, Germany
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Kay FU. Dual-energy CT and coronary imaging. Cardiovasc Diagn Ther 2020; 10:1090-1107. [PMID: 32968662 PMCID: PMC7487394 DOI: 10.21037/cdt.2020.04.04] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 04/03/2020] [Indexed: 12/12/2022]
Abstract
Dual-energy computed tomography has been proposed for enhancing the evaluation of coronary artery disease in many fronts. However, the clinical translation of such applications has followed a slower pace of clinical translation. This paper will review the evidence supporting the use of dual-energy computed tomography in coronary artery disease (CAD) and provide some practical illustrations, while underscoring the challenges and gaps in knowledge that have contributed to this phenomenon.
Collapse
Affiliation(s)
- Fernando Uliana Kay
- Department of Radiology, University of Texas Southwestern Medical Center, Dallas, TX, USA
| |
Collapse
|
22
|
Impact of various iodine concentrations of iohexol and iodixanol contrast media on image reconstruction techniques in a vascular-specific contrast media phantom: quantitative and qualitative image quality assessment. Radiol Med 2020; 126:221-230. [PMID: 32671555 DOI: 10.1007/s11547-020-01253-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2020] [Accepted: 07/02/2020] [Indexed: 10/23/2022]
Abstract
PURPOSE The aim of our study is to investigate the impact of iodine quantification on image reconstruction when employing a vascular-specific contrast media phantom with varying iodine concentrations. MATERIALS AND METHODS A 30-cm phantom simulating arterial and venous blood vessel diameters was manufactured. Small (9 mm) and medium (12 mm) cylinders contained iodine concentrations from 10 to 100% while large (21 mm) cylinders were in quartiles from 25 to 100% diluted in blood equivalent medium. Each phantom was filled with either iohexol 350 mgI/mL (Group A) or iodixanol 320 mgI/mL (Group B) and then scanned separately. For each group, tube potential (80-140 kVp) and current (50-400 mAs) were changed and all image series were reconstructed with filtered back projection (FBP), hybrid-based iterative reconstruction (HBIR) and model-based iterative reconstruction (MBIR). Mean opacification was measured in all groups. All data were compared employing an independent t test and Pearson's correlation. Visual grading characteristic (VGC) and Cohens' kappa analyses were performed. RESULTS At 80 kVp, mean opacification using HBIR was significantly higher in Group B (2165 ± 1108 HU) than in Group A (2040 ± 1036 HU) (p < 0.009). At 140 kVp, MBIR and HBIR were greater in Group A (1704 ± 1033 HU and 1685 ± 1023 HU) versus Group B (1567 ± 1036 HU and 1567 ± 1034 HU) (p < 0.022). CNR using FBP, HBIR and MBIR was higher in Group B (46 ± 42 HU, 70 ± 163 HU and 83 ± 74 HU, respectively) than in Group A (43 ± 39 HU, 174 ± 130 HU and 80 ± 65 HU, respectively) (p < 0.0001-0.035). Qualitative image analysis demonstrated no difference in Cohen's kappa analysis. VGC was higher in Group A at all image reconstruction groups. CONCLUSION Iohexol outperforms iodixanol in observer performance when assessing image reconstruction techniques and iodine concentrations in a vascular-specific contrast media phantom.
Collapse
|
23
|
Society of cardiovascular computed tomography expert consensus document on myocardial computed tomography perfusion imaging. J Cardiovasc Comput Tomogr 2020; 14:87-100. [DOI: 10.1016/j.jcct.2019.10.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 10/15/2019] [Indexed: 01/06/2023]
|
24
|
Taylor RE, Mager P, Yu NC, Katz DP, Brady JR, Gupta N. Iodine quantification and detectability thresholds among major dual-energy CT platforms. Br J Radiol 2019; 92:20190530. [PMID: 31559858 DOI: 10.1259/bjr.20190530] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
OBJECTIVES To estimate the minimum detectable iodine concentration on multiple dual-energy CT (DECT) platforms. METHODS AND MATERIALS A phantom containing iodine concentrations ranging from 0 to 10 mg ml-1 was scanned with five dual-energy platforms (two rapid kilo volt switching (r-kVs), one dual source (DS), one sequential acquisition and one split-filter). Serial dilutions of 300 mg ml-1 iodinated contrast material were used to generate concentrations below 2 mg ml-1. Iodine density and virtual monoenergetic images were reviewed by three radiologists to determine the minimum visually detectable iodine concentration. Contrast-to-noise ratios (CNRs) were calculated. RESULTS 1 mg mL-1 (~0.8 mg mL-1 corrected) was the minimum visually detectable concentration among the platforms and could be seen by all readers on the third-generation r-kVs and DS platforms. CONCLUSIONS At low concentrations, CNR for monoenergetic images was highest on the DS platform and lowest in the sequential acquisition and split-filter platforms. ADVANCES IN KNOWLEDGE The results of this study corroborate previous in vivo estimates of iodine detection limits at DECT and provide a comparison for the performance of different DECT platforms at low iodine concentrations in vitro.
Collapse
Affiliation(s)
| | - Pamela Mager
- Department of Radiology, Houston Methodist Hospital, Houston, TX
| | - Nam C Yu
- Department of Radiology, Houston Methodist Hospital, Houston, TX
| | - David P Katz
- Department of Radiology, Houston Methodist Hospital, Houston, TX
| | - Jett R Brady
- Department of Radiology, Houston Methodist Hospital, Houston, TX
| | - Nakul Gupta
- Department of Radiology, Houston Methodist Hospital, Houston, TX
| |
Collapse
|
25
|
Dual-source dual-energy CT in the evaluation of hepatic fractional extracellular space in cirrhosis. Radiol Med 2019; 125:7-14. [PMID: 31587181 DOI: 10.1007/s11547-019-01089-7] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2019] [Accepted: 09/25/2019] [Indexed: 01/02/2023]
Abstract
BACKGROUND One of the main features of liver fibrosis is the expansion of the interstitial space. All water-soluble CT contrast agents remain confined in the vascular and interstitial space constituting the fractional extracellular space (fECS). Indirect measure of its expansion can be quantified during equilibrium phase with CT. The goal of this prospective study was to assess the feasibility of dual-energy CT (DECT) with iodine quantification at equilibrium phase in the evaluation of significant fibrosis or cirrhosis. METHODS Thirty-eight cirrhotic patients (according to Child-Pugh and MELD scores), scheduled for liver CT, were enrolled in the study group. Twenty-four patients undergoing CT urography with a 10-min excretory phase were included in the control group. fECS was calculated as the ratio of the iodine concentration of liver parenchyma to that of the aorta, multiplied by 1 minus hematocrit. RESULTS Final study and control group were, respectively, composed of 22 and 20 patients. Mean hepatic fECS value was statistically greater in study group (P < 0.05). Positive correlation was observed between hepatic fECS value and MELD score (r = 0.64, P < 0.05). Analysis of variance showed statistical differences between control group and the Child-Pugh grades and between Child-Pugh A and B patients and Child-Pugh C patients (P < 0.05). ROC curves analysis yielded an optimum fECS cutoff value of 26.3% for differentiation of control group and cirrhotic patients (AUC 0.88; 86% sensitivity, 85% specificity). CONCLUSIONS Dual-source DECT is a feasible, noninvasive method for the assessment of significant liver fibrosis or cirrhosis.
