1
|
Chen X, Ge C, Zhang Y, Ma Y, Zhang Y, Li B, Chu Z, Ji Q. Evaluation of Early Renal Changes in Type 2 Diabetes Mellitus Using Multiparametric MR Imaging. Magn Reson Med Sci 2024:mp.2023-0148. [PMID: 39370295 DOI: 10.2463/mrms.mp.2023-0148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2024] Open
Abstract
PURPOSE To evaluate the clinical value of early renal changes in type 2 diabetes mellitus (T2DM) using multiparameter MRI. METHODS The study included 41 diabetics (normoalbuminuria: n = 23; microalbuminuria: n = 18) and 30 healthy controls. All subjects underwent intravoxel incoherent motion diffusion-weighted imaging (IVIM), blood oxygen level dependent (BOLD) and arterial spin labeling (ASL) examinations. One-way analysis of variance was used to compare MRI parameters among the three groups. Pearson correlation analysis was used to evaluate the relationship between MRI parameters and estimated glomerular filtration rate (eGFR) and albumin-creatinine ratio (ACR). Receiver operating characteristic analysis was performed to assess the diagnostic performance. RESULTS There were statistical differences in cortical D, D*, f, renal blood flow (RBF) and medulla D, D*, f, R2* among the three groups (P < 0.05). The cortical or medullary D, cortical f, and RBF were significantly positively correlated with eGFR (all P < 0.01). The cortical or medullary D, D*, f, cortical RBF were negatively correlated with ACR (all P < 0.05).To evaluate early kidney changes and degree of diabetes, cortical combined D and RBF (AUC [area under the curve] = 0.796 and 0.947, respectively) was better than single D or RBF (all P > 0.05); medullary combined D and R2* (AUC = 0.899 and 0.923, respectively) was better than single D or R2* (all P > 0.05), except single D (P = 0.005) in differentiating normoalbuminuria group from control group. CONCLUSION The early changes of renal diffusion and perfusion, oxygenation level, and blood flow in T2DM could be evaluated noninvasively and quantitatively using IVIM, BOLD and ASL. Renal medullary combined IVIM-derived D and BOLD-derived R2* and cortical combined IVIM-derived D and ASL-derived RBF were better for evaluating early renal changes in T2DM.
Collapse
Affiliation(s)
- Xinyi Chen
- The First Central Clinical School, Tianjin Medical University, Tianjin, China
- Department of Radiology, Tianjin First Central Hospital, Tianjin, China
| | - Chao Ge
- The First Central Clinical School, Tianjin Medical University, Tianjin, China
| | - Yuling Zhang
- Department of Radiology, Traditional Chinese Medicine Hospital of Gaoling District, Xi'an, Shaanxi, China
| | - Yajie Ma
- The First Central Clinical School, Tianjin Medical University, Tianjin, China
- Department of Radiology, Tianjin First Central Hospital, Tianjin, China
| | - Yuling Zhang
- The First Central Clinical School, Tianjin Medical University, Tianjin, China
- Department of Radiology, Tianjin First Central Hospital, Tianjin, China
| | - Bei Li
- The First Central Clinical School, Tianjin Medical University, Tianjin, China
- Department of Radiology, Tianjin First Central Hospital, Tianjin, China
| | - Zhiqiang Chu
- Department of Nephrology, Tianjin Fourth Central Hospital, Tianjin, China
| | - Qian Ji
- Department of Radiology, Tianjin First Central Hospital, Tianjin, China
| |
Collapse
|
2
|
Jiang B, Yu Y, Wan J, Xu R, Ma J, Tian Y, Hu L, Wu P, Hu C, Zhu M. The Use of Diffusion Tensor Imaging in the Identification of Acute Rejection and Chronic Allograft Nephropathy After Renal Transplantation. J Magn Reson Imaging 2024; 59:2082-2088. [PMID: 37807929 DOI: 10.1002/jmri.29042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Revised: 09/20/2023] [Accepted: 09/20/2023] [Indexed: 10/10/2023] Open
Abstract
BACKGROUND Identifying the cause of renal allograft dysfunction is important for the clinical management of kidney transplant recipients. PURPOSE To evaluate the diagnostic efficiency of diffusion tensor imaging (DTI) for identifying allografts with acute rejection (AR) and chronic allograft nephropathy (CAN). STUDY TYPE Prospective. SUBJECTS Seventy-seven renal transplant patients (aged 42.5 ± 9.5 years), including 29 patients with well-functioning stable allografts (Control group), 25 patients diagnosed with acute rejection (AR group), and 23 patients diagnosed with chronic allograft nephropathy (CAN group). FIELD STRENGTH/SEQUENCE 1.5 T/T2-weighted imaging and DTI. ASSESSMENT The serum creatinine, proteinuria, pathologic results, and fractional anisotropy (FA) values were obtained and compared among the three groups. STATISTICAL TEST One-way analysis of variance; correlation analysis; independent-sample t-test; intraclass correlation coefficients and receiver operating characteristic curves. Statistical significance was set to a P-value <0.05. RESULTS The AR and CAN groups presented with significantly elevated serum creatinine as compared with the Control group (191.8 ± 181.0 and 163.1 ± 115.8 μmol/L vs. 82.3 ± 20.9 μmol/L). FA decreased in AR group (cortical/medullary: 0.13 ± 0.02/0.31 ± 0.07) and CAN group (cortical/medullary: 0.11 ± 0.02/0.27 ± 0.06), compared with the Control group (cortical/medullary: 0.15 ± 0.02/0.35 ± 0.05). Cortical FA in the AR group was higher than in the CAN group. The area under the curve (AUC) for identifying AR from normal allografts was 0.756 and 0.744 by cortical FA and medullary FA, respectively. The AUC of cortical FA and medullary FA for differentiating CAN from normal allografts was 0.907 and 0.830, respectively. The AUC of cortical FA and medullary FA for distinguishing AR and CAN from normal allografts was 0.828 and 0.785, respectively. Cortical FA was able to distinguish between AR and CAN with an AUC of 0.728. DATA CONCLUSION DTI was able to detect patients with dysfunctional allografts. Cortical FA can further distinguish between AR and CAN. EVIDENCE LEVEL 2 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Bin Jiang
- Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yixing Yu
- Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jiayi Wan
- Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Rui Xu
- Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Jiali Ma
- Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Yangyang Tian
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Linkun Hu
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Peng Wu
- Philips Healthcare, Shanghai, China
| | - Chunhong Hu
- Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou, China
| | - Mo Zhu
- Department of Radiology, The First Affiliated Hospital of Soochow University, Suzhou, China
| |
Collapse
|
3
|
Bane O, Lewis SC, Lim RP, Carney BW, Shah A, Fananapazir G. Contemporary and Emerging MRI Strategies for Assessing Kidney Allograft Complications: Arterial Stenosis and Parenchymal Injury, From the AJR Special Series on Imaging of Fibrosis. AJR Am J Roentgenol 2024; 222:e2329418. [PMID: 37315018 PMCID: PMC11006565 DOI: 10.2214/ajr.23.29418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
MRI plays an important role in the evaluation of kidney allografts for vascular complications as well as parenchymal insults. Transplant renal artery stenosis, the most common vascular complication of kidney transplant, can be evaluated by MRA using gadolinium and nongadolinium contrast agents as well as by unenhanced MRA techniques. Parenchymal injury occurs through a variety of pathways, including graft rejection, acute tubular injury, BK polyomavirus infection, drug-induced interstitial nephritis, and pyelonephritis. Investigational MRI techniques have sought to differentiate among these causes of dysfunction as well as to assess the degree of interstitial fibrosis or tubular atrophy (IFTA)-the common end pathway for all of these processes-which is currently evaluated by invasively obtained core biopsies. Some of these MRI sequences have shown promise in not only assessing the cause of parenchymal injury but also assessing IFTA noninvasively. This review describes current clinically used MRI techniques and previews promising investigational MRI techniques for assessing complications of kidney grafts.
Collapse
Affiliation(s)
- Octavia Bane
- Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Sara C Lewis
- Department of Radiology, Icahn School of Medicine at Mount Sinai, New York, NY
| | - Ruth P Lim
- Department of Radiology and Department of Surgery, University of Melbourne, Austin Health, Melbourne, Australia
| | - Benjamin W Carney
- Department of Radiology, University of California Davis Medical Center, 4860 Y St, Ste 3100, Sacramento, CA 95816
| | - Amar Shah
- Department of Radiology, Mayo Clinic Arizona, Phoenix, AZ
| | - Ghaneh Fananapazir
- Department of Radiology, University of California Davis Medical Center, 4860 Y St, Ste 3100, Sacramento, CA 95816
| |
Collapse
|
4
|
Bane O, Seeliger E, Cox E, Stabinska J, Bechler E, Lewis S, Hickson LJ, Francis S, Sigmund E, Niendorf T. Renal MRI: From Nephron to NMR Signal. J Magn Reson Imaging 2023; 58:1660-1679. [PMID: 37243378 PMCID: PMC11025392 DOI: 10.1002/jmri.28828] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Revised: 05/11/2023] [Accepted: 05/12/2023] [Indexed: 05/28/2023] Open
Abstract
Renal diseases pose a significant socio-economic burden on healthcare systems. The development of better diagnostics and prognostics is well-recognized as a key strategy to resolve these challenges. Central to these developments are MRI biomarkers, due to their potential for monitoring of early pathophysiological changes, renal disease progression or treatment effects. The surge in renal MRI involves major cross-domain initiatives, large clinical studies, and educational programs. In parallel with these translational efforts, the need for greater (patho)physiological specificity remains, to enable engagement with clinical nephrologists and increase the associated health impact. The ISMRM 2022 Member Initiated Symposium (MIS) on renal MRI spotlighted this issue with the goal of inspiring more solutions from the ISMRM community. This work is a summary of the MIS presentations devoted to: 1) educating imaging scientists and clinicians on renal (patho)physiology and demands from clinical nephrologists, 2) elucidating the connection of MRI parameters with renal physiology, 3) presenting the current state of leading MR surrogates in assessing renal structure and functions as well as their next generation of innovation, and 4) describing the potential of these imaging markers for providing clinically meaningful renal characterization to guide or supplement clinical decision making. We hope to continue momentum of recent years and introduce new entrants to the development process, connecting (patho)physiology with (bio)physics, and conceiving new clinical applications. We envision this process to benefit from cross-disciplinary collaboration and analogous efforts in other body organs, but also to maximally leverage the unique opportunities of renal physiology. LEVEL OF EVIDENCE: 1 TECHNICAL EFFICACY STAGE: 2.
