1
|
Iyer RR, Applegate CC, Arogundade OH, Bangru S, Berg IC, Emon B, Porras-Gomez M, Hsieh PH, Jeong Y, Kim Y, Knox HJ, Moghaddam AO, Renteria CA, Richard C, Santaliz-Casiano A, Sengupta S, Wang J, Zambuto SG, Zeballos MA, Pool M, Bhargava R, Gaskins HR. Inspiring a convergent engineering approach to measure and model the tissue microenvironment. Heliyon 2024; 10:e32546. [PMID: 38975228 PMCID: PMC11226808 DOI: 10.1016/j.heliyon.2024.e32546] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 05/22/2024] [Accepted: 06/05/2024] [Indexed: 07/09/2024] Open
Abstract
Understanding the molecular and physical complexity of the tissue microenvironment (TiME) in the context of its spatiotemporal organization has remained an enduring challenge. Recent advances in engineering and data science are now promising the ability to study the structure, functions, and dynamics of the TiME in unprecedented detail; however, many advances still occur in silos that rarely integrate information to study the TiME in its full detail. This review provides an integrative overview of the engineering principles underlying chemical, optical, electrical, mechanical, and computational science to probe, sense, model, and fabricate the TiME. In individual sections, we first summarize the underlying principles, capabilities, and scope of emerging technologies, the breakthrough discoveries enabled by each technology and recent, promising innovations. We provide perspectives on the potential of these advances in answering critical questions about the TiME and its role in various disease and developmental processes. Finally, we present an integrative view that appreciates the major scientific and educational aspects in the study of the TiME.
Collapse
Affiliation(s)
- Rishyashring R. Iyer
- Department of Electrical and Computer Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Catherine C. Applegate
- Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Opeyemi H. Arogundade
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Sushant Bangru
- Department of Biochemistry, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Ian C. Berg
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Bashar Emon
- Department of Mechanical Science and Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Marilyn Porras-Gomez
- Department of Materials Science and Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Pei-Hsuan Hsieh
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Yoon Jeong
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Yongdeok Kim
- Department of Materials Science and Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Hailey J. Knox
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Amir Ostadi Moghaddam
- Department of Mechanical Science and Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Carlos A. Renteria
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Craig Richard
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Ashlie Santaliz-Casiano
- Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Sourya Sengupta
- Department of Electrical and Computer Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Jason Wang
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Samantha G. Zambuto
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Maria A. Zeballos
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Marcia Pool
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
- Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
| | - Rohit Bhargava
- Department of Electrical and Computer Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Bioengineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Mechanical Science and Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Chemistry, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Chemical and Biochemical Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
- Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- NIH/NIBIB P41 Center for Label-free Imaging and Multiscale Biophotonics (CLIMB), University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - H. Rex Gaskins
- Division of Nutritional Sciences, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
- Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Animal Sciences, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Biomedical and Translational Sciences, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
- Department of Pathobiology, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| |
Collapse
|
2
|
Perera Molligoda Arachchige AS, Teixeira de Castro Gonçalves Ortega AC, Catapano F, Politi LS, Hoff MN. From strength to precision: A systematic review exploring the clinical utility of 7-Tesla magnetic resonance imaging in abdominal imaging. World J Radiol 2024; 16:20-31. [PMID: 38312348 PMCID: PMC10835428 DOI: 10.4329/wjr.v16.i1.20] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 12/06/2023] [Accepted: 12/25/2023] [Indexed: 01/23/2024] Open
Abstract
BACKGROUND After approval for clinical use in 2017 early investigations of ultra-high-field abdominal magnetic resonance imaging (MRI) have demonstrated the feasibility as well as diagnostic capabilities of liver, kidney, and prostate MRI at 7-Tesla. However, the elevation of the field strength to 7-Tesla not only brought advantages to abdominal MRI but also presented considerable challenges and drawbacks, primarily stemming from heightened artifacts and limitations in Specific Absorption Rate, etc. Furthermore, evidence in the literature is relatively scarce concerning human studies in comparison to phantom/animal studies which necessitates an investigation into the evidence so far in humans and summarizing all relevant evidence. AIM To offer a comprehensive overview of current literature on clinical abdominal 7T MRI that emphasizes current trends, details relevant challenges, and provides a concise set of potential solutions. METHODS This systematic review adheres to Preferred Reporting Items for Systematic Reviews and Meta-Analyses guidelines. A PubMed search, utilizing Medical Subject Headings terms such as "7-Tesla" and organ-specific terms, was conducted for articles published between January 1, 1985, and July 25, 2023. Eligibility criteria included studies exploring 7T MRI for imaging human abdominal organs, encompassing various study types (in-vivo/ex-vivo, method development, reviews/meta-analyses). Exclusion criteria involved animal studies and those lacking extractable data. Study selection involved initial identification via title/abstract, followed by a full-text review by two researchers, with discrepancies resolved through discussion. Data extraction covered publication details, study design, population, sample size, 7T MRI protocol, image characteristics, endpoints, and conclusions. RESULTS The systematic review included a total of 21 studies. The distribution of clinical 7T abdominal imaging studies revealed a predominant focus on the prostate (n = 8), followed by the kidney (n = 6) and the hepatobiliary system (n = 5). Studies on these organs, and in the pancreas, demonstrated clear advantages at 7T. However, small bowel studies showed no significant improvements compared to traditional MRI at 1.5T. The majority of studies evaluated originated from Germany (n = 10), followed by the Netherlands (n = 5), the United States (n = 5), Austria (n = 2), the United Kingdom (n = 1), and Italy (n = 1). CONCLUSION Further increase of abdominal clinical MRI field strength to 7T demonstrated high imaging potential, yet also limitations mainly due to the inhomogeneous radiofrequency (RF) excitation field relative to lower field strengths. Hence, further optimization of dedicated RF coil elements and pulse sequences are expected to better optimize clinical imaging at high magnetic field strength.
Collapse
Affiliation(s)
| | | | - Federica Catapano
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele 20072, Milan, Italy
- IRCCS Humanitas Research Hospital, Rozzano 20089, Milan, Italy
| | - Letterio S Politi
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele 20072, Milan, Italy
- Department of Neuroradiology, IRCCS Humanitas Research Hospital, Rozzano 20089, Milan, Italy
| | - Michael N Hoff
- Department of Radiology and Biomedical Imaging, University of California, San Francisco, CA 94143, United States
| |
Collapse
|
3
|
Englman C, Barrett T, Moore CM, Giganti F. Active Surveillance for Prostate Cancer: Expanding the Role of MR Imaging and the Use of PRECISE Criteria. Radiol Clin North Am 2024; 62:69-92. [PMID: 37973246 DOI: 10.1016/j.rcl.2023.06.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Multiparametric magnetic resonance (MR) imaging has had an expanding role in active surveillance (AS) for prostate cancer. It can improve the accuracy of prostate biopsies, assist in patient selection, and help monitor cancer progression. The PRECISE recommendations standardize reporting of serial MR imaging scans during AS. We summarize the evidence on MR imaging-led AS and provide a clinical primer to help report using the PRECISE criteria. Some limitations to both serial imaging and the PRECISE recommendations must be considered as we move toward a more individualized risk-stratified approach to AS.