Collapse
|
26
|
Pourvaziri A, Parakh A, Mojtahed A, Kambadakone A, Sahani DV. Diagnostic performance of dual-energy CT and subtraction CT for renal lesion detection and characterization. Eur Radiol 2019; 29:6559-6570. [DOI: 10.1007/s00330-019-06224-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2019] [Revised: 03/21/2019] [Accepted: 04/04/2019] [Indexed: 01/14/2023]
|
27
|
Invasive Pulmonary Adenocarcinomas Versus Preinvasive Lesions Appearing as Pure Ground-Glass Nodules: Differentiation Using Enhanced Dual-Source Dual-Energy CT. AJR Am J Roentgenol 2019; 213:W114-W122. [PMID: 31082273 DOI: 10.2214/ajr.19.21245] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
OBJECTIVE. The objective of our study was to investigate the potentials of enhanced dual-source dual-energy CT (DECT) and three-planar measurements for differentiating invasive pulmonary adenocarcinomas (IPAs) from preinvasive lesions appearing as pure ground-glass nodules (pGGNs). MATERIALS AND METHODS. Thirty-nine patients with 53 pGGNs who underwent enhanced dual-source DECT were included in this retrospective study. All pGGNs were pathologically confirmed and categorized into two groups: preinvasive lesions or IPAs. The traditional CT features of the pGGNs were evaluated on unenhanced images. Quantitative parameters were measured on iodine-enhanced images of dual-source DECT in three planes, and both intra- and interobserver reproducibility analyses were performed to assess the measurement reproducibility of quantitative parameters. To identify significant factors for differentiating IPAs from preinvasive lesions, we performed logistic regression analysis and ROC curve analysis. RESULTS. For traditional CT features, only lesion size and unenhanced CT attenuation value showed significant differences between preinvasive lesions and IPAs (p < 0.05). Preinvasive lesions and IPAs exhibited significant differences in attenuation on virtual images, so-called "virtual HU" or "VHU," and the modified normalized iodine concentration (NIC) (p < 0.05), and both intra- and interobserver agreement for the quantitative measurements were excellent. Multivariate logistic regression analysis revealed that larger lesion size (adjusted odds ratio [OR], 3.65) and higher modified NIC (adjusted OR, 19.01) were significant differentiators of IPAs from preinvasive lesions (p < 0.05). ROC curve analysis revealed that modified NIC showed excellent performance (AUC, 0.924) and significantly higher performance than lesion size (AUC, 0.711) for differentiating IPAs from preinvasive lesions. CONCLUSION. In pGGNs, a lesion with a modified NIC value of more than 0.29 can be a very specific discriminator of IPAs from preinvasive lesions, and IPAs can be accurately and reliably differentiated from preinvasive lesions using enhanced dual-source DECT and three-planar measurements.
Collapse
|
28
|
Iodine quantification based on rest / stress perfusion dual energy CT to differentiate ischemic, infarcted and normal myocardium. Eur J Radiol 2019; 112:136-143. [PMID: 30777202 DOI: 10.1016/j.ejrad.2019.01.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2018] [Revised: 12/06/2018] [Accepted: 01/15/2019] [Indexed: 11/20/2022]
Abstract
BACKGROUND The aim of this study was to assess the potential of rest-stress DECT iodine quantification to discriminate between normal, ischemic, and infarcted myocardium. METHODS Patients who underwent rest-stress DECT on a 2nd generation dual-source system and cardiac magnetic resonance (CMR) were retrospectively included from a prospective study cohort. CMR was performed to identify ischemic and infarcted myocardium and categorize patients into ischemic, infarcted, and control groups. Controls were analyzed on a per-slice and per-segment basis. Regions of interest (ROIs) were placed in ischemic and infarcted areas based on CMR. Additionally, ROIs were placed in the septal area to assess normal and remote myocardium. RESULTS We included 42 patients: 10 ischemic, 17 infarcted, and 15 controls. Iodine concentrations showed no significant between segments in controls. Iodine concentrations for normal myocardium increased significantly from rest to stress (median 3.7 mg/mL (interquartile range 3.5-3.9) vs. 4.5 mg/mL (4.3-4.9)) (p < 0.001). Iodine concentrations in diseased myocardium were significantly lower than in normal myocardium; 1.3 mg/mL (0.9-1.8) and 0.6 mg/mL (0.4-0.8) at rest and stress in ischemic myocardium, and 0.3 mg/mL (0.3-0.5) and 0.5 mg/mL (0.5-0.7) at rest and stress in infarcted myocardium (p < 0.005 and p < 0.001). At rest only, iodine concentrations were significantly lower in infarcted vs. ischemic myocardium (p < 0.001). The optimal threshold for differentiating diseased from normal myocardium was 2.5 mg/mL and 2.1 mg/mL for rest and stress (AUC 1.00). To discriminate ischemic from infarcted myocardium, the optimal threshold was 1.0 mg/ml (AUC 0.944) at rest. CONCLUSION DECT iodine concentration from rest-stress imaging can potentially differentiate between normal, ischemic, and infarcted myocardium.
Collapse
|
29
|
Ge X, Yu J, Wang Z, Xu Y, Pan C, Jiang L, Yang Y, Yuan K, Liu W. Comparative study of dual energy CT iodine imaging and standardized concentrations before and after chemoradiotherapy for esophageal cancer. BMC Cancer 2018; 18:1120. [PMID: 30445955 PMCID: PMC6240303 DOI: 10.1186/s12885-018-5058-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2018] [Accepted: 11/07/2018] [Indexed: 12/24/2022] Open
Abstract
Background To compare dual energy CT iodine imaging and standardized iodine concentration before and after chemoradiotherapy (CRT) for esophageal cancer and evaluate the efficacy of CRT for EC by examining DECT iodine maps and standard CT values. Methods The clinical data of 45 patients confirmed by pathology with newly diagnosed esophageal cancer who underwent concurrent CRT from February 2012 to January 2017 in our department of radiology were collected. All patients underwent dual-source dual-energy CT (DECT) before and after CRT. Normalized iodine concentration (NIC) and normalized CT (NCT) corresponding to the overall cancer lesion and its maximum cross-sectional area were observed and compared. Additionally, 30 healthy individuals were compared as control group. After treatment, the patients were divided into two groups according to RECIST1.1: treatment effective group and ineffective group. Results There were 33 patients (CR 9, PR 24) in the effective group and 12 patients (SD 12, PD 0) in the ineffective group. There was no significant difference in the NIC-A, NIC-V, NCT-A and NCT-A indexes between the effective group (B group) and the ineffective group (C group) before treatment (P > 0.05). After the treatment, the above-mentioned indexes in the effective group of patients were significantly lower than before treatment, and compared with the ineffective group, the NIC-A, NIC-V, NCT-A and NCT-V values of the effective group were significantly lower than those of ineffective group (P < 0.05). After treatment, the NIC-V and NCT-V in the ineffective group were lower than before treatment, and the difference was statistically significant (P < 0.05). However, their NIC-A and NCT-A were not statistically different from those before treatment (P > 0.05). Conclusion Using DECT iodine map, the changes of NIC and NIC before and after CRT in patients with esophageal cancer can evaluate the effect of CRT, and does not increase the radiation dose, so it is suitable for clinical use.