Collapse
Affiliation(s)
- Octavia Bane
- Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
- Icahn School of Medicine at Mount Sinai, BioMedical Engineering and Imaging Institute, New York City, New York, USA
| | - Erdmann Seeliger
- Institute of Translational Physiology, Charité-University Medicine Berlin, Berlin, Germany
| | - Eleanor Cox
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, UK
| | - Julia Stabinska
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, Maryland, USA
- Russell H. Morgan Department of Radiology and Radiological Science, Johns Hopkins University School of Medicine, Baltimore, Maryland, USA
| | - Eric Bechler
- Department of Diagnostic and Interventional Radiology, Medical Faculty, Heinrich Heine University Düsseldorf, Düsseldorf, Germany
| | - Sara Lewis
- Department of Diagnostic, Molecular and Interventional Radiology, Icahn School of Medicine at Mount Sinai, New York City, New York, USA
| | - LaTonya J Hickson
- Division of Nephrology and Hypertension, Mayo Clinic, Jacksonville, Florida, USA
| | - Sue Francis
- Sir Peter Mansfield Imaging Centre, School of Physics and Astronomy, University of Nottingham, Nottingham, UK
| | - Eric Sigmund
- Bernard and Irene Schwartz Center for Biomedical Imaging Center for Advanced Imaging Innovation and Research (CAI2R), New York University Langone Health, New York City, New York, USA
| | - Thoralf Niendorf
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| |
Collapse
|
5
|
Jensen MS, de Araujo IBBA, Mutsaers HAM, Nørregaard R. Transcutaneous measurement of renal function in two rodent models of obstructive nephropathy. BMC Res Notes 2023; 16:119. [PMID: 37365638 DOI: 10.1186/s13104-023-06387-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Accepted: 06/13/2023] [Indexed: 06/28/2023] Open
Abstract
OBJECTIVE Glomerular filtration rate (GFR) is a key indicator of renal function. In both clinical practice and pre-clinical research, serum levels of endogenous filtration markers, such as creatinine, are often used to estimate GFR. However, these markers often do not reflect minor changes in renal function. In this study, we therefore set out to evaluate the applicability of transcutaneous GFR (tGFR) measurements to monitor the changes in renal function, as compared to plasma creatinine (pCreatinine), in two models of obstructive nephropathy, namely unilateral ureteral obstruction (UUO) or bilateral ureteral obstruction followed by release (BUO-R) in male Wistar rats. RESULTS UUO animals showed a significant reduction in tGFR compared to baseline; whereas pCreatinine levels were not significantly changed. In BUO animals, tGFR drops 24 h post BUO and remains lower upon release of the obstruction until day 11. Concomitantly, pCreatinine levels were also increased 24 h after obstruction and 24 h post release, however after 4 days, pCreatinine returned to baseline levels. In conclusion, this study revealed that the tGFR method is superior at detecting minor changes in renal function as compared to pCreatinine measurements.
Collapse
Affiliation(s)
- Michael Schou Jensen
- Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 11, Aarhus N, DK-8200, Denmark
| | | | - Henricus A M Mutsaers
- Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 11, Aarhus N, DK-8200, Denmark
| | - Rikke Nørregaard
- Department of Clinical Medicine, Aarhus University, Palle Juul-Jensens Boulevard 11, Aarhus N, DK-8200, Denmark.
| |
Collapse
|
6
|
Zhou H, Si Y, Sun J, Deng J, Yang L, Tang Y, Qin W. Effectiveness of functional magnetic resonance imaging for early identification of chronic kidney disease: A systematic review and network meta-analysis. Eur J Radiol 2023; 160:110694. [PMID: 36642011 DOI: 10.1016/j.ejrad.2023.110694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 01/04/2023] [Accepted: 01/09/2023] [Indexed: 01/13/2023]
Abstract
PURPOSE The commonly used clinical indicators are not sensitive enough on detecting early chronic kidney disease (CKD), whether functional magnetic resonance imaging (fMRI) can be regarded as a new noninvasive method to identify early stages of CKD and even different stages remains unknown. We performed a network meta-analysis to explore the question. METHODS Five databases were searched to identify eligible articles from 2000 to 2022. The outcome indicators were imaging biomarkers of fMRI techniques, including apparent diffusion coefficient (ADC) by diffusion-weighted imaging (DWI), fractional anisotropy (FA) by diffusion tensor imaging (DTI), diffusion coefficient (D), pseudodiffusion coefficient (D*), and perfusion fraction (f) by intravoxel incoherent motion imaging (IVIM), and apparent relaxation rate (R2*) by blood oxygen level-dependent (BOLD). RESULTS A total of 21 articles with 1472 patients were included for analysis. Cortical FA, f, and R2* values in CKD stages 1-2 were found statistically different with healthy controls (mean difference (MD), -0.03, 95% confidence interval (CI) -0.05, -0.01; MD, -0.04, 95% CI -0.06, -0.02; MD, 2.22, 95% CI 0.87, 3.57, respectively), and cortical ADC values were significantly different among different CKD stages (stages 3 and 1-2: MD, -0.15, 95% CI -0.23, -0.06; stages 4-5 and 3: MD -0.27, 95% CI -0.39, -0.14). CONCLUSION The results indicated fMRI techniques had great efficacy in assessing early stages and different stages of CKD, among which DTI, IVIM, and BOLD exerted great superiority in differentiating early CKD patients from the general population, while DWI showed the advantage in distinguishing different CKD stages.
Collapse
Affiliation(s)
- Huan Zhou
- Division of Nephrology, Department of Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China; West China School of Medicine, Sichuan University, Chengdu, Sichuan, China.
| | - Yi Si
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| | - Jiantong Sun
- West China School of Medicine, Sichuan University, Chengdu, Sichuan, China.
| | - Jiaxin Deng
- West China School of Medicine, Sichuan University, Chengdu, Sichuan, China.
| | - Ling Yang
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| | - Yi Tang
- Division of Nephrology, Department of Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China; West China School of Medicine, Sichuan University, Chengdu, Sichuan, China.
| | - Wei Qin
- Division of Nephrology, Department of Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, China; West China School of Medicine, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
7
|
Das CJ, Kubihal V, Kumar S, Agarwal SK, Dinda AK, Sreenivas V. Assessment of renal allograft rejection with diffusion tensor imaging. Br J Radiol 2023; 96:20220722. [PMID: 36607279 PMCID: PMC9975367 DOI: 10.1259/bjr.20220722] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2022] [Revised: 11/07/2022] [Accepted: 12/12/2022] [Indexed: 01/07/2023] Open
Abstract
OBJECTIVES To investigate the value of DTI in differentiation of renal allograft rejection from well-functioning stable allograft, using fractional anisotropy (FA) and apparent diffusion coefficient (ADC) values. METHODS In this prospective study, 22 transplant recipients with well-functioning stable allograft (group A) and 20 patients with renal allograft rejection (group B + C) were recruited over a period of 19 months from January 2018 to July 2019. DTI-MRI was performed in all the patients, and FA and ADC values were measured in cortical and medullary regions of the transplanted kidney. On biopsy, graft rejection was classified as acute (group B) (n = 7) and chronic graft rejection (group C) (n = 13) based on the BANNF scoring system. Statistical analysis was performed using STATA v.14.0. RESULTS Statistically significant difference between group A and group B + C was noted for cortical (p < 0.001), and medullary (p = 0.003) FA values, and cortical (p = 0.020), and medullary (p = 0.046) ADC values. Cortical(p < 0.001) and Medullary(p = 0.020) FA values showed statistically significant difference between group A and group C, and cortical FA value(p = 0.012) also showed statistically significant difference between group B and group C. AUC (to differentiate between renal allograft rejection and well-functioning stable allograft) for cortical, and medullary FA values and cortical and medullary ADC values were 0.853(p < 0.001), 0.757(p = 0.004), 0.709(p = 0.021) and 0.736(p = 0.009), respectively. CONCLUSION AND ADVANCES IN KNOWLEDGE DTI is a promising functional MRI technique for the non-invasive assessment of renal allograft function. Diffusion parameters, such as FA and ADC values, can be useful in the differentiation of renal allograft rejection from well-functioning stable allograft.
Collapse
Affiliation(s)
- Chandan Jyoti Das
- Department of Radiodiagnosis and Interventional Radiology, All India Institute of Medical Sciences, New Delhi, India
| | - Vijay Kubihal
- Department of Radiodiagnosis and Interventional Radiology, All India Institute of Medical Sciences, New Delhi, India
| | - Sambuddha Kumar
- Department of Radiodiagnosis and Interventional Radiology, All India Institute of Medical Sciences, New Delhi, India
| | - Sanjay Kumar Agarwal
- Department of Nephrology, All India Institute of Medical Sciences, New Delhi, India
| | - Amit Kumar Dinda
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India
| | | |
Collapse
|
8
|
Copur S, Yavuz F, Sag AA, Tuttle KR, Kanbay M. Future of kidney imaging: Functional magnetic resonance imaging and kidney disease progression. Eur J Clin Invest 2022; 52:e13765. [PMID: 35267195 DOI: 10.1111/eci.13765] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/01/2022] [Accepted: 03/05/2022] [Indexed: 11/26/2022]
Abstract
INTRODUCTION Chronic kidney disease (CKD) which is a common cause of death has an increasing trend, but there is no established approach for predicting CKD progression yet. Functional magnetic resonance imaging (fMRI) studies such as blood oxygenation level-dependent MRI (BOLD-MRI), diffusion-weighted MRI (DWI-MRI), diffusion-tensor MRI (DTI-MRI) and arterial spin labelling MRI (ASL-MRI) are rising methods for the assessment of kidney functions in native and transplanted kidneys as well as the estimation of CKD progression. METHODS Systematic literature review was performed through the Embase (Elsevier), Cochrane Central Register of Controlled Trials (Wiley), PubMed/Medline and Web of Science databases, and studies investigating the role of fMRI methods assessing kidney functions in native and transplanted kidneys, as well as the value of fMRI methods to predict CKD progression, were included. Working mechanisms, advantages and limitations of the fMRI modalities were reviewed, and three studies investigating the role of fMRI studies in kidney functions were analysed. RESULTS AND CONCLUSION BOLD-MRI signal was found to be inversely correlated with annual eGFR change, and DWI/ADC (apparent diffusion coefficient map) values were shown to be correlated with annual eGFR decline. fMRI methods which are currently used for other systems can be utilized to provide more detailed information about kidney functions, and doctors should be ready to interpret kidney MRIs.