Collapse
Affiliation(s)
- Cameron Englman
- Department of Radiology, University College London Hospital NHS Foundation Trust, 3rd Floor, Charles Bell House, 43-45 Foley Street, London, W1W7TY, UK; Division of Surgery & Interventional Science, University College London, 3rd Floor, Charles Bell House, 43-45 Foley Street, London, W1W7TY, UK
| | - Tristan Barrett
- Department of Radiology, University of Cambridge, Box 218, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0QQ, UK; Department of Radiology, Cambridge University Hospitals NHS Foundation Trust, Box 218, Addenbrooke's Hospital, Hills Road, Cambridge, CB2 0QQ, UK
| | - Caroline M Moore
- Division of Surgery & Interventional Science, University College London, 3rd Floor, Charles Bell House, 43-45 Foley Street, London, W1W7TY, UK; Department of Urology, University College London Hospital NHS Foundation Trust, 3rd Floor, Charles Bell House, 43-45 Foley Street, London, W1W7TY, UK
| | - Francesco Giganti
- Department of Radiology, University College London Hospital NHS Foundation Trust, 3rd Floor, Charles Bell House, 43-45 Foley Street, London, W1W7TY, UK; Division of Surgery & Interventional Science, University College London, 3rd Floor, Charles Bell House, 43-45 Foley Street, London, W1W7TY, UK.
| |
Collapse
|
4
|
Tenbergen CJA, Metzger GJ, Scheenen TWJ. Ultra-high-field MR in Prostate cancer: Feasibility and Potential. MAGNETIC RESONANCE MATERIALS IN PHYSICS, BIOLOGY AND MEDICINE 2022; 35:631-644. [PMID: 35579785 PMCID: PMC9113077 DOI: 10.1007/s10334-022-01013-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 03/31/2022] [Accepted: 04/07/2022] [Indexed: 02/07/2023]
Abstract
Multiparametric MRI of the prostate at clinical magnetic field strengths (1.5/3 Tesla) has emerged as a reliable noninvasive imaging modality for identifying clinically significant cancer, enabling selective sampling of high-risk regions with MRI-targeted biopsies, and enabling minimally invasive focal treatment options. With increased sensitivity and spectral resolution, ultra-high-field (UHF) MRI (≥ 7 Tesla) holds the promise of imaging and spectroscopy of the prostate with unprecedented detail. However, exploiting the advantages of ultra-high magnetic field is challenging due to inhomogeneity of the radiofrequency field and high local specific absorption rates, raising local heating in the body as a safety concern. In this work, we review various coil designs and acquisition strategies to overcome these challenges and demonstrate the potential of UHF MRI in anatomical, functional and metabolic imaging of the prostate and pelvic lymph nodes. When difficulties with power deposition of many refocusing pulses are overcome and the full potential of metabolic spectroscopic imaging is used, UHF MR(S)I may aid in a better understanding of the development and progression of local prostate cancer. Together with large field-of-view and low-flip-angle anatomical 3D imaging, 7 T MRI can be used in its full strength to characterize different tumor stages and help explain the onset and spatial distribution of metastatic spread.
Collapse
Affiliation(s)
- Carlijn J A Tenbergen
- Department of Medical Imaging, Radboud University Medical Center, PO Box 9101, 6500 HB, Nijmegen, The Netherlands.
| | - Gregory J Metzger
- Center for Magnetic Resonance Research (CMRR), University of Minnesota, Minneapolis, MN, USA
| | - Tom W J Scheenen
- Department of Medical Imaging, Radboud University Medical Center, PO Box 9101, 6500 HB, Nijmegen, The Netherlands
- Erwin L. Hahn Institute for Magnetic Resonance Imaging, Essen, Germany
| |
Collapse
|
5
|
Takeuchi T, Hayashi N, Asai Y, Kayaoka Y, Yoshida K. Novel method for evaluating spatial resolution of magnetic resonance images. Phys Eng Sci Med 2022; 45:487-496. [PMID: 35230638 DOI: 10.1007/s13246-022-01114-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2021] [Accepted: 02/22/2022] [Indexed: 11/29/2022]
Abstract
Recently, several methods for evaluating the spatial resolution of magnetic resonance imaging have been reported. However, these methods are not simple and can only be used for specific devices. In this study, we develop a new method (the ladder method) and evaluate its measurement accuracy by adapting the International Electrotechnical Commission (IEC) method to evaluate the spatial resolution. First, the suitable condition for the ladder method was determined by numerical experiments. The ladder method uses a phantom with a periodic pattern which is based on IEC method. Subsequently, the ladder method is evaluated in terms of spatial resolution by dividing the standard deviation (SD) by the average signal in the region of interest (ROI) on the ladder phantom image. To evaluate the precision of the ladder method, it is compared with the modulation transfer function (MTF) calculated from an edge image. The numerical experiment result shows that the evaluation of the spatial resolution using the ladder method is viable, in which a single regression analysis's coefficient of correlation between ladder and MTF of 0.90 or higher is obtained for all evaluations. The ladder method can be assessed using only the signal mean value and SD in the ROI on the target image and exhibit a strong correlation with the MTF. Therefore, the ladder method is a promising method as a substitute for the MTF.