Collapse
Affiliation(s)
- Xiaomin Ge
- Department of Radiology, Changzhou Second People's Hospital Affiliated to Nanjing Medical University, No. 29 Xinglong Road, Tianning District, Changzhou, Jiangsu, China
| | - Jingping Yu
- Department of Radiotherapy, Changzhou Second People's Hospital Affiliated to Nanjing Medical University, Changzhou, 213003, China
| | - Zhongling Wang
- Department of Radiology, Shanghai First People's Hospital Affiliated to Shanghai Jiao Tong University, Shanghai, 200080, China
| | - Yiqun Xu
- Department of Radiology, Changzhou Second People's Hospital Affiliated to Nanjing Medical University, No. 29 Xinglong Road, Tianning District, Changzhou, Jiangsu, China
| | - Changjie Pan
- Department of Radiology, Changzhou Second People's Hospital Affiliated to Nanjing Medical University, No. 29 Xinglong Road, Tianning District, Changzhou, Jiangsu, China
| | - Lu Jiang
- Department of Radiology, Changzhou Second People's Hospital Affiliated to Nanjing Medical University, No. 29 Xinglong Road, Tianning District, Changzhou, Jiangsu, China
| | - Yanling Yang
- Department of Radiology, Changzhou Second People's Hospital Affiliated to Nanjing Medical University, No. 29 Xinglong Road, Tianning District, Changzhou, Jiangsu, China
| | - Kai Yuan
- Thoracic Surgery Department, Changzhou Second People's Hospital Affiliated to Nanjing Medical University, Changzhou, 213003, China
| | - Wei Liu
- Department of Radiology, Changzhou Second People's Hospital Affiliated to Nanjing Medical University, No. 29 Xinglong Road, Tianning District, Changzhou, Jiangsu, China.
| |
Collapse
|
30
|
How accurate and precise are CT based measurements of iodine concentration? A comparison of the minimum detectable concentration difference among single source and dual source dual energy CT in a phantom study. Eur Radiol 2018; 29:2069-2078. [DOI: 10.1007/s00330-018-5736-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 08/09/2018] [Accepted: 08/28/2018] [Indexed: 12/19/2022]
|
31
|
Effect of CT Acquisition Parameters on Iodine Density Measurement at Dual-Layer Spectral CT. AJR Am J Roentgenol 2018; 211:748-754. [PMID: 30085834 DOI: 10.2214/ajr.17.19381] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
OBJECTIVE We aimed to evaluate the effect of tube voltage, tube current-time product, and iterative reconstruction on iodine quantification using a dual-layer spectral CT scanner. MATERIALS AND METHODS Two mediastinal iodine phantoms, each containing six tubes of different iodine concentrations (0, 1, 2.5, 5, 10, and 20 mg I/mL; the two phantoms had tubes with contrast media diluted in water and in 10% amino acid solution, respectively), were inserted into an anthropomorphic chest phantom and scanned with varying acquisition parameters (120 and 140 kVp; 20, 40, 60, 80, 100, 150, and 200 mAs; and spectral reconstruction levels 0 and 6). Thereafter, iodine density was measured (in milligrams of iodine per milliliter) using a dedicated software program, and the effect of acquisition parameters on iodine density and on its relative measurement error (RME) was analyzed using a linear mixed-effects model. RESULTS Tube voltages (all, p < 0.001) and tube current-time products (p < 0.05, depending on the interaction terms for iodine density; p = 0.023 for RME) had statistically significant effects on iodine density and RME. However, the magnitude of their effects was minimal. That is, estimated differences between tube voltage settings ranged from 0 to 0.8 mg I/mL for iodine density and from 1.0% to 4.2% for RME. For tube current-time product, alteration of 100 mAs caused changes in iodine density and RME of approximately 0.1 mg I/mL and 0.6%, respectively. Spectral level was not an affecting factor for iodine quantification (p = 0.647 for iodine density and 0.813 for RME). CONCLUSION Iodine quantification using dual-layer spectral CT was feasible irrespective of CT acquisition parameters because their effects on iodine density and RME were minimal.
Collapse
|
32
|
Soesbe TC, Ananthakrishnan L, Lewis MA, Duan X, Nasr K, Xi Y, Abbara S, Leyendecker JR, Lenkinski RE. Pseudoenhancement effects on iodine quantification from dual-energy spectral CT systems: A multi-vendor phantom study regarding renal lesion characterization. Eur J Radiol 2018; 105:125-133. [DOI: 10.1016/j.ejrad.2018.06.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 04/12/2018] [Accepted: 06/01/2018] [Indexed: 01/30/2023]
|
33
|
De Santis D, Eid M, De Cecco CN, Jacobs BE, Albrecht MH, Varga-Szemes A, Tesche C, Caruso D, Laghi A, Schoepf UJ. Dual-Energy Computed Tomography in Cardiothoracic Vascular Imaging. Radiol Clin North Am 2018; 56:521-534. [PMID: 29936945 DOI: 10.1016/j.rcl.2018.03.010] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
Dual energy computed tomography is becoming increasingly widespread in clinical practice. It can expand on the traditional density-based data achievable with single energy computed tomography by adding novel applications to help reach a more accurate diagnosis. The implementation of this technology in cardiothoracic vascular imaging allows for improved image contrast, metal artifact reduction, generation of virtual unenhanced images, virtual calcium subtraction techniques, cardiac and pulmonary perfusion evaluation, and plaque characterization. The improved diagnostic performance afforded by dual energy computed tomography is not associated with an increased radiation dose. This review provides an overview of dual energy computed tomography cardiothoracic vascular applications.
Collapse
Affiliation(s)
- Domenico De Santis
- Department of Radiology and Radiological Science, Division of Cardiovascular Imaging, Medical University of South Carolina, 25 Courtenay Drive, Charleston, SC 29425, USA; Department of Radiological Sciences, Oncology and Pathology, University of Rome "Sapienza", Piazzale Aldo Moro 5, Rome 00185, Italy
| | - Marwen Eid
- Department of Radiology and Radiological Science, Division of Cardiovascular Imaging, Medical University of South Carolina, 25 Courtenay Drive, Charleston, SC 29425, USA
| | - Carlo N De Cecco
- Department of Radiology and Radiological Science, Division of Cardiovascular Imaging, Medical University of South Carolina, 25 Courtenay Drive, Charleston, SC 29425, USA
| | - Brian E Jacobs
- Department of Radiology and Radiological Science, Division of Cardiovascular Imaging, Medical University of South Carolina, 25 Courtenay Drive, Charleston, SC 29425, USA
| | - Moritz H Albrecht
- Department of Radiology and Radiological Science, Division of Cardiovascular Imaging, Medical University of South Carolina, 25 Courtenay Drive, Charleston, SC 29425, USA; Department of Diagnostic and Interventional Radiology, University Hospital Frankfurt, Theodor-Stern-Kai 7, Frankfurt am Main 60590, Germany
| | - Akos Varga-Szemes
- Department of Radiology and Radiological Science, Division of Cardiovascular Imaging, Medical University of South Carolina, 25 Courtenay Drive, Charleston, SC 29425, USA
| | - Christian Tesche
- Department of Radiology and Radiological Science, Division of Cardiovascular Imaging, Medical University of South Carolina, 25 Courtenay Drive, Charleston, SC 29425, USA; Department of Cardiology and Intensive Care Medicine, Heart Center Munich-Bogenhausen, Lazarettstraße 36, Munich 80636, Germany
| | - Damiano Caruso
- Department of Radiological Sciences, Oncology and Pathology, University of Rome "Sapienza", Piazzale Aldo Moro 5, Rome 00185, Italy
| | - Andrea Laghi
- Department of Radiological Sciences, Oncology and Pathology, University of Rome "Sapienza", Piazzale Aldo Moro 5, Rome 00185, Italy
| | - Uwe Joseph Schoepf
- Department of Radiology and Radiological Science, Division of Cardiovascular Imaging, Medical University of South Carolina, 25 Courtenay Drive, Charleston, SC 29425, USA.
| |
Collapse
|
34
|
Ramsey BC, Fentanes E, Choi AD, Branch KR, Thomas DM. Myocardial Assessment with Cardiac CT: Ischemic Heart Disease and Beyond. CURRENT CARDIOVASCULAR IMAGING REPORTS 2018; 11:16. [PMID: 29963220 PMCID: PMC5984644 DOI: 10.1007/s12410-018-9456-2] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
PURPOSE OF REVIEW The aim of this review is to highlight recent advancements, current trends, and the expanding role for cardiac CT (CCT) in the evaluation of ischemic heart disease, nonischemic cardiomyopathies, and some specific congenital myocardial disease states. RECENT FINDINGS CCT is a highly versatile imaging modality for the assessment of numerous cardiovascular disease states. Coronary CT angiography (CCTA) is now a well-established first-line imaging modality for the exclusion of significant coronary artery disease (CAD); however, CCTA has modest positive predictive value and specificity for diagnosing obstructive CAD in addition to limited capability to evaluate myocardial tissue characteristics. SUMMARY CTP, when combined with CCTA, presents the potential for full functional and anatomic assessment with a single modality. CCT is a useful adjunct in select patients to both TTE and CMR in the evaluation of ventricular volumes and systolic function. Newer applications, such as dynamic CTP and DECT, are promising diagnostic tools offering the possibility of more quantitative assessment of ischemia. The superior spatial resolution and volumetric acquisition of CCT has an important role in the diagnosis of other nonischemic causes of cardiomyopathies.