Collapse
Affiliation(s)
- Sidar Copur
- Department of Medicine, Koc University School of Medicine, Istanbul, Turkey
| | - Furkan Yavuz
- Department of Medicine, Koc University School of Medicine, Istanbul, Turkey
| | - Alan A Sag
- Department of Radiology, Division of Vascular and Interventional Radiology, Duke University Medical Center, Durham, North Carolina, USA
| | - Kathherine R Tuttle
- Division of Nephrology, University of Washington, Seattle, Washington, USA.,Providence Medical Research Center, Providence Health Care, Washington, District of Columbia, USA
| | - Mehmet Kanbay
- Department of Medicine, Division of Nephrology, Koc University School of Medicine, Istanbul, Turkey
| |
Collapse
|
9
|
Li A, Yuan G, Hu Y, Shen Y, Hu X, Hu D, Li Z. Renal functional and interstitial fibrotic assessment with non-Gaussian diffusion kurtosis imaging. Insights Imaging 2022; 13:70. [PMID: 35394225 PMCID: PMC8993956 DOI: 10.1186/s13244-022-01215-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 03/21/2022] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVES To evaluate the application value of diffusion kurtosis imaging (DKI) for monitoring renal function and interstitial fibrosis. METHODS Forty-two patients suspected of having primary nephropathy, hypertension or diabetes with impaired renal function were examined with DKI. DKI metrics of renal cortex and medulla on both sides of each patient were measured, including mean kurtosis (MK), axial kurtosis (Ka), radial kurtosis (Kr), mean diffusivity (MD) and fractional anisotropy (FA). The differences in DKI metrics between stable and impaired estimated glomerular filtration rate (eGFR) patients as well as between mild and severe interstitial fibrosis patients were compared. Correlations of DKI metrics with clinical indicators and pathology were analyzed. Diagnostic performance of DKI to assess the degree of renal dysfunction was analyzed. RESULTS Cortical MK, parenchymal Ka, MD and medullary FA were different in stable vs impaired eGFR patients and mild vs severe interstitial fibrosis patients (all p < .05). Negative correlation was found between Ka and eGFR (cortex: r = - 0.579; medulla: r = - 0.603), between MD and interstitial fibrosis (cortex: r = - 0.899; medulla: r = - 0.770), and positive correlation was found between MD and eGFR (cortex: r = 0.411; medulla: r = 0.344), between Ka and interstitial fibrosis (cortex: r = 0.871; medulla: r = 0.844) (all p < .05). DKI combined with mean arterial blood pressure (MAP) and urea showed good diagnostic power for assessing the degree of renal dysfunction (sensitivity: 90.5%; specificity: 89.5%). CONCLUSIONS Noninvasive DKI has certain application value for monitoring renal function and interstitial fibrosis.
Collapse
Affiliation(s)
- Anqin Li
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China
| | - Guanjie Yuan
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China
| | - Yao Hu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China
| | - Yaqi Shen
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China
| | - Xuemei Hu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China
| | - Daoyu Hu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China
| | - Zhen Li
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Wuhan, 430030, Hubei, China.
| |
Collapse
|
10
|
Diffusion-Weighted MRI in the Genitourinary System. J Clin Med 2022; 11:jcm11071921. [PMID: 35407528 PMCID: PMC9000195 DOI: 10.3390/jcm11071921] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2022] [Revised: 03/25/2022] [Accepted: 03/28/2022] [Indexed: 12/12/2022] Open
Abstract
Diffusion weighted imaging (DWI) constitutes a major functional parameter performed in Magnetic Resonance Imaging (MRI). The DW sequence is performed by acquiring a set of native images described by their b-values, each b-value representing the strength of the diffusion MR gradients specific to that sequence. By fitting the data with models describing the motion of water in tissue, an apparent diffusion coefficient (ADC) map is built and allows the assessment of water mobility inside the tissue. The high cellularity of tumors restricts the water diffusion and decreases the value of ADC within tumors, which makes them appear hypointense on ADC maps. The role of this sequence now largely exceeds its first clinical apparitions in neuroimaging, whereby the method helped diagnose the early phases of cerebral ischemic stroke. The applications extend to whole-body imaging for both neoplastic and non-neoplastic diseases. This review emphasizes the integration of DWI in the genitourinary system imaging by outlining the sequence's usage in female pelvis, prostate, bladder, penis, testis and kidney MRI. In gynecologic imaging, DWI is an essential sequence for the characterization of cervix tumors and endometrial carcinomas, as well as to differentiate between leiomyosarcoma and benign leiomyoma of the uterus. In ovarian epithelial neoplasms, DWI provides key information for the characterization of solid components in heterogeneous complex ovarian masses. In prostate imaging, DWI became an essential part of multi-parametric Magnetic Resonance Imaging (mpMRI) to detect prostate cancer. The Prostate Imaging-Reporting and Data System (PI-RADS) scoring the probability of significant prostate tumors has significantly contributed to this success. Its contribution has established mpMRI as a mandatory examination for the planning of prostate biopsies and radical prostatectomy. Following a similar approach, DWI was included in multiparametric protocols for the bladder and the testis. In renal imaging, DWI is not able to robustly differentiate between malignant and benign renal tumors but may be helpful to characterize tumor subtypes, including clear-cell and non-clear-cell renal carcinomas or low-fat angiomyolipomas. One of the most promising developments of renal DWI is the estimation of renal fibrosis in chronic kidney disease (CKD) patients. In conclusion, DWI constitutes a major advancement in genitourinary imaging with a central role in decision algorithms in the female pelvis and prostate cancer, now allowing promising applications in renal imaging or in the bladder and testicular mpMRI.
Collapse
|
11
|
Zhang H, Wang P, Shi D, Yao X, Li Y, Liu X, Sun Y, Ding J, Wang S, Wang G, Ren K. Capability of intravoxel incoherent motion and diffusion tensor imaging to detect early kidney injury in type 2 diabetes. Eur Radiol 2022; 32:2988-2997. [PMID: 35031840 DOI: 10.1007/s00330-021-08415-6] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 10/11/2021] [Accepted: 10/13/2021] [Indexed: 11/28/2022]
Abstract
OBJECTIVES To prospectively investigate the capability of intravoxel incoherent motion (IVIM) and conventional diffusion tensor imaging (DTI) to identify early kidney function injury in type 2 diabetes. METHODS Forty-one diabetes patients (normoalbuminuria: n = 27; microalbuminuria: n = 14) and 28 volunteers were recruited. All participants were examined using DTI and IVIM with 3.0-T MRI. DTI parameters (mean diffusivity [MD], fractional anisotropy [FA]), and IVIM parameters (true diffusion coefficient [D], pseudo-diffusion coefficient [D*], and pseudo-diffusion component fraction [f]) were measured in the renal parenchyma (cortex and medulla) by two experienced radiologists independently. Image features were compared among the groups using separate one-way analyses of variance. Diagnostic performances of various diffusion parameters for predicting diabetic renal damage were compared. RESULTS The medullary D and FA values were significantly different among the microalbuminuria subgroup, normoalbuminuria subgroup, and control group (all p < 0.001). In medulla, area under the curve (AUC) values for combined FA and D were significantly higher than single FA (AUC = 0.938, 0.769, respectively; p = 0.003), and the combined AUC of FA and D was numerically higher than that of single D (0.938 vs 0.878, p > 0.05). AUC of combined FA and D was 0.985, not significantly different from individual AUC for FA and D (AUC = 0.909 and 0.952, respectively; all p > 0.05) in differentiating the microalbuminuria subgroup from the control group. CONCLUSION IVIM-derived D and DTI-derived FA values were better than other parameters for evaluating early kidney impairment of diabetes. The single indicator FA and D performed as well as the combined diagnostic indicator in the medulla for differentiating the microalbuminuria subgroup from the control group. KEY POINTS • We speculated that early renal progression in type 2 diabetes result from restricted tubular flow and kidney tubule dysregulation may precede or at least accompany abnormal glomerular changes. • In medulla, the AUC values of FA and D and the combination of FA and D obtained by comparing the microalbuminuria subgroup with the control group were 0.909, 0.952, and 0.985, respectively. • IVIM-derived D and DTI-derived FA are effective MR biomarkers to evaluate early alterations of the renal function in patients with diabetes.