Collapse
Affiliation(s)
- Tomokazu Takeuchi
- Graduate School, Gunma Prefectural College of Health Sciences, Maebashi, Gunma, Japan.
| | - Norio Hayashi
- Graduate School, Gunma Prefectural College of Health Sciences, Maebashi, Gunma, Japan
| | - Yuta Asai
- Department of Radiology, Nippon Medical School Hospital, Tokyo, Japan
| | - Yuka Kayaoka
- MedCity21, Division of Premier Preventive Medicine, Osaka City University Hospital, Osaka, Japan
| | - Kiichi Yoshida
- Department of Radiology, Nippon Medical School Hospital, Tokyo, Japan
| |
Collapse
|
6
|
Platt T, Ladd ME, Paech D. 7 Tesla and Beyond: Advanced Methods and Clinical Applications in Magnetic Resonance Imaging. Invest Radiol 2021; 56:705-725. [PMID: 34510098 PMCID: PMC8505159 DOI: 10.1097/rli.0000000000000820] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2021] [Revised: 08/07/2021] [Accepted: 08/07/2021] [Indexed: 12/15/2022]
Abstract
ABSTRACT Ultrahigh magnetic fields offer significantly higher signal-to-noise ratio, and several magnetic resonance applications additionally benefit from a higher contrast-to-noise ratio, with static magnetic field strengths of B0 ≥ 7 T currently being referred to as ultrahigh fields (UHFs). The advantages of UHF can be used to resolve structures more precisely or to visualize physiological/pathophysiological effects that would be difficult or even impossible to detect at lower field strengths. However, with these advantages also come challenges, such as inhomogeneities applying standard radiofrequency excitation techniques, higher energy deposition in the human body, and enhanced B0 field inhomogeneities. The advantages but also the challenges of UHF as well as promising advanced methodological developments and clinical applications that particularly benefit from UHF are discussed in this review article.
Collapse
Affiliation(s)
- Tanja Platt
- From the Medical Physics in Radiology, German Cancer Research Center (DKFZ)
| | - Mark E. Ladd
- From the Medical Physics in Radiology, German Cancer Research Center (DKFZ)
- Faculty of Physics and Astronomy
- Faculty of Medicine, University of Heidelberg, Heidelberg
- Erwin L. Hahn Institute for MRI, University of Duisburg-Essen, Essen
| | - Daniel Paech
- Division of Radiology, German Cancer Research Center (DKFZ), Heidelberg
- Clinic for Neuroradiology, University of Bonn, Bonn, Germany
| |
Collapse
|
7
|
Abstract
Especially after the launch of 7 T, the ultrahigh magnetic field (UHF) imaging community achieved critically important strides in our understanding of the physics of radiofrequency interactions in the human body, which in turn has led to solutions for the challenges posed by such UHFs. As a result, the originally obtained poor image quality has progressed to the high-quality and high-resolution images obtained at 7 T and now at 10.5 T in the human torso. Despite these tremendous advances, work still remains to further improve the image quality and fully capitalize on the potential advantages UHF has to offer.
Collapse
|
8
|
O'Connor LP, Lebastchi AH, Horuz R, Rastinehad AR, Siddiqui MM, Grummet J, Kastner C, Ahmed HU, Pinto PA, Turkbey B. Role of multiparametric prostate MRI in the management of prostate cancer. World J Urol 2020; 39:651-659. [PMID: 32583039 DOI: 10.1007/s00345-020-03310-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 06/11/2020] [Indexed: 12/15/2022] Open
Abstract
INTRODUCTION Prostate cancer has traditionally been diagnosed by an elevation in PSA or abnormal exam leading to a systematic transrectal ultrasound (TRUS)-guided biopsy. This diagnostic pathway underdiagnoses clinically significant disease while over diagnosing clinically insignificant disease. In this review, we aim to provide an overview of the recent literature regarding the role of multiparametric MRI (mpMRI) in the management of prostate cancer. MATERIALS AND METHODS A thorough literature review was performed using PubMed to identify articles discussing use of mpMRI of the prostate in management of prostate cancer. CONCLUSION The incorporation of mpMRI of the prostate addresses the shortcomings of the prostate biopsy while providing several other advantages. mpMRI allows some men to avoid an immediate biopsy and permits visualization of areas likely to harbor clinically significant cancer prior to biopsy to facilitate use of MR-targeted prostate biopsies. This allows for reduction in diagnosis of clinically insignificant disease as well as improved detection and better characterization of higher risk cancers, as well as the improved selection of patients for active surveillance. In addition, mpMRI can be used for selection and monitoring of patients for active surveillance and treatment planning during surgery and focal therapy.
Collapse
Affiliation(s)
- Luke P O'Connor
- Urologic Oncology Branch, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Amir H Lebastchi
- Urologic Oncology Branch, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Rahim Horuz
- Department of Urology, Istanbul Medipol University, Istanbul, Turkey
| | | | - M Minhaj Siddiqui
- Division of Urology, University of Maryland School of Medicine, Baltimore, MD, USA
| | - Jeremy Grummet
- Department of Surgery, Central Clinical School, Monash University, Melbourne, VIC, Australia
| | - Christof Kastner
- Department of Urology, Cambridge University Hospitals NHS Foundation Trust, Cambridge, UK
| | - Hashim U Ahmed
- Imperial Prostate, Division of Surgery, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London, UK
| | - Peter A Pinto
- Urologic Oncology Branch, National Cancer Institute, NIH, Bethesda, MD, USA
| | - Baris Turkbey
- Molecular Imaging Program, National Cancer Institute, NIH, 10 Center Drive Room B3B85, Bethesda, MD, USA. .,, 10 Center Drive Room B3B85, Bethesda, MD, 20814, USA.
| |
Collapse
|
9
|
Ultrafast Intracranial Vessel Imaging With Non-Cartesian Spiral 3-Dimensional Time-of-Flight Magnetic Resonance Angiography at 1.5 T. Invest Radiol 2020; 55:293-303. [DOI: 10.1097/rli.0000000000000641] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
10
|
Orzada S, Solbach K, Gratz M, Brunheim S, Fiedler TM, Johst S, Bitz AK, Shooshtary S, Abuelhaija A, Voelker MN, Rietsch SHG, Kraff O, Maderwald S, Flöser M, Oehmigen M, Quick HH, Ladd ME. A 32-channel parallel transmit system add-on for 7T MRI. PLoS One 2019; 14:e0222452. [PMID: 31513637 PMCID: PMC6742215 DOI: 10.1371/journal.pone.0222452] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Accepted: 08/29/2019] [Indexed: 02/07/2023] Open
Abstract
PURPOSE A 32-channel parallel transmit (pTx) add-on for 7 Tesla whole-body imaging is presented. First results are shown for phantom and in-vivo imaging. METHODS The add-on system consists of a large number of hardware components, including modulators, amplifiers, SAR supervision, peripheral devices, a control computer, and an integrated 32-channel transmit/receive body array. B1+ maps in a phantom as well as B1+ maps and structural images in large volunteers are acquired to demonstrate the functionality of the system. EM simulations are used to ensure safe operation. RESULTS Good agreement between simulation and experiment is shown. Phantom and in-vivo acquisitions show a field of view of up to 50 cm in z-direction. Selective excitation with 100 kHz sampling rate is possible. The add-on system does not affect the quality of the original single-channel system. CONCLUSION The presented 32-channel parallel transmit system shows promising performance for ultra-high field whole-body imaging.