Collapse
Affiliation(s)
- Bryan C. Ramsey
- Cardiology Division, Department of Medicine, San Antonio Military Medical Center, San Antonio, TX USA
| | - Emilio Fentanes
- Cardiology Division, Department of Medicine, Tripler Army Medical Center, Honolulu, HI USA
| | - Andrew D. Choi
- Division of Cardiology, Department of Radiology, The George Washington University School of Medicine, Washington, DC USA
| | | | - Dustin M. Thomas
- Cardiology Division, Department of Medicine, San Antonio Military Medical Center, San Antonio, TX USA
| |
Collapse
|
35
|
Albrecht MH, De Cecco CN, Schoepf UJ, Spandorfer A, Eid M, De Santis D, Varga-Szemes A, van Assen M, von Knebel-Doeberitz PL, Tesche C, Puntmann VO, Nagel E, Vogl TJ, Nance JW. Dual-energy CT of the heart current and future status. Eur J Radiol 2018; 105:110-118. [PMID: 30017266 DOI: 10.1016/j.ejrad.2018.05.028] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2017] [Revised: 05/17/2018] [Accepted: 05/29/2018] [Indexed: 11/19/2022]
Abstract
Several applications utilizing dual-energy cardiac CT (DECT) have recently transitioned from the realm of research into clinical workflows. DECT acquisition techniques and subsequent post-processing can provide improved qualitative analysis, allow quantitative imaging, and have the potential to decrease requisite radiation and contrast material doses. Additionally, several experimental DECT techniques are pending further investigation and may improve the diagnostic accuracy of cardiac CT and/or provide evaluation of emerging imaging biomarkers in the future. This review article will summarize the major applications utilizing DECT in diagnosis of cardiovascular disease, including both the clinically used and investigational techniques examined to date.
Collapse
Affiliation(s)
- Moritz H Albrecht
- Medical University of South Carolina, Department of Radiology and Radiological Science, Division of Cardiovascular Imaging, Charleston, SC, United States; University Hospital Frankfurt, Department of Diagnostic and Interventional Radiology, Frankfurt, Germany.
| | - Carlo N De Cecco
- Medical University of South Carolina, Department of Radiology and Radiological Science, Division of Cardiovascular Imaging, Charleston, SC, United States.
| | - U Joseph Schoepf
- Medical University of South Carolina, Department of Radiology and Radiological Science, Division of Cardiovascular Imaging, Charleston, SC, United States.
| | - Adam Spandorfer
- Medical University of South Carolina, Department of Radiology and Radiological Science, Division of Cardiovascular Imaging, Charleston, SC, United States.
| | - Marwen Eid
- Medical University of South Carolina, Department of Radiology and Radiological Science, Division of Cardiovascular Imaging, Charleston, SC, United States.
| | - Domenico De Santis
- Medical University of South Carolina, Department of Radiology and Radiological Science, Division of Cardiovascular Imaging, Charleston, SC, United States; University of Rome "Sapienza", Department of Radiological Sciences, Oncological and Pathological Sciences, Latina, Italy.
| | - Akos Varga-Szemes
- Medical University of South Carolina, Department of Radiology and Radiological Science, Division of Cardiovascular Imaging, Charleston, SC, United States.
| | - Marly van Assen
- Medical University of South Carolina, Department of Radiology and Radiological Science, Division of Cardiovascular Imaging, Charleston, SC, United States; University Medical Center Groningen, Center for Medical Imaging, Department of Radiology, Groningen, The Netherlands.
| | - Philipp L von Knebel-Doeberitz
- Medical University of South Carolina, Department of Radiology and Radiological Science, Division of Cardiovascular Imaging, Charleston, SC, United States.
| | - Christian Tesche
- Medical University of South Carolina, Department of Radiology and Radiological Science, Division of Cardiovascular Imaging, Charleston, SC, United States; Heart Center Munich-Bogenhausen, Department of Cardiology and Intensive Care Medicine, Munich, Germany.
| | - Valentina O Puntmann
- University Hospital Frankfurt, Institute of Experimental and Translational Cardiovascular Imaging, DZHK Centre for Cardiovascular Imaging, Frankfurt, Germany.
| | - Eike Nagel
- University Hospital Frankfurt, Institute of Experimental and Translational Cardiovascular Imaging, DZHK Centre for Cardiovascular Imaging, Frankfurt, Germany.
| | - Thomas J Vogl
- University Hospital Frankfurt, Department of Diagnostic and Interventional Radiology, Frankfurt, Germany.
| | - John W Nance
- Medical University of South Carolina, Department of Radiology and Radiological Science, Division of Cardiovascular Imaging, Charleston, SC, United States.
| |
Collapse
|
36
|
Comparison of Iodine Density Measurement Among Dual-Energy Computed Tomography Scanners From 3 Vendors. Invest Radiol 2018; 53:321-327. [DOI: 10.1097/rli.0000000000000446] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
|
37
|
Tanikawa H, Ogawa R, Okuma K, Harato K, Niki Y, Kobayashi S, Nagura T. Detection of calcium pyrophosphate dihydrate crystals in knee meniscus by dual-energy computed tomography. J Orthop Surg Res 2018; 13:73. [PMID: 29622016 PMCID: PMC5887196 DOI: 10.1186/s13018-018-0787-0] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 03/26/2018] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Calcium pyrophosphate dihydrate (CPPD) crystals are commonly observed in osteoarthritic joints. The aim of our study was to investigate the efficacy of a dual-energy computed tomography (DECT) for detecting CPPD crystals in knee meniscus. METHODS Twenty-six patients undergoing primary total knee arthroplasty were included in the study. Radiographs of knee joint and synovial fluid specimens were analyzed for the presence of CPPD crystals. Meniscus extracted during surgery was scanned using DECT. Sensitivity and specificity of DECT and radiograph for detecting CPPD crystals were calculated against a reference standard (polarizing light microscopy of synovial fluid aspirate). Meniscus in which CPPD crystals were suspected with DECT was further examined to confirm the crystals using a polarized microscopy. RESULTS CPPD crystals in synovial fluid were observed in 9 (36%) patients. The sensitivity and specificity of DECT in the detection of CPPD crystals, against microscopic identification, were 77.8 and 93.8%, respectively. The sensitivity and specificity of conventional radiography in the detection of CPPD crystals were 44.4 and 100%, respectively. DECT was able to detect the area where CPPD crystals were deposited in the meniscus. CONCLUSION DECT provides good diagnostic sensitivity and specificity for detection of CPPD crystals in knee meniscus as well as spatial information about CPPD crystals. DECT is currently a research tool, but we believe that DECT can be a useful instrument to diagnose CPPD deposition disease, especially for the regions where aspiration is difficult to be performed such as pubic symphysis, atlantoaxial joint, interphalangeal joint.