Collapse
Affiliation(s)
- Haoran Zhang
- Department of Radiology, Xiang'an Hospital of Xiamen University, Xiamen, 361005, China
| | - Peng Wang
- Department of Radiology, The First Hospital of China Medical University, Shenyang, China
| | - Dafa Shi
- Department of Radiology, Xiang'an Hospital of Xiamen University, Xiamen, 361005, China
| | - Xiang Yao
- Department of Radiology, Xiang'an Hospital of Xiamen University, Xiamen, 361005, China
| | - Yanfei Li
- Department of Radiology, Xiang'an Hospital of Xiamen University, Xiamen, 361005, China
| | - Xuedan Liu
- Department of Radiology, Xiang'an Hospital of Xiamen University, Xiamen, 361005, China
| | - Yang Sun
- Department of Radiology, Xiang'an Hospital of Xiamen University, Xiamen, 361005, China
| | - Jie Ding
- Department of Radiology, Xiang'an Hospital of Xiamen University, Xiamen, 361005, China
| | - Siyuan Wang
- Department of Radiology, Xiang'an Hospital of Xiamen University, Xiamen, 361005, China
| | - Guangsong Wang
- Department of Radiology, Xiang'an Hospital of Xiamen University, Xiamen, 361005, China
| | - Ke Ren
- Department of Radiology, Xiang'an Hospital of Xiamen University, Xiamen, 361005, China. .,Xiamen Key Laboratory of Endocrine-Related Cancer Precision Medicine, Xiamen, China.
| |
Collapse
|
12
|
Borrelli P, Zacchia M, Cavaliere C, Basso L, Salvatore M, Capasso G, Aiello M. Diffusion tensor imaging for the study of early renal dysfunction in patients affected by bardet-biedl syndrome. Sci Rep 2021; 11:20855. [PMID: 34675323 PMCID: PMC8531379 DOI: 10.1038/s41598-021-00394-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 10/11/2021] [Indexed: 11/28/2022] Open
Abstract
Kidney structural abnormalities are common features of Bardet-Biedl syndrome (BBS) patients that lead to a progressive decline in renal function. Magnetic resonance diffusion tensor imaging (DTI) provides useful information on renal microstructures but it has not been applied to these patients. This study investigated using DTI to detect renal abnormalities in BBS patients with no overt renal dysfunction. Ten BBS subjects with estimated glomerular filtration rates over 60 ml/min/1.73m2 and 14 individuals matched for age, gender, body mass index and renal function were subjected to high-field DTI. Fractional anisotropy (FA), and mean, radial and axial diffusivity were evaluated from renal cortex and medulla. Moreover, the corticomedullary differentiation of each DTI parameter was compared between groups. Only cortical FA statistically differed between BBS patients and controls (p = 0.033), but all the medullary DTI parameters discriminated between the two groups with lower FA (p < 0.001) and axial diffusivity (p = 0.021) and higher mean diffusivity (p = 0.043) and radial diffusivity (p < 0.001) in BBS patients compared with controls. Corticomedullary differentiation values were significantly reduced in BBS patients. Thus, DTI is a valuable tool for investigating microstructural alterations in renal disorders when kidney functionality is preserved.
Collapse
Affiliation(s)
| | - Miriam Zacchia
- Department of Medical and Translational Sciences, University of Campania L. Vanvitelli, Naples, Italy
| | | | - Luca Basso
- IRCCS SDN, Via Emanuele Gianturco 113, 80131, Naples, Italy
| | | | - Giovambattista Capasso
- Department of Medical and Translational Sciences, University of Campania L. Vanvitelli, Naples, Italy.,Biogem, Research Institute for Molecular Biology and Genetics, Ariano Irpino, Italy
| | - Marco Aiello
- IRCCS SDN, Via Emanuele Gianturco 113, 80131, Naples, Italy
| |
Collapse
|
13
|
Diffusion tensor imaging of renal cortex in lupus nephritis. Jpn J Radiol 2021; 39:1069-1076. [PMID: 34125367 DOI: 10.1007/s11604-021-01154-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Accepted: 06/08/2021] [Indexed: 11/27/2022]
Abstract
PURPOSE To evaluate the diagnostic value of diffusion tensor imaging (DTI) of renal cortex in assessment of lupus nephritis (LN) and prediction of its pathological subtypes. METHODS Prospective study was performed upon 39 female patients with pathologically proven LN and 16 sex- and age-matched healthy controls. Patients and controls underwent DTI of kidney. Mean diffusivity (MD) and fractional anisotropy (FA) of renal cortex were calculated by two radiologists. LN patients were pathologically classified into either non-proliferative (n = 15) or proliferative (n = 24). RESULTS Mean MD of renal cortex in LN was significantly lower (p = 0.001) than that of controls with cut-off (2.16 and 2.2 X10-3mm2/s), area under curve (AUC) of (0.92, 0.94) and accuracy of (91%, 89%) for both observers. Mean FA of renal cortex in LN was significantly higher (p = 0.001) than that of controls with cut-off (0.20, 0.21), AUC of (0.86, 0.82) and accuracy of (86%, 84%) for both observers. Renal cortex MD and FA in non-proliferative LN were significantly different (p = 0.001) from that of proliferative LN for both observers. There was excellent inter-observer agreement of MD and FA (ICC = 0.96 and 0.81). CONCLUSION MD and FA of renal cortex may help to assess renal affection in LN patients and predict its pathological subtypes.
Collapse
|
14
|
Zheng X, Li M, Wang P, Li X, Zhang Q, Zeng S, Jiang T, Hu X. Assessment of chronic allograft injury in renal transplantation using diffusional kurtosis imaging. BMC Med Imaging 2021; 21:63. [PMID: 33827457 PMCID: PMC8028790 DOI: 10.1186/s12880-021-00595-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 03/28/2021] [Indexed: 11/12/2022] Open
Abstract
Background Chronic allograft injury (CAI) is a significant reason for which many grafts were lost. The study was conducted to assess the usefulness of diffusional kurtosis imaging (DKI) technology in the non-invasive assessment of CAI. Methods Between February 2019 and October 2019, 110 renal allograft recipients were included to analyze relevant DKI parameters. According to estimated glomerular filtration rate (eGFR) (mL/min/ 1.73 m2) level, they were divided to 3 groups: group 1, eGFR ≥ 60 (n = 10); group 2, eGFR 30–60 (n = 69); group 3, eGFR < 30 (n = 31). We performed DKI on a clinical 3T magnetic resonance imaging system. We measured the area of interest to determine the mean kurtosis (MK), mean diffusivity (MD), and apparent diffusion coefficient (ADC) of the renal cortex and medulla. We performed a Pearson correlation analysis to determine the relationship between eGFR and the DKI parameters. We used the receiver operating characteristic curve to estimate the predicted values of DKI parameters in the CAI evaluation. We randomly selected five patients from group 2 for biopsy to confirm CAI. Results With the increase of creatinine, ADC, and MD of the cortex and medulla decrease, MK of the cortex and medulla gradually increase. Among the three different eGFR groups, significant differences were found in cortical and medullary MK (P = 0.039, P < 0.001, P < 0.001, respectively). Cortical and medullary ADC and MD are negatively correlated with eGFR (r = − 0.49, − 0.44, − 0.57, − 0.57, respectively; P < 0.001), while cortical and medullary MK are positively correlated with eGFR (r = 0.42, 0.38; P < 0.001). When 0.491 was set as the cutoff value, MK's CAI assessment showed 87% sensitivity and 100% specificity. All five patients randomly selected for biopsy from the second group confirmed glomerulosclerosis and tubular atrophy/interstitial fibrosis. Conclusion The DKI technique is related to eGFR as allograft injury progresses and is expected to become a potential non-invasive method for evaluating CAI. Supplementary Information The online version contains supplementary material available at 10.1186/s12880-021-00595-3.
Collapse
Affiliation(s)
- Xin Zheng
- Department of Urology, Beijing Youan Hospital, Capital Medical University, No. 8, Xi Tou Tiao, Youanmen Wai, Fengtai District, Beijing, 100069, People's Republic of China
| | - Min Li
- Department of Radiology, Beijing Chao-Yang Hospital, Capital Medical University, 8 Gongren Tiyuchang Nanlu, Chaoyang District, Beijing, 200020, People's Republic of China
| | - Pan Wang
- Department of Radiology, Beijing Chao-Yang Hospital, Capital Medical University, 8 Gongren Tiyuchang Nanlu, Chaoyang District, Beijing, 200020, People's Republic of China
| | - Xiangnan Li
- Department of Radiology, Beijing Chao-Yang Hospital, Capital Medical University, 8 Gongren Tiyuchang Nanlu, Chaoyang District, Beijing, 200020, People's Republic of China
| | - Qiang Zhang
- Institute of Urology, Capital Medical University, 8 Gongren Tiyuchang Nanlu, Chaoyang District, Beijing, 200020, People's Republic of China.,Department of Urology, Beijing Chao-Yang Hospital, Capital Medical University, 8 Gongren Tiyuchang Nanlu, Chaoyang District, Beijing, 200020, People's Republic of China
| | - Song Zeng
- Institute of Urology, Capital Medical University, 8 Gongren Tiyuchang Nanlu, Chaoyang District, Beijing, 200020, People's Republic of China.,Department of Urology, Beijing Chao-Yang Hospital, Capital Medical University, 8 Gongren Tiyuchang Nanlu, Chaoyang District, Beijing, 200020, People's Republic of China
| | - Tao Jiang
- Department of Radiology, Beijing Chao-Yang Hospital, Capital Medical University, 8 Gongren Tiyuchang Nanlu, Chaoyang District, Beijing, 200020, People's Republic of China.
| | - Xiaopeng Hu
- Institute of Urology, Capital Medical University, 8 Gongren Tiyuchang Nanlu, Chaoyang District, Beijing, 200020, People's Republic of China. .,Department of Urology, Beijing Chao-Yang Hospital, Capital Medical University, 8 Gongren Tiyuchang Nanlu, Chaoyang District, Beijing, 200020, People's Republic of China.
| |
Collapse
|
15
|
Cheng ZY, Lin QT, Chen PK, Si-Tu DK, Qian L, Feng YZ, Cai XR. Combined application of DTI and BOLD-MRI in the assessment of renal injury with hyperuricemia. Abdom Radiol (NY) 2021; 46:1694-1702. [PMID: 33074425 DOI: 10.1007/s00261-020-02804-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 09/20/2020] [Accepted: 09/30/2020] [Indexed: 12/27/2022]
Abstract
OBJECTIVE To explore the value of combined diffusion tensor imaging (DTI) and blood oxygenation level-dependent magnetic resonance imaging (BOLD-MRI) in detecting early renal alterations in patients with hyperuricemia. MATERIALS AND METHODS Seventy-one individuals were enrolled in this study and divided into three groups according to their serum uric acid (SUA) level and clinical symptoms: healthy controls (HC, n = 23), asymptomatic hyperuricemia (AH, n = 22) and gouty arthritis (GA, n = 26). All patients underwent both DTI and BOLD-MRI examination. Renal cortical and medullary ADC, FA and R2* values were calculated, respectively, and compared among the three groups. Correlations between ADC, FA and R2* with estimated glomerular filtration rate (eGFR) and SUA in hyperuricemia were evaluated, respectively. RESULT In the renal cortex, the ADC, FA and R2* values of the AH and GA groups were significantly lower than those of the HC groups (p < 0.05). In the renal medulla, the ADC and FA values in AH and GA patients were significantly lower than those in healthy controls (p < 0.05). The R2* value of the GA group significantly decreased, compared to that of the AH and HC groups (p < 0.05). SUA was negatively correlated with cortical ADC, FA and R2* values (p < 0.05) as well as with medullary ADC and FA values. No significant correlation was discovered between the eGFR and ADC, FA and R2* values. CONCLUSION The combined evaluation of DTI and BOLD might provide a sensitive and non-invasive approach for detection of renal microstructural alterations and oxygen metabolism abnormality in hyperuricemia.