Collapse
Affiliation(s)
- Stephan Orzada
- Erwin L. Hahn Institute for MRI, University of Duisburg-Essen, Essen, Germany
- * E-mail:
| | - Klaus Solbach
- RF & Microwave Technology, University of Duisburg-Essen, Duisburg, Germany
| | - Marcel Gratz
- Erwin L. Hahn Institute for MRI, University of Duisburg-Essen, Essen, Germany
- High-Field and Hybrid MR Imaging, University Hospital Essen, Essen, Germany
| | - Sascha Brunheim
- Erwin L. Hahn Institute for MRI, University of Duisburg-Essen, Essen, Germany
- High-Field and Hybrid MR Imaging, University Hospital Essen, Essen, Germany
| | - Thomas M. Fiedler
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Sören Johst
- Erwin L. Hahn Institute for MRI, University of Duisburg-Essen, Essen, Germany
| | - Andreas K. Bitz
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Electromagnetic Theory and Applied Mathematics, Faculty of Electrical Engineering and Information Technology, FH Aachen – University of Applied Sciences, Aachen, Germany
| | - Samaneh Shooshtary
- RF & Microwave Technology, University of Duisburg-Essen, Duisburg, Germany
| | - Ashraf Abuelhaija
- RF & Microwave Technology, University of Duisburg-Essen, Duisburg, Germany
| | - Maximilian N. Voelker
- Erwin L. Hahn Institute for MRI, University of Duisburg-Essen, Essen, Germany
- High-Field and Hybrid MR Imaging, University Hospital Essen, Essen, Germany
| | - Stefan H. G. Rietsch
- Erwin L. Hahn Institute for MRI, University of Duisburg-Essen, Essen, Germany
- High-Field and Hybrid MR Imaging, University Hospital Essen, Essen, Germany
| | - Oliver Kraff
- Erwin L. Hahn Institute for MRI, University of Duisburg-Essen, Essen, Germany
| | - Stefan Maderwald
- Erwin L. Hahn Institute for MRI, University of Duisburg-Essen, Essen, Germany
| | - Martina Flöser
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Mark Oehmigen
- High-Field and Hybrid MR Imaging, University Hospital Essen, Essen, Germany
| | - Harald H. Quick
- Erwin L. Hahn Institute for MRI, University of Duisburg-Essen, Essen, Germany
- High-Field and Hybrid MR Imaging, University Hospital Essen, Essen, Germany
| | - Mark E. Ladd
- Erwin L. Hahn Institute for MRI, University of Duisburg-Essen, Essen, Germany
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
- Faculty of Physics and Astronomy and Faculty of Medicine, University of Heidelberg, Heidelberg, Germany
| |
Collapse
|
11
|
Erturk MA, Li X, Van de Moortele PF, Ugurbil K, Metzger GJ. Evolution of UHF Body Imaging in the Human Torso at 7T: Technology, Applications, and Future Directions. Top Magn Reson Imaging 2019; 28:101-124. [PMID: 31188271 PMCID: PMC6587233 DOI: 10.1097/rmr.0000000000000202] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2023]
Abstract
The potential value of ultrahigh field (UHF) magnetic resonance imaging (MRI) and spectroscopy to biomedical research and in clinical applications drives the development of technologies to overcome its many challenges. The increased difficulties of imaging the human torso compared with the head include its overall size, the dimensions and location of its anatomic targets, the increased prevalence and magnitude of physiologic effects, the limited availability of tailored RF coils, and the necessary transmit chain hardware. Tackling these issues involves addressing notoriously inhomogeneous transmit B1 (B1) fields, limitations in peak B1, larger spatial variations of the static magnetic field B0, and patient safety issues related to implants and local RF power deposition. However, as research institutions and vendors continue to innovate, the potential gains are beginning to be realized. Solutions overcoming the unique challenges associated with imaging the human torso are reviewed as are current studies capitalizing on the benefits of UHF in several anatomies and applications. As the field progresses, strategies associated with the RF system architecture, calibration methods, RF pulse optimization, and power monitoring need to be further integrated into the MRI systems making what are currently complex processes more streamlined. Meanwhile, the UHF MRI community must seize the opportunity to build upon what have been so far proof of principle and feasibility studies and begin to further explore the true impact in both research and the clinic.
Collapse
Affiliation(s)
- M Arcan Erturk
- Center for Magnetic Resonance Research, University of Minnesota, Minneapolis, MN
| | | | | | | | | |
Collapse
|
12
|
Steensma BR, Luttje M, Voogt IJ, Klomp DW, Luijten PR, van den Berg CA, Raaijmakers AJ. Comparing signal-to-noise ratio for prostate imaging at 7T and 3T. J Magn Reson Imaging 2019; 49:1446-1455. [PMID: 30350388 PMCID: PMC6587835 DOI: 10.1002/jmri.26527] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Revised: 09/12/2018] [Accepted: 09/12/2018] [Indexed: 12/16/2022] Open
Abstract
BACKGROUND In MRI, the signal-to-noise ratio (SNR) theoretically increases with B0 field strength. However, because of attenuation of the radiofrequency (RF) fields at 7T, it is not certain if this SNR gain can be realized for prostate imaging. PURPOSE/HYPOTHESIS To investigate the SNR gain in prostate imaging at 7T as compared with 3T. It is expected that SNR will improve for prostate imaging at 7T compared with 3T. STUDY TYPE Prospective. SUBJECTS Four healthy volunteers and one prostate cancer patient. FIELD STRENGTH/SEQUENCE All subjects were scanned at 3T and at 7T using optimal coil setups for both field strengths. For all volunteers, proton density-weighted images were acquired for SNR analysis and actual flip angle imaging (AFI) B 1 + | maps were acquired for correction of measured SNR values. In the patient, a T2 -weighted (T2 w) image was acquired at 3T and at 7T. ASSESSMENT SNR was calculated in the prostate region for all volunteers. SNR was normalized for flip angle, receiver bandwidth, and voxel volume. SNR was also calculated for different sensitivity encoding (SENSE) acceleration factors. STATISTICAL TESTING SNR values are represented as the arithmetic mean of SNR values in the prostate. Estimated SNR in the T2 w image is calculated as the arithmetic mean of the signal intensity (SI) divided by the standard deviation of the SI in a specified zone. Tumor-to-tissue contrast is calculated as (SItumor +SIzone )/( SItumor -SIzone ). RESULTS An increase in SNR ranging from 1.7-fold to 2.8-fold was measured in the prostate at 7T in comparison to 3T for four volunteers. At 7T, it is possible to achieve a 4-fold SENSE acceleration in the left-right direction with similar SNR to a nonaccelerated 3T image. T2 w imaging was done at 3T and 7T in one patient, where improved tumor-to-tissue contrast was demonstrated at 7T. DATA CONCLUSION SNR improves for prostate imaging at 7T as compared with 3T. LEVEL OF EVIDENCE 2 Technical Efficacy: Stage 1 J. Magn. Reson. Imaging 2019;49:1446-1455.