Collapse
Affiliation(s)
- Hidenori Tanikawa
- Department of Orthopaedic Surgery, Saiseikai Yokohamashi Tobu Hospital, 3-6-1 Shimosueyoshi, Tsurumi, Yokohama, Kanagawa, Japan.
| | - Ryo Ogawa
- Department of Orthopaedic Surgery, Keio University School of Medicine, 35 Shinamomachi, Shinjyuku, Tokyo, Japan
| | - Kazunari Okuma
- Department of Orthopaedic Surgery, Saitama City Hospital, 2460 Minuma, Midoriku, Saitamashi, Saitama, Japan
| | - Kengo Harato
- Department of Orthopaedic Surgery, Keio University School of Medicine, 35 Shinamomachi, Shinjyuku, Tokyo, Japan
| | - Yasuo Niki
- Department of Orthopaedic Surgery, Keio University School of Medicine, 35 Shinamomachi, Shinjyuku, Tokyo, Japan
| | - Shu Kobayashi
- Department of Orthopaedic Surgery, Keio University School of Medicine, 35 Shinamomachi, Shinjyuku, Tokyo, Japan
| | - Takeo Nagura
- Department of Clinical Biomechanics, Keio University School of Medicine, 35 Shinamomachi, Shinjyuku, Tokyo, Japan
| |
Collapse
|
38
|
Nute JL, Jacobsen MC, Stefan W, Wei W, Cody DD. Development of a dual-energy computed tomography quality control program: Characterization of scanner response and definition of relevant parameters for a fast-kVp switching dual-energy computed tomography system. Med Phys 2018; 45:1444-1458. [PMID: 29446082 DOI: 10.1002/mp.12812] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2017] [Revised: 01/26/2018] [Accepted: 01/26/2018] [Indexed: 12/17/2022] Open
Abstract
PURPOSE A prototype QC phantom system and analysis process were developed to characterize the spectral capabilities of a fast kV-switching dual-energy computed tomography (DECT) scanner. This work addresses the current lack of quantitative oversight for this technology, with the goal of identifying relevant scan parameters and test metrics instrumental to the development of a dual-energy quality control (DEQC). METHODS A prototype elliptical phantom (effective diameter: 35 cm) was designed with multiple material inserts for DECT imaging. Inserts included tissue equivalent and material rods (including iodine and calcium at varying concentrations). The phantom was scanned on a fast kV-switching DECT system using 16 dual-energy acquisitions (CTDIvol range: 10.3-62 mGy) with varying pitch, rotation time, and tube current. The circular head phantom (22 cm diameter) was scanned using a similar protocol (12 acquisitions; CTDIvol range: 36.7-132.6 mGy). All acquisitions were reconstructed at 50, 70, 110, and 140 keV and using a water-iodine material basis pair. The images were evaluated for iodine quantification accuracy, stability of monoenergetic reconstruction CT number, noise, and positional constancy. Variance component analysis was used to identify technique parameters that drove deviations in test metrics. Variances were compared to thresholds derived from manufacturer tolerances to determine technique parameters that had a nominally significant effect on test metrics. RESULTS Iodine quantification error was largely unaffected by any of the technique parameters investigated. Monoenergetic HU stability was found to be affected by mAs, with a threshold under which spectral separation was unsuccessful, diminishing the utility of DECT imaging. Noise was found to be affected by CTDIvol in the DEQC body phantom, and CTDIvol and mA in the DEQC head phantom. Positional constancy was found to be affected by mAs in the DEQC body phantom and mA in the DEQC head phantom. CONCLUSION A streamlined scan protocol was developed to further investigate the effects of CTDIvol and rotation time while limiting data collection to the DEQC body phantom. Further data collection will be pursued to determine baseline values and statistically based failure thresholds for the validation of long-term DECT scanner performance.
Collapse
Affiliation(s)
- Jessica L Nute
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Megan C Jacobsen
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA.,Medical Physics Program, The University of Texas MD Anderson Cancer Center UTHealth Graduate School of Biomedical Sciences, Houston, TX, 77030, USA
| | - Wolfgang Stefan
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Wei Wei
- Department of Biostatistics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| | - Dianna D Cody
- Department of Imaging Physics, The University of Texas MD Anderson Cancer Center, Houston, TX, 77030, USA
| |
Collapse
|
39
|
Accuracy of iodine quantification in dual-layer spectral CT: Influence of iterative reconstruction, patient habitus and tube parameters. Eur J Radiol 2018; 102:83-88. [PMID: 29685549 DOI: 10.1016/j.ejrad.2018.03.009] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2017] [Revised: 02/12/2018] [Accepted: 03/03/2018] [Indexed: 12/30/2022]
Abstract
PURPOSE Evaluation of the influence of iterative reconstruction, tube settings and patient habitus on the accuracy of iodine quantification with dual-layer spectral CT (DL-CT). MATERIAL AND METHODS A CT abdomen phantom with different extension rings and four iodine inserts (1, 2, 5 and 10 mg/ml) was scanned on a DL-CT. The phantom was scanned with tube-voltages of 120 and 140 kVp and CTDIvol of 2.5, 5, 10 and 20 mGy. Reconstructions were performed for eight levels of iterative reconstruction (i0-i7). Diagnostic dose levels are classified depending on patient-size and radiation dose. RESULTS Measurements of iodine concentration showed accurate and reliable results. Taking all CTDIvol-levels into account, the mean absolute percentage difference (MAPD) showed less accuracy for low CTDIvol-levels (2.5 mGy: 34.72%) than for high CTDIvol-levels (20 mGy: 5.89%). At diagnostic dose levels, accurate quantification of iodine was possible (MAPD 3.38%). Level of iterative reconstruction did not significantly influence iodine measurements. Iodine quantification worked more accurately at a tube voltage of 140 kVp. Phantom size had a considerable effect only at low-dose-levels; at diagnostic dose levels the effect of phantom size decreased (MAPD <5% for all phantom sizes). CONCLUSION With DL-CT, even low iodine concentrations can be accurately quantified. Accuracies are higher when diagnostic radiation doses are employed.
Collapse
|
40
|
|
41
|
Quantification of Iodine Concentration Using Single-Source Dual-Energy Computed Tomography in a Calf Liver. J Comput Assist Tomogr 2018; 42:222-229. [PMID: 29489589 DOI: 10.1097/rct.0000000000000685] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
OBJECTIVE To evaluate the accuracy of single-source dual-energy computed tomography (ssDECT) in iodine quantification using various segmentation methods in an ex vivo model. METHODS Ten sausages, injected with variable quantities of iodinated contrast, were inserted into 2 livers and scanned with ssDECT. Material density iodine images were reconstructed. Three radiologists segmented each sausage. Iodine concentration, volume, and absolute quantity were measured. Agreement between the measured and injected iodine was assessed with the concordance correlation coefficient (CCC). Intrareader agreement was assessed using the intraclass correlation coefficient (ICC). RESULTS Air bubbles were observed in sausage (IX). Sausage (X) was within the same view as hyper-attenuating markers used for localization. With IX and X excluded, CCC and ICC were greater than 0.98 and greater than 0.88. When included, CCC and ICC were greater than 0.94 and greater than 0.79. CONCLUSIONS Iodine quantification was reproducible and precise. However, accuracy reduced in sausages consisting of air filled cavities and within the same view as hyperattenuating markers.