Collapse
Affiliation(s)
- Zhong-Yuan Cheng
- Medical Imaging Center, First Affiliated Hospital of Jinan University, No. 613 West Huangpu Avenue, Tianhe District, Guangzhou, 510630, Guangdong, China
| | - Qi-Ting Lin
- Medical Imaging Center, First Affiliated Hospital of Jinan University, No. 613 West Huangpu Avenue, Tianhe District, Guangzhou, 510630, Guangdong, China
| | - Ping-Kang Chen
- Medical Imaging Center, First Affiliated Hospital of Jinan University, No. 613 West Huangpu Avenue, Tianhe District, Guangzhou, 510630, Guangdong, China
| | - Ding-Kun Si-Tu
- Medical Imaging Center, First Affiliated Hospital of Jinan University, No. 613 West Huangpu Avenue, Tianhe District, Guangzhou, 510630, Guangdong, China
| | - Long Qian
- MR Research, GE Healthcare, Beijing, China
| | - You-Zhen Feng
- Medical Imaging Center, First Affiliated Hospital of Jinan University, No. 613 West Huangpu Avenue, Tianhe District, Guangzhou, 510630, Guangdong, China.
| | - Xiang-Ran Cai
- Medical Imaging Center, First Affiliated Hospital of Jinan University, No. 613 West Huangpu Avenue, Tianhe District, Guangzhou, 510630, Guangdong, China.
| |
Collapse
|
16
|
Yu YM, Ni QQ, Wang ZJ, Chen ML, Zhang LJ. Multiparametric Functional Magnetic Resonance Imaging for Evaluating Renal Allograft Injury. Korean J Radiol 2020; 20:894-908. [PMID: 31132815 PMCID: PMC6536799 DOI: 10.3348/kjr.2018.0540] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2018] [Accepted: 12/19/2018] [Indexed: 02/06/2023] Open
Abstract
Kidney transplantation is the treatment of choice for patients with end-stage renal disease, as it extends survival and increases quality of life in these patients. However, chronic allograft injury continues to be a major problem, and leads to eventual graft loss. Early detection of allograft injury is essential for guiding appropriate intervention to delay or prevent irreversible damage. Several advanced MRI techniques can offer some important information regarding functional changes such as perfusion, diffusion, structural complexity, as well as oxygenation and fibrosis. This review highlights the potential of multiparametric MRI for noninvasive and comprehensive assessment of renal allograft injury.
Collapse
Affiliation(s)
- Yuan Meng Yu
- Department of Medical Imaging, Jinling Hospital, Clinical School of Southern Medical University, Nanjing, China
| | - Qian Qian Ni
- Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, Nanjing, China
| | - Zhen Jane Wang
- Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, CA, USA
| | - Meng Lin Chen
- Medical Imaging Teaching and Research Office, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - Long Jiang Zhang
- Department of Medical Imaging, Jinling Hospital, Medical School of Nanjing University, Nanjing, China.
| |
Collapse
|
17
|
Shehata M, Shalaby A, Switala AE, El-Baz M, Ghazal M, Fraiwan L, Khalil A, El-Ghar MA, Badawy M, Bakr AM, Dwyer A, Elmaghraby A, Giridharan G, Keynton R, El-Baz A. A multimodal computer-aided diagnostic system for precise identification of renal allograft rejection: Preliminary results. Med Phys 2020; 47:2427-2440. [PMID: 32130734 DOI: 10.1002/mp.14109] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 02/18/2020] [Accepted: 02/18/2020] [Indexed: 12/26/2022] Open
Abstract
PURPOSE Early assessment of renal allograft function post-transplantation is crucial to minimize and control allograft rejection. Biopsy - the gold standard - is used only as a last resort due to its invasiveness, high cost, adverse events (e.g., bleeding, infection, etc.), and the time for reporting. To overcome these limitations, a renal computer-assisted diagnostic (Renal-CAD) system was developed to assess kidney transplant function. METHODS The developed Renal-CAD system integrates data collected from two image-based sources and two clinical-based sources to assess renal transplant function. The imaging sources were the apparent diffusion coefficients (ADCs) extracted from 47 diffusion-weighted magnetic resonance imaging (DW-MRI) scans at 11 different b-values (b0, b50, b100, ..., b1000 s/mm 2 ), and the transverse relaxation rate (R2*) extracted from 30 blood oxygen level-dependent MRI (BOLD-MRI) scans at 5 different echo times (TEs = 2, 7, 12, 17, and 22 ms). Serum creatinine (SCr) and creatinine clearance (CrCl) were the clinical sources for kidney function evaluation. The Renal-CAD system initially performed kidney segmentation using the level-set method, followed by estimation of the ADCs from DW-MRIs and the R2* from BOLD-MRIs. ADCs and R2* estimates from 30 subjects that have both types of scans were integrated with their associated SCr and CrCl. The integrated biomarkers were then used as our discriminatory features to train and test a deep learning-based classifier, namely stacked autoencoders (SAEs) to differentiate non-rejection (NR) from acute rejection (AR) renal transplants. RESULTS Using a leave-one-subject-out cross-validation approach along with SAEs, the Renal-CAD system demonstrated 93.3% accuracy, 90.0% sensitivity, and 95.0% specificity in differentiating AR from NR. Robustness of the Renal-CAD system was also confirmed by the area under the curve value of 0.92. Using a stratified tenfold cross-validation approach, the Renal-CAD system demonstrated its reproducibility and robustness by a diagnostic accuracy of 86.7%, sensitivity of 80.0%, specificity of 90.0%, and AUC of 0.88. CONCLUSION The obtained results demonstrate the feasibility and efficacy of accurate, noninvasive identification of AR at an early stage using the Renal-CAD system.
Collapse
Affiliation(s)
- Mohamed Shehata
- BioImaging Lab, Department of Bioengineering, University of Louisville, Louisville, KY, 40208, USA
| | - Ahmed Shalaby
- BioImaging Lab, Department of Bioengineering, University of Louisville, Louisville, KY, 40208, USA
| | - Andrew E Switala
- BioImaging Lab, Department of Bioengineering, University of Louisville, Louisville, KY, 40208, USA
| | - Maryam El-Baz
- BioImaging Lab, Department of Bioengineering, University of Louisville, Louisville, KY, 40208, USA
| | - Mohammed Ghazal
- Electrical and Computer Engineering Department, Abu Dhabi University, Abu Dhabi, 59911, UAE
| | - Luay Fraiwan
- Electrical and Computer Engineering Department, Abu Dhabi University, Abu Dhabi, 59911, UAE
| | - Ashraf Khalil
- Computer Science and Information Technology Department, Abu Dhabi University, Abu Dhabi, 59911, UAE
| | - Mohamed Abou El-Ghar
- Urology and Nephrology Center, Radiology Department, Mansoura University, Mansoura, 35516, Egypt
| | - Mohamed Badawy
- Urology and Nephrology Center, Radiology Department, Mansoura University, Mansoura, 35516, Egypt
| | - Ashraf M Bakr
- Pediatric Nephrology Unit, Mansoura University Children's Hospital, University of Mansoura, Mansoura, 35516, Egypt
| | - Amy Dwyer
- Kidney Disease Program, University of Louisville, Louisville, KY, 40202, USA
| | - Adel Elmaghraby
- Computer Engineering and Computer Science Department, University of Louisville, Louisville, KY, 40208, USA
| | | | - Robert Keynton
- Department of Bioengineering, University of Louisville, Louisville, KY, 40208, USA
| | - Ayman El-Baz
- Department of Bioengineering, University of Louisville, Louisville, KY, 40208, USA.,200 E Shipp Ave, Lutz 390 Hall, Room 419, Louisville, KY, 40208, USA
| |
Collapse
|
18
|
Assessment of renal fibrosis in a rat model of unilateral ureteral obstruction with diffusion kurtosis imaging: Comparison with α-SMA expression and 18F-FDG PET. Magn Reson Imaging 2020; 66:176-184. [DOI: 10.1016/j.mri.2019.08.035] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 08/30/2019] [Accepted: 08/31/2019] [Indexed: 12/11/2022]
|
19
|
Schutter R, Lantinga VA, Borra RJH, Moers C. MRI for diagnosis of post-renal transplant complications: current state-of-the-art and future perspectives. MAGNETIC RESONANCE MATERIALS IN PHYSICS BIOLOGY AND MEDICINE 2019; 33:49-61. [PMID: 31879853 DOI: 10.1007/s10334-019-00813-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2019] [Revised: 10/27/2019] [Accepted: 11/30/2019] [Indexed: 02/07/2023]
Abstract
Kidney transplantation has developed into a widespread procedure to treat end stage renal failure, with transplantation results improving over the years. Postoperative complications have decreased over the past decades, but are still an important cause of morbidity and mortality. Early accurate diagnosis and treatment is the key to prevent renal allograft impairment or even graft loss. Ideally, a diagnostic tool should be able to detect post-transplant renal dysfunction, differentiate between the different causes and monitor renal function during and after therapeutic interventions. Non-invasive imaging modalities for diagnostic purposes show promising results. Magnetic resonance imaging (MRI) techniques have a number of advantages, such as the lack of ionizing radiation and the possibility to obtain relevant tissue information without contrast, reducing the risk of contrast-induced nephrotoxicity. However, most techniques still lack the specificity to distinguish different types of parenchymal diseases. Despite some promising outcomes, MRI is still barely used in the post-transplantation diagnostic process. The aim of this review is to survey the current literature on the relevance and clinical applicability of diagnostic MRI modalities for the detection of various types of complications after kidney transplantation.