Collapse
Affiliation(s)
- Bart R. Steensma
- University Medical Center UtrechtDepartment of RadiologyUtrechtThe Netherlands
| | - Mariska Luttje
- University Medical Center UtrechtDepartment of RadiologyUtrechtThe Netherlands
| | - Ingmar J. Voogt
- University Medical Center UtrechtDepartment of RadiologyUtrechtThe Netherlands
| | - Dennis W.J. Klomp
- University Medical Center UtrechtDepartment of RadiologyUtrechtThe Netherlands
| | - Peter R. Luijten
- University Medical Center UtrechtDepartment of RadiologyUtrechtThe Netherlands
| | | | - Alexander J.E. Raaijmakers
- University Medical Center UtrechtDepartment of RadiologyUtrechtThe Netherlands
- Eindhoven University of TechnologyDepartment of Biomedical EngineeringUtrechtThe Netherlands
| |
Collapse
|
13
|
Parallel imaging compressed sensing for accelerated imaging and improved signal-to-noise ratio in MRI-based postimplant dosimetry of prostate brachytherapy. Brachytherapy 2018; 17:816-824. [DOI: 10.1016/j.brachy.2018.05.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2018] [Revised: 05/06/2018] [Accepted: 05/08/2018] [Indexed: 12/31/2022]
|
14
|
Steensma BR, Voogt I, van der Werf AJ, van den Berg CA, Luijten PR, Klomp DW, Raaijmakers AJ. Design of a forward view antenna for prostate imaging at 7 T. NMR IN BIOMEDICINE 2018; 31:e3993. [PMID: 30022543 PMCID: PMC6175442 DOI: 10.1002/nbm.3993] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2018] [Revised: 06/07/2018] [Accepted: 06/08/2018] [Indexed: 05/19/2023]
Abstract
PURPOSE To design a forward view antenna for prostate imaging at 7 T, which is placed between the legs of the subject in addition to a dipole array. MATERIALS AND METHODS The forward view antenna is realized by placing a cross-dipole antenna at the end of a small rectangular waveguide. Quadrature drive of the cross-dipole can excite a circularly polarized wave propagating along the axial direction to and from the prostate region. Functioning of the forward view antenna is validated by comparing measurements and simulations. Antenna performance is evaluated by numerical simulations and measurements at 7 T. RESULTS Simulations of B1+ on a phantom are in good correspondence with measurements. Simulations on a human model indicate that the signal-to-noise ratio (SNR), specific absorption rate (SAR) efficiency and SAR increase when adding the forward view antenna to a previously published dipole array. The SNR increases by up to 18% when adding the forward view antenna as a receive antenna to an eight-channel dipole array in vivo. CONCLUSIONS A design for a forward view antenna is presented and evaluated. SNR improvements up to 18% are demonstrated when adding the forward view antenna to a dipole array.
Collapse
Affiliation(s)
| | - Ingmar Voogt
- University Medical Center UtrechtUtrechtthe Netherlands
| | | | | | | | | | | |
Collapse
|
15
|
Abstract
PURPOSE OF REVIEW To present a perspective on the current status and future directions of focal therapy for prostate cancer (PCa). RECENT FINDINGS Focal therapy for localized PCa is a rapidly evolving field. Various recent concepts - the index lesion driving prognosis, the enhanced detection of clinically significant PCa using multiparametric MRI and targeted biopsy, improved risk-stratification using novel blood/tissue biomarkers, the recognition that reducing radical treatment-related morbidity (along with reducing pathologic progression) is a clinically meaningful end-point - have all led to a growing interest in focal therapy. Novel focal therapy modalities are being investigated, mostly in phase 1 and 2 studies. Recently, level I prospective randomized data comparing partial gland ablation with a standard-of-care treatment became available from one study. Recent developments in imaging, including 7-T MRI, functional imaging, radiomics and contrast-enhanced ultrasound show early promise. We also discuss emerging concepts in patient selection for focal therapy. SUMMARY PCa focal therapy has evolved considerably in the recent few years. Overall, these novel focal therapy treatments demonstrate safety and feasibility, low treatment-related toxicity and acceptable short-term and in some cases medium-term oncologic outcomes. As imaging techniques evolve, patient selection, detection of clinically significant PCa and noninvasive assessment of therapeutic efficacy will be further optimized. The aspirational goal of achieving oncologic control while reducing radical treatment-related morbidity will drive further innovation in the field.
Collapse
|
16
|
Kumar V, Bora GS, Kumar R, Jagannathan NR. Multiparametric (mp) MRI of prostate cancer. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2018; 105:23-40. [PMID: 29548365 DOI: 10.1016/j.pnmrs.2018.01.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2017] [Revised: 01/17/2018] [Accepted: 01/28/2018] [Indexed: 06/08/2023]
Abstract
Prostate cancer (PCa) is one of the most prevalent cancers in men. A large number of men are detected with PCa; however, the clinical behavior ranges from low-grade indolent tumors that never develop into a clinically significant disease to aggressive, invasive tumors that may rapidly progress to metastatic disease. The challenges in clinical management of PCa are at levels of screening, diagnosis, treatment, and follow-up after treatment. Magnetic resonance imaging (MRI) methods have shown a potential role in detection, localization, staging, assessment of aggressiveness, targeting biopsies, etc. in PCa patients. Multiparametric MRI (mpMRI) is emerging as a better option compared to the individual imaging methods used in the evaluation of PCa. There are attempts to improve the reproducibility and reliability of mpMRI by using an objective scoring system proposed in the prostate imaging reporting and data system (PIRADS) for standardized reporting. Prebiopsy mpMRI may be used to detect PCa in men with elevated prostate-specific antigen or abnormal digital rectal examination and to enable targeted biopsies. mpMRI can also be used to decide on clinical management of patients, for example active surveillance, and may help in detecting only the pathology that requires detection. It can potentially not only guide patient selection for initial and repeat biopsy but also reduce false-negative biopsies. This review presents a description of the MR methods most commonly applied for investigations of prostate. The anatomical, functional and metabolic parameters obtained from these MR methods are discussed with regard to their physical basis and their contribution to mpMRI investigations of PCa.