Collapse
|
42
|
Dual-energy CT: a phantom comparison of different platforms for abdominal imaging. Eur Radiol 2018; 28:2745-2755. [PMID: 29404773 DOI: 10.1007/s00330-017-5238-5] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Revised: 11/30/2017] [Accepted: 12/04/2017] [Indexed: 02/06/2023]
Abstract
OBJECTIVES Evaluation of imaging performance across dual-energy CT (DECT) platforms, including dual-layer CT (DLCT), rapid-kVp-switching CT (KVSCT) and dual-source CT (DSCT). METHODS A semi-anthropomorphic abdomen phantom was imaged on these DECT systems. Scans were repeated three times for CTDIvol levels of 10 mGy, 20 mGy, 30 mGy and different fat-simulating extension rings. Over the available range of virtual-monoenergetic images (VMI), noise as well as quantitative accuracy of hounsfield units (HU) and iodine concentrations were evaluated. RESULTS For all VMI levels, HU values could be determined with high accuracy compared to theoretical values. For KVSCT and DSCT, a noise increase was observed towards lower VMI levels. A patient-size dependent increase in the uncertainty of quantitative iodine concentrations is observed for all platforms. For a medium patient size the iodine concentration root-mean-square deviation at 20 mGy is 0.17 mg/ml (DLCT), 0.30 mg/ml (KVSCT) and 0.77mg/ml (DSCT). CONCLUSION Noticeable performance differences are observed between investigated DECT systems. Iodine concentrations and VMI HUs are accurately determined across all DECT systems. KVSCT and DLCT deliver slightly more accurate iodine concentration values than DSCT for investigated scenarios. In DLCT, low-noise and high-image contrast at low VMI levels may help to increase diagnostic information in abdominal CT. KEY POINTS • Current dual-energy CT platforms provide accurate, reliable quantitative information. • Dual-energy CT cross-platform evaluation revealed noticeable performance differences between different systems. • Dual-layer CT offers constant noise levels over the complete energy range.
Collapse
|
43
|
Ehn S, Sellerer T, Muenzel D, Fingerle AA, Kopp F, Duda M, Mei K, Renger B, Herzen J, Dangelmaier J, Schwaiger BJ, Sauter A, Riederer I, Renz M, Braren R, Rummeny EJ, Pfeiffer F, Noël PB. Assessment of quantification accuracy and image quality of a full-body dual-layer spectral CT system. J Appl Clin Med Phys 2018; 19:204-217. [PMID: 29266724 PMCID: PMC5768037 DOI: 10.1002/acm2.12243] [Citation(s) in RCA: 58] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2017] [Revised: 10/24/2017] [Accepted: 11/02/2017] [Indexed: 11/20/2022] Open
Abstract
The performance of a recently introduced spectral computed tomography system based on a dual-layer detector has been investigated. A semi-anthropomorphic abdomen phantom for CT performance evaluation was imaged on the dual-layer spectral CT at different radiation exposure levels (CTDIvol of 10 mGy, 20 mGy and 30 mGy). The phantom was equipped with specific low-contrast and tissue-equivalent inserts including water-, adipose-, muscle-, liver-, bone-like materials and a variation in iodine concentrations. Additionally, the phantom size was varied using different extension rings to simulate different patient sizes. Contrast-to-noise (CNR) ratio over the range of available virtual mono-energetic images (VMI) and the quantitative accuracy of VMI Hounsfield Units (HU), effective-Z maps and iodine concentrations have been evaluated. Central and peripheral locations in the field-of-view have been examined. For all evaluated imaging tasks the results are within the calculated theoretical range of the tissue-equivalent inserts. Especially at low energies, the CNR in VMIs could be boosted by up to 330% with respect to conventional images using iDose/spectral reconstructions at level 0. The mean bias found in effective-Z maps and iodine concentrations averaged over all exposure levels and phantom sizes was 1.9% (eff. Z) and 3.4% (iodine). Only small variations were observed with increasing phantom size (+3%) while the bias was nearly independent of the exposure level (±0.2%). Therefore, dual-layer detector based CT offers high quantitative accuracy of spectral images over the complete field-of-view without any compromise in radiation dose or diagnostic image quality.
Collapse
Affiliation(s)
- Sebastian Ehn
- Chair of Biomedical PhysicsDepartment of Physics and Munich School of BioEngineeringTechnical University of MunichGarchingGermany
| | - Thorsten Sellerer
- Chair of Biomedical PhysicsDepartment of Physics and Munich School of BioEngineeringTechnical University of MunichGarchingGermany
| | - Daniela Muenzel
- Department of diagnostic and interventional RadiologyTechnical University of MunichMunichGermany
| | - Alexander A. Fingerle
- Department of diagnostic and interventional RadiologyTechnical University of MunichMunichGermany
| | - Felix Kopp
- Department of diagnostic and interventional RadiologyTechnical University of MunichMunichGermany
| | - Manuela Duda
- Chair of Biomedical PhysicsDepartment of Physics and Munich School of BioEngineeringTechnical University of MunichGarchingGermany
| | - Kai Mei
- Department of diagnostic and interventional RadiologyTechnical University of MunichMunichGermany
| | - Bernhard Renger
- Department of diagnostic and interventional RadiologyTechnical University of MunichMunichGermany
| | - Julia Herzen
- Chair of Biomedical PhysicsDepartment of Physics and Munich School of BioEngineeringTechnical University of MunichGarchingGermany
- Department of diagnostic and interventional RadiologyTechnical University of MunichMunichGermany
| | - Julia Dangelmaier
- Department of diagnostic and interventional RadiologyTechnical University of MunichMunichGermany
| | - Benedikt J. Schwaiger
- Department of diagnostic and interventional RadiologyTechnical University of MunichMunichGermany
| | - Andreas Sauter
- Department of diagnostic and interventional RadiologyTechnical University of MunichMunichGermany
| | - Isabelle Riederer
- Department of diagnostic and interventional RadiologyTechnical University of MunichMunichGermany
| | - Martin Renz
- Department of diagnostic and interventional RadiologyTechnical University of MunichMunichGermany
| | - Rickmer Braren
- Department of diagnostic and interventional RadiologyTechnical University of MunichMunichGermany
| | - Ernst J. Rummeny
- Department of diagnostic and interventional RadiologyTechnical University of MunichMunichGermany
| | - Franz Pfeiffer
- Chair of Biomedical PhysicsDepartment of Physics and Munich School of BioEngineeringTechnical University of MunichGarchingGermany
- Department of diagnostic and interventional RadiologyTechnical University of MunichMunichGermany
| | - Peter B. Noël
- Chair of Biomedical PhysicsDepartment of Physics and Munich School of BioEngineeringTechnical University of MunichGarchingGermany
- Department of diagnostic and interventional RadiologyTechnical University of MunichMunichGermany
| |
Collapse
|
44
|
Initial Results of a Single-Source Dual-Energy Computed Tomography Technique Using a Split-Filter: Assessment of Image Quality, Radiation Dose, and Accuracy of Dual-Energy Applications in an In Vitro and In Vivo Study. Invest Radiol 2017; 51:491-8. [PMID: 26895193 DOI: 10.1097/rli.0000000000000257] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVE The aim of this study was to investigate the image quality, radiation dose, and accuracy of virtual noncontrast images and iodine quantification of split-filter dual-energy computed tomography (CT) using a single x-ray source in a phantom and patient study. MATERIALS AND METHODS In a phantom study, objective image quality and accuracy of iodine quantification were evaluated for the split-filter dual-energy mode using a tin and gold filter. In a patient study, objective image quality and radiation dose were compared in thoracoabdominal CT of 50 patients between the standard single-energy and split-filter dual-energy mode. The radiation dose was estimated by size-specific dose estimate. To evaluate the accuracy of virtual noncontrast imaging, attenuation measurements in the liver, spleen, and muscle were compared between a true noncontrast premonitoring scan and the virtual noncontrast images of the dual-energy scans. Descriptive statistics and the Mann-Whitney U test were used. RESULTS In the phantom study, differences between the real and measured iodine concentration ranged from 2.2% to 21.4%. In the patient study, the single-energy and dual-energy protocols resulted in similar image noise (7.4 vs 7.1 HU, respectively; P = 0.43) and parenchymal contrast-to-noise ratio (CNR) values for the liver (29.2 vs 28.5, respectively; P = 0.88). However, the vascular CNR value for the single-energy protocol was significantly higher than for the dual-energy protocol (10.0 vs 7.1, respectively; P = 0.006). The difference in the measured attenuation between the true and the virtual noncontrast images ranged from 3.1 to 6.7 HU. The size-specific dose estimate of the dual-energy protocol was, on average, 17% lower than that of the single-energy protocol (11.7 vs 9.7 mGy, respectively; P = 0.008). CONCLUSIONS Split-filter dual-energy compared with single-energy CT results in similar objective image noise in addition to dual-energy capabilities at 17% lower radiation dose. Because of beam hardening, split-filter dual-energy can lead to decreased CNR values of iodinated structures.