Collapse
Affiliation(s)
- Rianne Schutter
- University Medical Center Groningen, University of Groningen, Groningen, Netherlands.
| | - Veerle A Lantinga
- University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Ronald J H Borra
- University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| | - Cyril Moers
- University Medical Center Groningen, University of Groningen, Groningen, Netherlands
| |
Collapse
|
20
|
Nery F, Szczepankiewicz F, Kerkelä L, Hall MG, Kaden E, Gordon I, Thomas DL, Clark CA. In vivo demonstration of microscopic anisotropy in the human kidney using multidimensional diffusion MRI. Magn Reson Med 2019; 82:2160-2168. [PMID: 31243814 PMCID: PMC6988820 DOI: 10.1002/mrm.27869] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Revised: 04/26/2019] [Accepted: 05/25/2019] [Indexed: 12/23/2022]
Abstract
PURPOSE To demonstrate the feasibility of multidimensional diffusion MRI to probe and quantify microscopic fractional anisotropy (µFA) in human kidneys in vivo. METHODS Linear tensor encoded (LTE) and spherical tensor encoded (STE) renal diffusion MRI scans were performed in 10 healthy volunteers. Respiratory triggering and image registration were used to minimize motion artefacts during the acquisition. Kidney cortex-medulla were semi-automatically segmented based on fractional anisotropy (FA) values. A model-free analysis of LTE and STE signal dependence on b-value in the renal cortex and medulla was performed. Subsequently, µFA was estimated using a single-shell approach. Finally, a comparison of conventional FA and µFA is shown. RESULTS The hallmark effect of µFA (divergence of LTE and STE signal with increasing b-value) was observed in all subjects. A statistically significant difference between LTE and STE signal was found in the cortex and medulla, starting from b = 750 s/mm2 and b = 500 s/mm2 , respectively. This difference was maximal at the highest b-value sampled (b = 1000 s/mm2 ) which suggests that relatively high b-values are required for µFA mapping in the kidney compared to conventional FA. Cortical and medullary µFA were, respectively, 0.53 ± 0.09 and 0.65 ± 0.05, both respectively higher than conventional FA (0.19 ± 0.02 and 0.40 ± 0.02). CONCLUSION The feasibility of combining LTE and STE diffusion MRI to probe and quantify µFA in human kidneys is demonstrated for the first time. By doing so, we show that novel microstructure information-not accessible by conventional diffusion encoding-can be probed by multidimensional diffusion MRI. We also identify relevant technical limitations that warrant further development of the technique for body MRI.
Collapse
Affiliation(s)
- Fabio Nery
- Developmental Imaging and Biophysics Section, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Filip Szczepankiewicz
- Department of Radiology, Brigham and Women’s Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
- Medical Radiation Physics, Clinical Sciences, Lund, Lund University, Lund, Sweden
| | - Leevi Kerkelä
- Developmental Imaging and Biophysics Section, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - Matt G. Hall
- Developmental Imaging and Biophysics Section, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
- National Physical Laboratory, Teddington, United Kingdom
| | - Enrico Kaden
- Centre for Medical Image Computing, University College London, London, United Kingdom
| | - Isky Gordon
- Developmental Imaging and Biophysics Section, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| | - David L. Thomas
- Leonard Wolfson Experimental Neurology Centre, UCL Queen Square Institute of Neurology, London, United Kingdom
- Department of Brain Repair and Rehabilitation, UCL Queen Square Institute of Neurology, London, United Kingdom
| | - Chris A. Clark
- Developmental Imaging and Biophysics Section, UCL Great Ormond Street Institute of Child Health, London, United Kingdom
| |
Collapse
|
21
|
Diffusion Tensor Imaging of the Kidney: Design and Evaluation of a Reliable Processing Pipeline. Sci Rep 2019; 9:12789. [PMID: 31484949 PMCID: PMC6726597 DOI: 10.1038/s41598-019-49170-5] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 08/15/2019] [Indexed: 12/14/2022] Open
Abstract
Diffusion tensor imaging (DTI) is particularly suitable for kidney studies due to tubules, collector ducts and blood vessels in the medulla that produce spatially restricted diffusion of water molecules, thus reflecting the high grade of anisotropy detectable by DTI. Kidney DTI is still a challenging technique where the off-resonance susceptibility artefacts and subject motion can severely affect the reproducibility of results. The aim of this study is to design a reliable processing pipeline by assessing different image processing approaches in terms of reproducibility and image artefacts correction. The results of four different processing pipelines (eddy: correction of eddy-currents and motion between DTI volume; eddy-s2v: eddy and within DTI volume motion correction; topup: eddy and geometric distortion correction; topup-s2v: topup and within DTI volume motion correction) are compared in terms of reproducibility by test-retest analysis in 14 healthy subjects. Within-subject coefficient of variation (wsCV) and intra-class correlation coefficient (ICC) are measured to assess the reproducibility and Dice similarity index is evaluated for the spatial alignment between DTI and anatomical images. Topup-s2v pipeline provides highest reproducibility (wsCV = 0.053, ICC = 0.814) and best correction of image distortion (Dice = 0.83). This study definitely provides a recipe for data processing, enabling for a clinical suitability of kidney DTI.
Collapse
|
22
|
Yu Z, Zhu H, Wu X, Chen Z, Zhang Z, Li J, Ye Q. Acute renal impairment characterization using diffusion magnetic resonance imaging: Validation by histology. NMR IN BIOMEDICINE 2019; 32:e4126. [PMID: 31290588 DOI: 10.1002/nbm.4126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 05/09/2019] [Accepted: 05/14/2019] [Indexed: 06/09/2023]
Abstract
Diffusion magnetic resonance imaging has been demonstrated to be a simple, noninvasive and accurate method for the detection of renal microstructure and microcirculation, which are closely linked to renal function. Moreover, serum endothelin-1 (ET-1) was also reported as a good indicator of early renal injury. The aim of this study was to evaluate the feasibility and capability of diffusion MRI and ET-1 to detect acute kidney injury by an operation simulating high-pressure renal pelvic perfusion, which is commonly used during ureteroscopic lithotripsy. Histological findings were used as a reference. Fourteen New Zealand rabbits in an experimental group and 14 in a control group were used in this study. Diffusion tensor imaging and intravoxel incoherent motion diffusion-weighted imaging were acquired by a 3.0 T MRI scanner. Significant corticomedullary differences were found in the values of the apparent diffusion coefficient (ADC), pure tissue diffusion, volume fraction of pseudo-diffusion (fp) and fractional anisotropy (FA) (P < 0.05 for all) in both preoperation and postoperation experimental groups. Compared with the control group, the values of cortical fpmean , medullary ADCmean and FAmean decreased significantly (P < 0.05) after the operation in the experimental group. Also, the change rate of medullary ADCmean in the experimental group was more pronounced than that in the control group (P = 0.018). No significant change was found in serum ET-1 concentration after surgery in either the experimental (P = 0.80) or control (P = 0.17) groups. In the experimental group, histological changes were observed in the medulla, while no visible change was found in the cortex. This study demonstrated the feasibility of diffusion MRI to detect the changes of renal microstructure and microcirculation in acute kidney injury, with the potential to evaluate renal function. Moreover, the sensitivity of diffusion MRI to acute kidney injury appears to be superior to that of serum ET-1.
Collapse
Affiliation(s)
- Zhixian Yu
- Department of Urology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Honghui Zhu
- Department of Urology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Xiuling Wu
- Department of Pathology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Zhongwei Chen
- Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Zhao Zhang
- Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Jiance Li
- Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Qiong Ye
- Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| |
Collapse
|
23
|
Abdeltawab H, Shehata M, Shalaby A, Khalifa F, Mahmoud A, El-Ghar MA, Dwyer AC, Ghazal M, Hajjdiab H, Keynton R, El-Baz A. A Novel CNN-Based CAD System for Early Assessment of Transplanted Kidney Dysfunction. Sci Rep 2019; 9:5948. [PMID: 30976081 PMCID: PMC6459833 DOI: 10.1038/s41598-019-42431-3] [Citation(s) in RCA: 34] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2018] [Accepted: 03/29/2019] [Indexed: 12/30/2022] Open
Abstract
This paper introduces a deep-learning based computer-aided diagnostic (CAD) system for the early detection of acute renal transplant rejection. For noninvasive detection of kidney rejection at an early stage, the proposed CAD system is based on the fusion of both imaging markers and clinical biomarkers. The former are derived from diffusion-weighted magnetic resonance imaging (DW-MRI) by estimating the apparent diffusion coefficients (ADC) representing the perfusion of the blood and the diffusion of the water inside the transplanted kidney. The clinical biomarkers, namely: creatinine clearance (CrCl) and serum plasma creatinine (SPCr), are integrated into the proposed CAD system as kidney functionality indexes to enhance its diagnostic performance. The ADC maps are estimated for a user-defined region of interest (ROI) that encompasses the whole kidney. The estimated ADCs are fused with the clinical biomarkers and the fused data is then used as an input to train and test a convolutional neural network (CNN) based classifier. The CAD system is tested on DW-MRI scans collected from 56 subjects from geographically diverse populations and different scanner types/image collection protocols. The overall accuracy of the proposed system is 92.9% with 93.3% sensitivity and 92.3% specificity in distinguishing non-rejected kidney transplants from rejected ones. These results demonstrate the potential of the proposed system for a reliable non-invasive diagnosis of renal transplant status for any DW-MRI scans, regardless of the geographical differences and/or imaging protocol.