Collapse
Affiliation(s)
- Virendra Kumar
- Department of NMR & MRI Facility, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India.
| | - Girdhar S Bora
- Department of Urology, Post-Graduate Institute of Medical Sciences, Chandigarh 160012, India
| | - Rajeev Kumar
- Department of Urology, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India
| | - Naranamangalam R Jagannathan
- Department of NMR & MRI Facility, All India Institute of Medical Sciences, Ansari Nagar, New Delhi 110029, India.
| |
Collapse
|
17
|
Laader A, Beiderwellen K, Kraff O, Maderwald S, Wrede K, Ladd ME, Lauenstein TC, Forsting M, Quick HH, Nassenstein K, Umutlu L. 1.5 versus 3 versus 7 Tesla in abdominal MRI: A comparative study. PLoS One 2017; 12:e0187528. [PMID: 29125850 PMCID: PMC5695282 DOI: 10.1371/journal.pone.0187528] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 10/21/2017] [Indexed: 01/04/2023] Open
Abstract
Objectives The aim of this study was to investigate and compare the feasibility as well as potential impact of altered magnetic field properties on image quality and potential artifacts of 1.5 Tesla, 3 Tesla and 7 Tesla non-enhanced abdominal MRI. Materials and methods Magnetic Resonance (MR) imaging of the upper abdomen was performed in 10 healthy volunteers on a 1.5 Tesla, a 3 Tesla and a 7 Tesla MR system. The study protocol comprised a (1) T1-weighted fat-saturated spoiled gradient-echo sequence (2D FLASH), (2) T1-weighted fat-saturated volumetric interpolated breath hold examination sequence (3D VIBE), (3) T1-weighted 2D in and opposed phase sequence, (4) True fast imaging with steady-state precession sequence (TrueFISP) and (5) T2-weighted turbo spin-echo (TSE) sequence. For comparison reasons field of view and acquisition times were kept comparable for each correlating sequence at all three field strengths, while trying to achieve the highest possible spatial resolution. Qualitative and quantitative analyses were tested for significant differences. Results While 1.5 and 3 Tesla MRI revealed comparable results in all assessed features and sequences, 7 Tesla MRI yielded considerable differences in T1 and T2 weighted imaging. Benefits of 7 Tesla MRI encompassed an increased higher spatial resolution and a non-enhanced hyperintense vessel signal at 7 Tesla, potentially offering a more accurate diagnosis of abdominal parenchymatous and vasculature disease. 7 Tesla MRI was also shown to be more impaired by artifacts, including residual B1 inhomogeneities, susceptibility and chemical shift artifacts, resulting in reduced overall image quality and overall image impairment ratings. While 1.5 and 3 Tesla T2w imaging showed equivalently high image quality, 7 Tesla revealed strong impairments in its diagnostic value. Conclusions Our results demonstrate the feasibility and overall comparable imaging ability of T1-weighted 7 Tesla abdominal MRI towards 3 Tesla and 1.5 Tesla MRI, yielding a promising diagnostic potential for non-enhanced Magnetic Resonance Angiography (MRA). 1.5 Tesla and 3 Tesla offer comparably high-quality T2w imaging, showing superior diagnostic quality over 7 Tesla MRI.
Collapse
Affiliation(s)
- Anja Laader
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Hufelandstr. 55, Essen, Germany
- Erwin L. Hahn Institute for Magnetic Resonance Imaging, University Duisburg-Essen, Kokereiallee 7, Essen, Germany
- * E-mail:
| | - Karsten Beiderwellen
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Hufelandstr. 55, Essen, Germany
- Erwin L. Hahn Institute for Magnetic Resonance Imaging, University Duisburg-Essen, Kokereiallee 7, Essen, Germany
| | - Oliver Kraff
- Erwin L. Hahn Institute for Magnetic Resonance Imaging, University Duisburg-Essen, Kokereiallee 7, Essen, Germany
| | - Stefan Maderwald
- Erwin L. Hahn Institute for Magnetic Resonance Imaging, University Duisburg-Essen, Kokereiallee 7, Essen, Germany
| | - Karsten Wrede
- Department of Neurosurgery, University Hospital Essen, Hufelandstr. 55, Essen, Germany
| | - Mark E. Ladd
- Erwin L. Hahn Institute for Magnetic Resonance Imaging, University Duisburg-Essen, Kokereiallee 7, Essen, Germany
- German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg, Germany
| | - Thomas C. Lauenstein
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Hufelandstr. 55, Essen, Germany
- Institute of Radiology, Evangelisches Krankenhaus Düsseldorf, Kirchfeldstr. 40, Düsseldorf, Germany
| | - Michael Forsting
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Hufelandstr. 55, Essen, Germany
| | - Harald H. Quick
- Erwin L. Hahn Institute for Magnetic Resonance Imaging, University Duisburg-Essen, Kokereiallee 7, Essen, Germany
- High Field and Hybrid MR Imaging, University Hospital Essen, Hufelandstr. 55, Essen, Germany
| | - Kai Nassenstein
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Hufelandstr. 55, Essen, Germany
| | - Lale Umutlu
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, Hufelandstr. 55, Essen, Germany
- Erwin L. Hahn Institute for Magnetic Resonance Imaging, University Duisburg-Essen, Kokereiallee 7, Essen, Germany
| |
Collapse
|
18
|
Abstract
OBJECTIVES The aim of this study was to evaluate the technical feasibility of prostate multiparametric magnetic resonance imaging (mpMRI) at a magnetic field strength of 7 T. MATERIALS AND METHODS In this prospective institutional review board-approved study, 14 patients with biopsy-proven prostate cancer (mean age, 65.2 years; median prostate-specific antigen [PSA], 6.2 ng/mL), all providing signed informed consent, underwent 7 T mpMRI with an external 8-channel body-array transmit coil and an endorectal receive coil between September 2013 and October 2014. Image and spectral quality of high-resolution T2-weighted (T2W) imaging (0.3 × 0.3 × 2 mm), diffusion-weighted imaging (DWI; 1.4 × 1.4 × 2 mm or 1.75 × 1.75 × 2 mm), and (H) MR spectroscopic imaging (MRSI; real voxel size, 0.6 mm in 7:16 minutes) were rated on a 5-point scale by 2 radiologists and a spectroscopist. RESULTS Prostate mpMRI including at least 2 of 3 MR techniques was obtained at 7 T in 13 patients in 65 ± 12 minutes. Overall T2W and DWI image quality at 7 T was scored as fair (38% and 17%, respectively) to good or very good (55% and 83%, respectively). The main artifacts for T2W imaging were motion and areas of low signal-to-noise ratio, the latter possibly caused by radiofrequency field inhomogeneities. For DWI, the primary artifact was ghosting of the rectal wall in the readout direction. Magnetic resonance spectroscopic imaging quality was rated fair or good in 56% of the acquisitions and was mainly limited by lipid contamination. CONCLUSIONS Multiparametric MRI of the prostate at 7 T is feasible at unprecedented spatial resolutions for T2W imaging and DWI and within clinically acceptable acquisition times for high-resolution MRSI, using the combination of an external 8-channel body-array transmit coil and an endorectal receive coil. The higher spatial resolutions can yield improved delineation of prostate anatomy, but the robustness of the techniques needs to be improved before clinical adoption of 7 T mpMRI.