Collapse
|
45
|
Felloni P, Duhamel A, Faivre JB, Giordano J, Khung S, Deken V, Remy J, Remy-Jardin M. Regional Distribution of Pulmonary Blood Volume with Dual-Energy Computed Tomography: Results in 42 Subjects. Acad Radiol 2017; 24:1412-1421. [PMID: 28711443 DOI: 10.1016/j.acra.2017.05.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2016] [Revised: 04/27/2017] [Accepted: 05/10/2017] [Indexed: 10/19/2022]
Abstract
RATIONALE AND OBJECTIVES The noninvasive approach of lung perfusion generated from dual-energy computed tomography acquisitions has entered clinical practice. The purpose of this study was to analyze the regional distribution of iodine within distal portions of the pulmonary arterial bed on dual-source, dual-energy computed tomography examinations in a cohort of subjects without cardiopulmonary pathologies. MATERIALS AND METHODS The study population included 42 patients without cardiorespiratory disease, enabling quantitative and qualitative analysis of pulmonary blood volume after administration of a 40% contrast agent. Qualitative analysis was based on visual assessment. Quantitative analysis was obtained after semiautomatic division of each lung into 18 areas. RESULTS The iodine concentration did not significantly differ between the right (R) and left (L) lungs (P = .49), with a mean attenuation of 41.35 Hounsfield units (HU) and 41.14 HU, respectively. Three regional gradients of attenuation were observed between: (a) lung bases and apices (P < .001), linked to the conditions of examination (mean Δ: 6.23 in the R lung; 5.96 in the L lung); (b) posterior and anterior parts of the lung (P < .001) due to gravity (mean Δ: 11.92 in the R lung ; 15.93 in the L lung); and (c) medullary and cortical lung zones (P < .001) (mean Δ: 9.35 in the R lung ; 8.37 in the L lung). The intensity of dependent-nondependent (r = 0.42; P < .001) and corticomedullary (r = 0.58; P < .0001) gradients was correlated to the overall iodine concentration. CONCLUSION Distribution of pulmonary blood volume is influenced by physiological gradients and scanning conditions.
Collapse
|
46
|
Cardiac Dual-Energy CT Applications and Clinical Impact. CURRENT RADIOLOGY REPORTS 2017. [DOI: 10.1007/s40134-017-0237-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
47
|
Papadakis AE, Damilakis J. Fast kVp-switching dual energy contrast-enhanced thorax and cardiac CT: A phantom study on the accuracy of iodine concentration and effective atomic number measurement. Med Phys 2017; 44:4724-4735. [PMID: 28658505 DOI: 10.1002/mp.12437] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 06/18/2017] [Accepted: 06/18/2017] [Indexed: 11/10/2022] Open
Abstract
PURPOSE To assess the effect of vessel diameter and exposure parameters on the estimation accuracy of concentration and effective atomic number (Zeff ) of iodine (I) in contrast-enhanced thorax and cardiac dual-energy CT using a modern fast kVp-switching CT scanner. METHODS A standard semi-anthropomorphic cardiac CT phantom devised to simulate the human chest at three different body habitus i.e., medium-sized, large-sized, and obese, was scanned using a fast kVp-switching Revolution-GSI GE CT scanner. Five cylindrical, 10 mm diameter, vials were filled with solutions prepared by diluting I contrast at five concentrations (2.5, 5, 10, 15, and 20 mg I/ml). To simulate small vessels, pipette tips with a diameter ranging from 5 mm to 0.5 mm were employed. The vials and pipette tips were accommodated within the semi-anthropomorphic phantom. CT acquisitions were performed in the fast kVp-switching dual-energy mode at six different CTDIw values. Acquisitions were also performed at 80, 100, 120, and 140 kVp. Images were acquired at 64 × 0.625 mm beam collimation and reconstructed at 2.5 mm using all available reconstruction filter kernels. Virtual monochromatic spectral (VMS) images, iodine concentration (IMeas ), and Zeff maps were reconstructed. Hounsfield unit as a function of energy (HUkeV ) in VMS and single-kVp (HUkVp ), IMeas and Zeff were measured at each CTDIw . The effect of vessel diameter on IMeas and Zeff was investigated. Measured HUkeV and Zeff were compared to theoretically estimated values and IMeas were compared to nominal (INom ) values. RESULTS In 10 mm diameter vessels, HUkeV values were accurate to 18% for the medium-sized, 22% for the large-sized and 39% for the obese phantoms. IMeas was underestimated by up to 10% for the medium-sized, 26% for the large-sized and 33% for the obese phantom. IMeas error decreased with increasing CTDIw from ±0.799 mg/ml at 8.61 mGy to ±0.082 mg/ml at 32.01 mGy. The percentage difference between measured and theoretically estimated Zeff ranged from -3.9% to -14.5%. In pipette tip vessels, IMeas was found to depend on the kernel employed. At the standard kernel, IMeas , for INom = 20 mg/ml, was reduced with vessel diameter from 19.25 ± 0.39 mg/ml, at 10 mm, to 2.52 ± 0.31 mg/ml, at 1 mm. Linear regression between IMeas and INom resulted in IMeas /INom factors of 0.925 for 5 mm, 0.815 for 4 mm, 0.651 for 3 mm, 0.377 for 2 mm, and 0.129 for 1 mm vessel diameter. Measured Zeff values were underestimated when vessel diameter was decreased from 5 mm to 1 mm by 27% for the 20 mg I/ml and 21% for the 2.5 mg I/ml. CONCLUSIONS HUkeV , IMeas , and Zeff depend on several parameters such as body size, vessel size, exposure parameters, and reconstruction kernel. The limiting spatial resolution of the CT system results in considerable underestimation of HUkVp , IMeas , and Zeff in vessels smaller than 5 mm diameter. The underestimation of I uptake may be experimentally corrected, if the diameter of the investigated vessel is measured and the correction factors produced in this study are employed.