Collapse
Affiliation(s)
- Hisham Abdeltawab
- Bioengineering Department, University of Louisville, Louisville, KY, USA
| | - Mohamed Shehata
- Bioengineering Department, University of Louisville, Louisville, KY, USA
| | - Ahmed Shalaby
- Bioengineering Department, University of Louisville, Louisville, KY, USA
| | - Fahmi Khalifa
- Bioengineering Department, University of Louisville, Louisville, KY, USA
| | - Ali Mahmoud
- Bioengineering Department, University of Louisville, Louisville, KY, USA
| | - Mohamed Abou El-Ghar
- Radiology Department, Urology and Nephrology Center, Mansoura University, Mansoura, Egypt
| | - Amy C Dwyer
- Kidney Disease Program, University of Louisville, Louisville, KY, USA
| | - Mohammed Ghazal
- Bioengineering Department, University of Louisville, Louisville, KY, USA.,Electrical and Computer Engineering Department, Abu Dhabi University, Abu Dhabi, UAE
| | - Hassan Hajjdiab
- Electrical and Computer Engineering Department, Abu Dhabi University, Abu Dhabi, UAE
| | - Robert Keynton
- Bioengineering Department, University of Louisville, Louisville, KY, USA
| | - Ayman El-Baz
- Bioengineering Department, University of Louisville, Louisville, KY, USA.
| |
Collapse
|
24
|
Using magnetic resonance diffusion tensor imaging to evaluate renal function changes in diabetic patients with early-stage chronic kidney disease. Clin Radiol 2018; 74:116-122. [PMID: 30360880 DOI: 10.1016/j.crad.2018.09.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2018] [Accepted: 09/25/2018] [Indexed: 12/15/2022]
Abstract
AIM To investigate the clinical value of diffusion tensor imaging (DTI) in assessing renal function changes in diabetic patients with early-stage chronic kidney disease (CKD), and the relationship of DTI parameters with estimated glomerular filtration rate (eGFR) and urinary biomarkers. MATERIALS AND METHODS Thirty-six patients with diabetes mellitus (DM; 30 CKD stage 1 and 6 CKD stage 2) and 26 healthy control subjects were enrolled. DTI was performed using a clinical 3 T MRI system. Apparent diffusion coefficient (ADC) and fractional anisotropy (FA) values were calculated from the renal cortex and medulla. The correlation of the DTI parameters with eGFR and urinary biomarkers was evaluated. RESULTS FA values were significantly reduced in the renal cortex and medulla of DM group compared with the control group (cortical FA, Z=-2.834, p=0.005; medullary FA, t=2.768, p=0.007). In the DM group, FA values in the renal cortex and medulla were positively correlated with eGFR, while FA values in the medulla were negatively correlated with the urinary albumin/creatinine ratio, urinary alpha-1 microglobulin/creatinine ratio, and urinary transferring/creatinine ratio. ADC values in the renal cortex and medulla showed a trend towards an increase in the DM group compared with the control group. CONCLUSIONS Renal DTI is a promising method for assessing early renal function changes in DM patients.
Collapse
|
25
|
Palmucci S, Mammino L, Caltabiano DC, Costanzo V, Foti PV, Mauro LA, Farina R, Profitta ME, Sinagra N, Ettorre GC, Veroux M, Basile A. Diffusion-MR in kidney transplant recipients: is diuretic stimulation a useful diagnostic tool for improving differentiation between functioning and non-functioning kidneys? Clin Imaging 2018; 53:97-104. [PMID: 30317137 DOI: 10.1016/j.clinimag.2018.10.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Revised: 08/27/2018] [Accepted: 10/01/2018] [Indexed: 11/30/2022]
Abstract
OBJECTIVES To evaluate the effects of diuretic stimulation on Diffusion Weighted Imaging (DWI) and Diffusion Tensor Imaging (DTI) techniques in transplanted kidneys. METHODS 33 transplanted kidney recipients underwent DWI and DTI sequences before and after furosemide. Cortical and medullary Apparent Diffusion Coefficient (ADC) and Fractional Anisotropy (FA) values were calculated in transplanted kidneys. Patients were divided into two groups according to their estimated glomerular rate filtration (Group A ≥ 60 ml/min and Group B < 60 ml/min). Wilcoxon matched pairs signed rank test was applied to compare pre- and post-furosemide values. ADC and FA values were compared between the 2 groups using a Mann-Whitney U test. Receiver Operating Curves (ROC) analysis was performed to predict normal renal function. RESULTS Wilcoxon test revealed a statistically significant difference for all pre- and post- ADC and FA values in group B. For group A, a significant difference was found comparing pre- and post-medullary ADC and FA values (p = 0.0151 and p = 0.0054). In the comparison between group A and group B, cortical and medullary mean ADC values were significantly different before and after furosemide. With regard to medullary FA values, a significant difference was found between groups before and after diuretic stimulation (p respectively of 0.004 and 0.042). Comparing cortical FA mean values, no statistical difference was observed between groups before and after furosemide. The highest Area Under Curve values were reported for cortical ADC (0.878) and medullary ADC (0.863) before diuretic bolus. CONCLUSIONS In transplanted kidneys, furosemide did not improve the differentiation between normal and reduced function.
Collapse
Affiliation(s)
- Stefano Palmucci
- Department of Medical Surgical Sciences and Advanced Technologies - Radiology I Unit, University Hospital "Policlinico-Vittorio Emanuele", Via Santa Sofia 78, Catania 95123, Italy.
| | - Luca Mammino
- Department of Medical Surgical Sciences and Advanced Technologies - Radiology I Unit, University Hospital "Policlinico-Vittorio Emanuele", Via Santa Sofia 78, Catania 95123, Italy
| | - Daniele Carmelo Caltabiano
- Department of Medical Surgical Sciences and Advanced Technologies - Radiology I Unit, University Hospital "Policlinico-Vittorio Emanuele", Via Santa Sofia 78, Catania 95123, Italy
| | - Valeria Costanzo
- Department of Medical Surgical Sciences and Advanced Technologies - Radiology I Unit, University Hospital "Policlinico-Vittorio Emanuele", Via Santa Sofia 78, Catania 95123, Italy
| | - Pietro Valerio Foti
- Department of Medical Surgical Sciences and Advanced Technologies - Radiology I Unit, University Hospital "Policlinico-Vittorio Emanuele", Via Santa Sofia 78, Catania 95123, Italy
| | - Letizia Antonella Mauro
- Department of Medical Surgical Sciences and Advanced Technologies - Radiology I Unit, University Hospital "Policlinico-Vittorio Emanuele", Via Santa Sofia 78, Catania 95123, Italy
| | - Renato Farina
- Department of Medical Surgical Sciences and Advanced Technologies - Radiology I Unit, University Hospital "Policlinico-Vittorio Emanuele", Via Santa Sofia 78, Catania 95123, Italy
| | - Maria Elena Profitta
- Department of Medical Surgical Sciences and Advanced Technologies - Radiology I Unit, University Hospital "Policlinico-Vittorio Emanuele", Via Santa Sofia 78, Catania 95123, Italy
| | - Nunziata Sinagra
- Vascular Surgery Unit - University Hospital "Policlinico-Vittorio Emanuele", 95123 Catania, Italy
| | | | - Massimiliano Veroux
- Department of Medical Surgical Sciences and Advanced Technologies - Vascular Surgery and Organ Transplant Unit, University Hospital "Policlinico-Vittorio Emanuele", 95123 Catania, Italy
| | - Antonio Basile
- Department of Medical Surgical Sciences and Advanced Technologies - Radiology I Unit, University Hospital "Policlinico-Vittorio Emanuele", Via Santa Sofia 78, Catania 95123, Italy
| |
Collapse
|
26
|
Abstract
Renal transplantation is the therapy of choice for patients with end-stage renal diseases. Improvement of immunosuppressive therapy has significantly increased the half-life of renal allografts over the past decade. Nevertheless, complications can still arise. An early detection of allograft dysfunction is mandatory for a good outcome. New advances in magnetic resonance imaging (MRI) have enabled the noninvasive assessment of different functional renal parameters in addition to anatomic imaging. Most of these techniques were widely tested on renal allografts in past decades and a lot of clinical data are available. The following review summarizes the comprehensive, functional MRI techniques for the noninvasive assessment of renal allograft function and highlights their potential for the investigations of different etiologies of graft dysfunction.
Collapse
|
27
|
Caroli A, Schneider M, Friedli I, Ljimani A, De Seigneux S, Boor P, Gullapudi L, Kazmi I, Mendichovszky IA, Notohamiprodjo M, Selby NM, Thoeny HC, Grenier N, Vallée JP. Diffusion-weighted magnetic resonance imaging to assess diffuse renal pathology: a systematic review and statement paper. Nephrol Dial Transplant 2018; 33:ii29-ii40. [PMID: 30137580 PMCID: PMC6106641 DOI: 10.1093/ndt/gfy163] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Accepted: 05/02/2018] [Indexed: 12/26/2022] Open
Abstract
Diffusion-weighted magnetic resonance imaging (DWI) is a non-invasive method sensitive to local water motion in the tissue. As a tool to probe the microstructure, including the presence and potentially the degree of renal fibrosis, DWI has the potential to become an effective imaging biomarker. The aim of this review is to discuss the current status of renal DWI in diffuse renal diseases. DWI biomarkers can be classified in the following three main categories: (i) the apparent diffusion coefficient-an overall measure of water diffusion and microcirculation in the tissue; (ii) true diffusion, pseudodiffusion and flowing fraction-providing separate information on diffusion and perfusion or tubular flow; and (iii) fractional anisotropy-measuring the microstructural orientation. An overview of human studies applying renal DWI in diffuse pathologies is given, demonstrating not only the feasibility and intra-study reproducibility of DWI but also highlighting the need for standardization of methods, additional validation and qualification. The current and future role of renal DWI in clinical practice is reviewed, emphasizing its potential as a surrogate and monitoring biomarker for interstitial fibrosis in chronic kidney disease, as well as a surrogate biomarker for the inflammation in acute kidney diseases that may impact patient selection for renal biopsy in acute graft rejection. As part of the international COST (European Cooperation in Science and Technology) action PARENCHIMA (Magnetic Resonance Imaging Biomarkers for Chronic Kidney Disease), aimed at eliminating the barriers to the clinical use of functional renal magnetic resonance imaging, this article provides practical recommendations for future design of clinical studies and the use of renal DWI in clinical practice.