Collapse
|
19
|
Magnetic resonance imaging of the prostate at 1.5 versus 3.0 T: A prospective comparison study of image quality. Eur J Radiol 2017; 90:192-197. [DOI: 10.1016/j.ejrad.2017.02.044] [Citation(s) in RCA: 66] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2016] [Revised: 02/25/2017] [Accepted: 02/28/2017] [Indexed: 01/09/2023]
|
20
|
Kraff O, Quick HH. 7T: Physics, safety, and potential clinical applications. J Magn Reson Imaging 2017; 46:1573-1589. [DOI: 10.1002/jmri.25723] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 03/17/2017] [Indexed: 12/19/2022] Open
Affiliation(s)
- Oliver Kraff
- Erwin L. Hahn Institute for MR Imaging; University of Duisburg-Essen; Essen Germany
| | - Harald H. Quick
- Erwin L. Hahn Institute for MR Imaging; University of Duisburg-Essen; Essen Germany
- High Field and Hybrid MR Imaging; University Hospital Essen; Essen Germany
| |
Collapse
|
21
|
Trattnig S, Bogner W, Gruber S, Szomolanyi P, Juras V, Robinson S, Zbýň Š, Haneder S. Clinical applications at ultrahigh field (7 T). Where does it make the difference? NMR IN BIOMEDICINE 2016; 29:1316-34. [PMID: 25762432 DOI: 10.1002/nbm.3272] [Citation(s) in RCA: 49] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2014] [Revised: 01/20/2015] [Accepted: 01/22/2015] [Indexed: 05/11/2023]
Abstract
Presently, three major MR vendors provide commercial 7-T units for clinical research under ethical permission, with the number of operating 7-T systems having increased to over 50. This rapid increase indicates the growing interest in ultrahigh-field MRI because of improved clinical results with regard to morphological as well as functional and metabolic capabilities. As the signal-to-noise ratio scales linearly with the field strength (B0 ) of the scanner, the most obvious application at 7 T is to obtain higher spatial resolution in the brain, musculoskeletal system and breast. Of specific clinical interest for neuro-applications is the cerebral cortex at 7 T, for the detection of changes in cortical structure as a sign of early dementia, as well as for the visualization of cortical microinfarcts and cortical plaques in multiple sclerosis. In the imaging of the hippocampus, even subfields of the internal hippocampal anatomy and pathology can be visualized with excellent resolution. The dynamic and static blood oxygenation level-dependent contrast increases linearly with the field strength, which significantly improves the pre-surgical evaluation of eloquent areas before tumor removal. Using susceptibility-weighted imaging, the plaque-vessel relationship and iron accumulation in multiple sclerosis can be visualized for the first time. Multi-nuclear clinical applications, such as sodium imaging for the evaluation of repair tissue quality after cartilage transplantation and (31) P spectroscopy for the differentiation between non-alcoholic benign liver disease and potentially progressive steatohepatitis, are only possible at ultrahigh fields. Although neuro- and musculoskeletal imaging have already demonstrated the clinical superiority of ultrahigh fields, whole-body clinical applications at 7 T are still limited, mainly because of the lack of suitable coils. The purpose of this article was therefore to review the clinical studies that have been performed thus far at 7 T, compared with 3 T, as well as those studies performed at 7 T that cannot be routinely performed at 3 T. Copyright © 2015 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Siegfried Trattnig
- High Field MR Center, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
- CD Laboratory for Clinical Molecular MR Imaging
| | - Wolfgang Bogner
- High Field MR Center, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Stephan Gruber
- High Field MR Center, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Pavol Szomolanyi
- High Field MR Center, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
- Department of Imaging Methods, Institute of Measurement Sciences, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Vladimir Juras
- High Field MR Center, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
- Department of Imaging Methods, Institute of Measurement Sciences, Slovak Academy of Sciences, Bratislava, Slovakia
| | - Simon Robinson
- High Field MR Center, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Štefan Zbýň
- High Field MR Center, Department of Biomedical Imaging and Image-guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Stefan Haneder
- Vascular and Abdominal Imaging, Institute of Clinical Radiology and Nuclear Medicine, University Medical Center Mannheim, Mannheim, Germany
| |
Collapse
|
22
|
Niendorf T, Paul K, Oezerdem C, Graessl A, Klix S, Huelnhagen T, Hezel F, Rieger J, Waiczies H, Frahm J, Nagel AM, Oberacker E, Winter L. W(h)ither human cardiac and body magnetic resonance at ultrahigh fields? technical advances, practical considerations, applications, and clinical opportunities. NMR IN BIOMEDICINE 2016; 29:1173-97. [PMID: 25706103 DOI: 10.1002/nbm.3268] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 12/26/2014] [Accepted: 01/13/2015] [Indexed: 05/12/2023]
Abstract
The objective of this study was to document and review advances and groundbreaking progress in cardiac and body MR at ultrahigh fields (UHF, B0 ≥ 7.0 T) with the goal to attract talent, clinical adopters, collaborations and resources to the biomedical and diagnostic imaging communities. This review surveys traits, advantages and challenges of cardiac and body MR at 7.0 T. The considerations run the gamut from technical advances to clinical opportunities. Key concepts, emerging technologies, practical considerations, frontier applications and future directions of UHF body and cardiac MR are provided. Examples of UHF cardiac and body imaging strategies are demonstrated. Their added value over the kindred counterparts at lower fields is explored along with an outline of research promises. The achievements of cardiac and body UHF-MR are powerful motivators and enablers, since extra speed, signal and imaging capabilities may be invested to overcome the fundamental constraints that continue to hamper traditional cardiac and body MR applications. If practical obstacles, concomitant physics effects and technical impediments can be overcome in equal measure, sophisticated cardiac and body UHF-MR will help to open the door to new MRI and MRS approaches for basic research and clinical science, with the lessons learned at 7.0 T being transferred into broad clinical use including diagnostics and therapy guiding at lower fields. Copyright © 2015 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