Collapse
Affiliation(s)
- Antonios E Papadakis
- Department of Medical Physics, University Hospital of Heraklion, P.O. Box 1352, Heraklion, Crete, 71110, Greece
| | - John Damilakis
- Department of Medical Physics, University of Crete, Medical School, P.O. Box 1352, Heraklion, Crete, 71110, Greece
| |
Collapse
|
48
|
Binh DD, Nakajima T, Otake H, Higuchi T, Tsushima Y. Iodine concentration calculated by dual-energy computed tomography (DECT) as a functional parameter to evaluate thyroid metabolism in patients with hyperthyroidism. BMC Med Imaging 2017; 17:43. [PMID: 28724406 PMCID: PMC5518100 DOI: 10.1186/s12880-017-0216-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2017] [Accepted: 07/12/2017] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Thyroid function in patients with Grave's disease is usually evaluated by thyroid scintigraphy with radioactive iodine. Recently, dual-energy computed tomography (DECT) with two different energy X-rays can calculate iodine concentrations and can be applied for iodine measurements in thyroid glands. This study aimed to assess the potential use of DECT for the functional assessment of the thyroid gland. METHODS Thirteen patients with Grave's disease treated at our hospital from May to September 2015 were included in this retrospective study. Before treatments, all subjects had undergone both iodine scintigraphy [three and 24 h after oral administration of 123I (20 μCi)] and non-enhanced DECT. The region of interests (ROIs) were placed in both lobes of the thyroid glands, and CT values (HU: Hounsfield unit) and iodine concentrations (mg/mL) calculated from DECT images were measured. The correlation between CT values and iodine concentrations from DECT in the thyroid gland was evaluated and then the iodine concentrations were compared with radioactive iodine uptake ratios by thyroid scintigraphy. RESULTS Mean (±SD) 123I uptake increased from 46.3 (±22.2) % (range, 11.1-80.1) at 3 h, to 66.5 (±15.2) % (range, 40.0-86.1) at 24 h (p < 0.01). CT values ranged from 34.5 to 98.7 HU [mean: 67.8 (±18.6)], while the iodine concentrations calculated with DECT ranged from 0.0 to 1.3 mg/mL [mean: 0.5 (±0.4)]. A moderate positive correlation between CT values and the calculated iodine concentrations in the thyroid gland was seen (R = 0.429, p < 0.05). A significant negative correlation between 123I uptake at 3 h and iodine concentration by DECT were seen (R = -0.680, p < 0.05), although no correlation was observed between 123I uptake at 3 h and CT values (p = 0.087). No correlation was observed between 123I uptake at 24 h and CT values (p = 0.153) or that between 123I uptake at 24 h and iodine concentration by DECT (p = 0.073). CONCLUSION The negative correlation of 123I uptake at 3 h with iodine concentration evaluated by DECT was better than that observed with simple CT value. DECT may have a potential role in the evaluation of iodine turnover in hyperthyroid patients.
Collapse
Affiliation(s)
- Duong Duc Binh
- Department of Diagnostic Radiology and Nuclear Medicine, Gunma University Graduate School of Medicine, Faculty of Medicine, 3-39-22, Showa, Maebashi, Gunma, 371-8511, Japan
| | - Takahito Nakajima
- Department of Diagnostic Radiology and Nuclear Medicine, Gunma University Graduate School of Medicine, Faculty of Medicine, 3-39-22, Showa, Maebashi, Gunma, 371-8511, Japan.
| | - Hidenori Otake
- Department of Diagnostic Radiology and Nuclear Medicine, Gunma University Graduate School of Medicine, Faculty of Medicine, 3-39-22, Showa, Maebashi, Gunma, 371-8511, Japan
| | - Tetsuya Higuchi
- Department of Diagnostic Radiology and Nuclear Medicine, Gunma University Graduate School of Medicine, Faculty of Medicine, 3-39-22, Showa, Maebashi, Gunma, 371-8511, Japan
| | - Yoshito Tsushima
- Department of Diagnostic Radiology and Nuclear Medicine, Gunma University Graduate School of Medicine, Faculty of Medicine, 3-39-22, Showa, Maebashi, Gunma, 371-8511, Japan
| |
Collapse
|
49
|
Han R, Sun K, Lu B, Zhao R, Li K, Yang X. Diagnostic accuracy of coronary CT angiography combined with dual-energy myocardial perfusion imaging for detection of myocardial infarction. Exp Ther Med 2017; 14:207-213. [PMID: 28672916 PMCID: PMC5488534 DOI: 10.3892/etm.2017.4485] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 11/10/2016] [Indexed: 12/19/2022] Open
Abstract
The aim of the present study was to evaluate the diagnostic accuracy of second generation dual-energy computed tomography (DECT) myocardial perfusion imaging for the detection of myocardial infarction (MI) in patients with suspected MI. In total, 56 patients underwent DECT. Among those, 40 patients had MI that was detected by catheter coronary angiography and cardiac troponin I elevation and evolution of acute MI detected by electrocardiogram changes. The diagnostic accuracy, including the sensitivity, specificity, positive predictive value (PPV) and negative predictive value (NPV) for the detection of MI were evaluated, as well as the coronary image quality of coronary artery and radiation dose. The sensitivity, specificity, PPV and NPV for the detection of MI were 95.0, 97.0, 86.4 and 98.9%, respectively. Moreover, the image quality was rated excellent (score 1) in 90.2% (515/571), good (score 2) in 6.5% (37/571), adequate (score 3) in 1.9% (11/571) and non-diagnostic (score 4) in 1.4% (8/571) of the coronary segments. The effective radiation dose was on average 6.1±1.5 mSv (3.1–10.9 mSv). Therefore, combined DE iodine maps and coronary CT angiography using the DECT may provide a high diagnostic accuracy for detecting MI with lower radiation exposure in patients with suspected MI.
Collapse
Affiliation(s)
- Ruijuan Han
- Department of Cardiology, Chaoyang Hospital, Capital Medical University, Beijing 100020, P.R. China
| | - Kai Sun
- Department of Radiology, Cardiovascular Institute and Fu Wai Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100037, P.R. China
| | - Bin Lu
- Department of Radiology, Cardiovascular Institute and Fu Wai Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100037, P.R. China
| | - Ruiping Zhao
- Department of Cardiology, Baotou Central Hospital, Baotou, Inner Mongolia 014040, P.R. China
| | - Kuncheng Li
- Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing 100053, P.R. China
| | - Xinchun Yang
- Department of Cardiology, Chaoyang Hospital, Capital Medical University, Beijing 100020, P.R. China
| |
Collapse
|
50
|
Accuracy of iodine quantification using dual energy CT in latest generation dual source and dual layer CT. Eur Radiol 2017; 27:3904-3912. [PMID: 28168368 PMCID: PMC5544802 DOI: 10.1007/s00330-017-4752-9] [Citation(s) in RCA: 143] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 11/18/2016] [Accepted: 01/17/2017] [Indexed: 01/22/2023]
Abstract
Objective To determine the accuracy of iodine quantification with dual energy computed tomography (DECT) in two high-end CT systems with different spectral imaging techniques. Methods Five tubes with different iodine concentrations (0, 5, 10, 15, 20 mg/ml) were analysed in an anthropomorphic thoracic phantom. Adding two phantom rings simulated increased patient size. For third-generation dual source CT (DSCT), tube voltage combinations of 150Sn and 70, 80, 90, 100 kVp were analysed. For dual layer CT (DLCT), 120 and 140 kVp were used. Scans were repeated three times. Median normalized values and interquartile ranges (IQRs) were calculated for all kVp settings and phantom sizes. Results Correlation between measured and known iodine concentrations was excellent for both systems (R = 0.999–1.000, p < 0.0001). For DSCT, median measurement errors ranged from −0.5% (IQR −2.0, 2.0%) at 150Sn/70 kVp and −2.3% (IQR −4.0, −0.1%) at 150Sn/80 kVp to −4.0% (IQR −6.0, −2.8%) at 150Sn/90 kVp. For DLCT, median measurement errors ranged from −3.3% (IQR −4.9, −1.5%) at 140 kVp to −4.6% (IQR −6.0, −3.6%) at 120 kVp. Larger phantom sizes increased variability of iodine measurements (p < 0.05). Conclusion Iodine concentration can be accurately quantified with state-of-the-art DECT systems from two vendors. The lowest absolute errors were found for DSCT using the 150Sn/70 kVp or 150Sn/80 kVp combinations, which was slightly more accurate than 140 kVp in DLCT. Key Points • High-end CT scanners allow accurate iodine quantification using different DECT techniques. • Lowest measurement error was found in scans with largest photon energy separation. • Dual-source CT quantified iodine slightly more accurately than dual layer CT.
Collapse
|