- Thoralf Niendorf
- Berlin Ultrahigh Field Facility (BUFF), Max-Delbrueck Center for Molecular Medicine, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site, Berlin, Germany
| | - Katharina Paul
- Berlin Ultrahigh Field Facility (BUFF), Max-Delbrueck Center for Molecular Medicine, Berlin, Germany
| | - Celal Oezerdem
- Berlin Ultrahigh Field Facility (BUFF), Max-Delbrueck Center for Molecular Medicine, Berlin, Germany
| | - Andreas Graessl
- Berlin Ultrahigh Field Facility (BUFF), Max-Delbrueck Center for Molecular Medicine, Berlin, Germany
| | - Sabrina Klix
- Berlin Ultrahigh Field Facility (BUFF), Max-Delbrueck Center for Molecular Medicine, Berlin, Germany
| | - Till Huelnhagen
- Berlin Ultrahigh Field Facility (BUFF), Max-Delbrueck Center for Molecular Medicine, Berlin, Germany
| | - Fabian Hezel
- Berlin Ultrahigh Field Facility (BUFF), Max-Delbrueck Center for Molecular Medicine, Berlin, Germany
| | | | | | - Jens Frahm
- Biomedizinische NMR Forschungs GmbH, am Max-Planck-Institut für biophysikalische Chemie, Göttingen, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site, Göttingen, Germany
| | - Armin M Nagel
- Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Eva Oberacker
- Berlin Ultrahigh Field Facility (BUFF), Max-Delbrueck Center for Molecular Medicine, Berlin, Germany
| | - Lukas Winter
- Berlin Ultrahigh Field Facility (BUFF), Max-Delbrueck Center for Molecular Medicine, Berlin, Germany
| |
Collapse
|
23
|
Abstract
The cavernous nerves, which course along the surface of the prostate gland, are responsible for erectile function. During radical prostatectomy, urologists are challenged in preserving these nerves and their function. Cavernous nerves are microscopic and show variable location in different patients; therefore, postoperative sexual potency rates are widely variable following radical prostatectomy. A variety of technologies, including electrical and optical nerve stimulation, dye-based optical fluorescence and microscopy, spectroscopy, ultrasound and magnetic resonance imaging have all been used to study cavernous nerve anatomy and physiology, and some of these methods are also potential intraoperative methods for identifying and preserving cavernous nerves. However, all of these technologies have inherent limitations, including slow or inconsistent nerve responses, poor image resolution, shallow image depth, slow image acquisition times and/or safety concerns. New and emerging technologies, as well as multimodal approaches combining existing methods, hold promise for improved postoperative sexual outcomes and patient quality of life following radical prostatectomy.
Collapse
|
24
|
Hahnemann ML, Kraff O, Maderwald S, Johst S, Orzada S, Umutlu L, Ladd ME, Quick HH, Lauenstein TC. Non-enhanced magnetic resonance imaging of the small bowel at 7 Tesla in comparison to 1.5 Tesla: First steps towards clinical application. Magn Reson Imaging 2015; 34:668-73. [PMID: 26747410 DOI: 10.1016/j.mri.2015.11.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2015] [Accepted: 11/29/2015] [Indexed: 01/08/2023]
Abstract
OBJECTIVE To perform non-enhanced (NE) magnetic resonance imaging (MRI) of the small bowel at 7 Tesla (7T) and to compare it with 1.5 Tesla (1.5T). MATERIAL AND METHODS Twelve healthy subjects were prospectively examined using a 1.5T and 7T MRI system. Coronal and axial true fast imaging with steady-state precession (TrueFISP) imaging and a coronal T2-weighted (T2w) half-Fourier acquisition single-shot turbo spin-echo (HASTE) sequence were acquired. Image analysis was performed by 1) visual evaluation of tissue contrast and detail detectability, 2) measurement and calculation of contrast ratios and 3) assessment of artifacts. RESULTS NE MRI of the small bowel at 7T was technically feasible. In the vast majority of the cases, tissue contrast and image details were equivalent at both field strengths. At 7T, two cases revealed better detail detectability in the TrueFISP, and better contrast in the HASTE. Susceptibility artifacts and B1 inhomogeneities were significantly increased at 7T. CONCLUSION This study provides first insights into NE ultra-high field MRI of the small bowel and may be considered an important step towards high quality T2w abdominal imaging at 7T MRI.
Collapse
Affiliation(s)
- Maria L Hahnemann
- Institute of Clinical Radiology, University Hospital Muenster, University of Muenster, Muenster, Germany; Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, University Duisburg-Essen, Essen, Germany; Erwin L. Hahn Institute for Magnetic Resonance Imaging, University Duisburg-Essen, Essen, Germany.
| | - Oliver Kraff
- Erwin L. Hahn Institute for Magnetic Resonance Imaging, University Duisburg-Essen, Essen, Germany
| | - Stefan Maderwald
- Erwin L. Hahn Institute for Magnetic Resonance Imaging, University Duisburg-Essen, Essen, Germany
| | - Soeren Johst
- Erwin L. Hahn Institute for Magnetic Resonance Imaging, University Duisburg-Essen, Essen, Germany
| | - Stephan Orzada
- Erwin L. Hahn Institute for Magnetic Resonance Imaging, University Duisburg-Essen, Essen, Germany
| | - Lale Umutlu
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, University Duisburg-Essen, Essen, Germany; Erwin L. Hahn Institute for Magnetic Resonance Imaging, University Duisburg-Essen, Essen, Germany
| | - Mark E Ladd
- Erwin L. Hahn Institute for Magnetic Resonance Imaging, University Duisburg-Essen, Essen, Germany; Medical Physics in Radiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Harald H Quick
- Erwin L. Hahn Institute for Magnetic Resonance Imaging, University Duisburg-Essen, Essen, Germany; High Field and Hybrid MR Imaging, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| | - Thomas C Lauenstein
- Department of Diagnostic and Interventional Radiology and Neuroradiology, University Hospital Essen, University Duisburg-Essen, Essen, Germany
| |
Collapse
|
25
|
|
26
|
|