Collapse
Affiliation(s)
- Anna Caroli
- Medical Imaging Unit, Bioengineering Department, IRCCS Istituto di Ricerche Farmacologiche Mario Negri, Bergamo, Italy
| | - Moritz Schneider
- Department of Radiology, Ludwig-Maximilians-University Hospital Munich, Munich, Germany
- Comprehensive Pneumology Center, German Center for Lung Research, Munich, Germany
| | - Iris Friedli
- Division of Radiology, Geneva University Hospitals, University of Geneva, Geneva, Switzerland
| | - Alexandra Ljimani
- Department of Diagnostic and Interventional Radiology, Medical Faculty, University Dusseldorf, Dusseldorf, Germany
| | - Sophie De Seigneux
- Service and Laboratory of Nephrology, Department of Internal Medicine Specialties and Department of Physiology and Metabolism, Geneva University Hospitals, University of Geneva, Geneva, Switzerland
| | - Peter Boor
- Institute of Pathology and Division of Nephrology, RWTH University of Aachen, Aachen, Germany
| | - Latha Gullapudi
- Centre for Kidney Research and Innovation, University of Nottingham, Nottingham, UK
| | - Isma Kazmi
- Centre for Kidney Research and Innovation, University of Nottingham, Nottingham, UK
| | - Iosif A Mendichovszky
- Department of Radiology, Cambridge University Hospitals NHS Foundation Trust, Addenbrooke’s Hospital, Cambridge, UK
| | | | - Nicholas M Selby
- Centre for Kidney Research and Innovation, University of Nottingham, Nottingham, UK
| | - Harriet C Thoeny
- Department of Diagnostic, Pediatric, and Interventional Radiology, Inselspital University Hospital, Bern, Switzerland
| | - Nicolas Grenier
- Service d'Imagerie Diagnostique et Interventionnelle de l'Adulte, Centre Hospitalier Universitaire de Bordeaux, Bordeaux, France
| | - Jean-Paul Vallée
- Division of Radiology, Geneva University Hospitals, University of Geneva, Geneva, Switzerland
| |
Collapse
|
28
|
Zhou JY, Wang YC, Zeng CH, Ju SH. Renal Functional MRI and Its Application. J Magn Reson Imaging 2018; 48:863-881. [PMID: 30102436 DOI: 10.1002/jmri.26180] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 04/10/2018] [Indexed: 12/11/2022] Open
Abstract
Renal function varies according to the nature and stage of diseases. Renal functional magnetic resonance imaging (fMRI), a technique considered superior to the most common method used to estimate the glomerular filtration rate, allows for noninvasive, accurate measurements of renal structures and functions in both animals and humans. It has become increasingly prevalent in research and clinical applications. In recent years, renal fMRI has developed rapidly with progress in MRI hardware and emerging postprocessing algorithms. Function-related imaging markers can be acquired via renal fMRI, encompassing water molecular diffusion, perfusion, and oxygenation. This review focuses on the progression and challenges of the main renal fMRI methods, including dynamic contrast-enhanced MRI, blood oxygen level-dependent MRI, diffusion-weighted imaging, diffusion tensor imaging, arterial spin labeling, fat fraction imaging, and their recent clinical applications. LEVEL OF EVIDENCE 5 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2018;48:863-881.
Collapse
Affiliation(s)
- Jia-Ying Zhou
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing, China
| | - Yuan-Cheng Wang
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing, China
| | - Chu-Hui Zeng
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing, China
| | - Sheng-Hong Ju
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing, China
| |
Collapse
|
29
|
Schley G, Jordan J, Ellmann S, Rosen S, Eckardt KU, Uder M, Willam C, Bäuerle T. Multiparametric magnetic resonance imaging of experimental chronic kidney disease: A quantitative correlation study with histology. PLoS One 2018; 13:e0200259. [PMID: 30011301 PMCID: PMC6047786 DOI: 10.1371/journal.pone.0200259] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 06/24/2018] [Indexed: 12/27/2022] Open
Abstract
Objectives In human chronic kidney disease (CKD) the extent of renal tubulointerstitial fibrosis correlates with progressive loss of renal function. However, fibrosis can so far only be assessed by histology of kidney biopsies. Magnetic resonance imaging (MRI) can provide information about tissue architecture, but its potential to assess fibrosis and inflammation in diseased kidneys remains poorly defined. Materials and methods We evaluated excised kidneys in a murine adenine-induced nephropathy model for CKD by MRI and correlated quantitative MRI parameters (T1, T2, and T2* relaxation times, apparent diffusion coefficient and fractional anisotropy) with histological hallmarks of progressive CKD, including renal fibrosis, inflammation, and microvascular rarefaction. Furthermore, we analyzed the effects of paraformaldehyde fixation on MRI parameters by comparing kidney samples before and after fixation with paraformaldehyde. Results In diseased kidneys T2 and T2* relaxation times, apparent diffusion coefficient and fractional anisotropy in the renal cortex and/or outer medulla were significantly different from those in control kidneys. In particular, T2 relaxation time was the best parameter to distinguish control and CKD groups and correlated very well with the extent of fibrosis, inflammatory infiltrates, tubular dilation, crystal deposition, and loss of peritubular capillaries and normal tubules in the renal cortex and outer medulla. Fixation with paraformaldehyde had no impact on T2 relaxation time and fractional anisotropy, whereas T1 times significantly decreased and T2* times and apparent diffusion coefficients increased in fixed kidney tissue. Conclusions MRI parameters provide a promising approach to quantitatively assess renal fibrosis and inflammation in CKD. Especially T2 relaxation time correlates well with histological features of CKD and is not influenced by paraformaldehyde fixation of kidney samples. Thus, T2 relaxation time might be a candidate parameter for non-invasive assessment of renal fibrosis in human patients.
Collapse
Affiliation(s)
- Gunnar Schley
- Department of Nephrology and Hypertension, Friedrich-Alexander University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Erlangen, Germany
- * E-mail:
| | - Jutta Jordan
- Department of Radiology, Friedrich-Alexander University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Erlangen, Germany
| | - Stephan Ellmann
- Department of Radiology, Friedrich-Alexander University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Erlangen, Germany
| | - Seymour Rosen
- Department of Pathology, Beth Israel Deaconess Medical Center, Boston, Massachusetts, United States of America
| | - Kai-Uwe Eckardt
- Department of Nephrology and Hypertension, Friedrich-Alexander University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Erlangen, Germany
- Department of Nephrology and Medical Intensive Care, Charité –Universitätsmedizin Berlin, Berlin, Germany
| | - Michael Uder
- Department of Radiology, Friedrich-Alexander University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Erlangen, Germany
| | - Carsten Willam
- Department of Nephrology and Hypertension, Friedrich-Alexander University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Erlangen, Germany
| | - Tobias Bäuerle
- Department of Radiology, Friedrich-Alexander University Erlangen-Nürnberg (FAU) and University Hospital Erlangen, Erlangen, Germany
| |
Collapse
|
30
|
Deger E, Celik A, Dheir H, Turunc V, Yardimci A, Torun M, Cihangiroglu M. Rejection evaluation after renal transplantation using MR diffusion tensor imaging. Acta Radiol 2018; 59:876-883. [PMID: 28975804 DOI: 10.1177/0284185117733777] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Background Renal allograft dysfunction monitoring is mainly performed using the serum creatinine (SC) level, Doppler ultrasound (US), or renal biopsy. Recently proposed diffusion-based magnetic resonance imaging (MRI) methods have been explored as new, non-invasive tools for assessing renal function after transplantation. Purpose To investigate the value of fractional anisotropy (FA) measurements in the evaluation of acute rejection cases after renal transplant. Material and Methods Doppler US and MRI diffusion tensor imaging (DTI) were performed in 21 patients with graft dysfunction requiring graft biopsy after renal transplantation and in 21 patients with normal graft function. The MR examinations were performed on a 1.5-T MRI using two b-values (0 and 800 s/mm2). FA values were measured from the cortex and medulla of the transplanted kidney at the upper, middle, and lower poles. Results Twenty-one transplant patients diagnosed with acute rejection (Group 1) were compared to the control group of 21 transplant patients with normal graft function (Group 2). The measured FA values of the medulla were 0.19 ± 0.02 and 0.22 ± 0.05 ( P = 0.017) for Groups 1 and 2, respectively. On the other hand, the measured FA values of the renal cortex were 0.18 ± 0.04 and 0.18 ± 0.04 ( P = 0.97) for Groups 1 and 2, respectively. Conclusion The good correlation between the renal medulla FA values and allograft function shows that MR DTI has potential for non-invasive functional assessment of transplanted kidneys. On the other hand, the renal cortex FA values had no correlation with the allograft function.
Collapse
Affiliation(s)
- Emin Deger
- Department of Radiology, Medicalpark Goztepe Hospital, Istanbul, Turkey
| | - Azim Celik
- GE Healthcare Istanbul, Istanbul, Turkey
| | - Hamad Dheir
- Department of Organ Transplantation, Medicalpark Goztepe Hospital, Istanbul, Turkey
| | - Volkan Turunc
- Department of Organ Transplantation, Medicalpark Goztepe Hospital, Istanbul, Turkey
| | - Ahmet Yardimci
- Department of Biostatistics and Medical Informatics, Akdeniz University Faculty of Medicine, Antalya, Turkey
| | - Mert Torun
- Bahcesehir University Medical School, Istanbul, Turkey
| | | |
Collapse
|
31
|
Non-contrast-enhanced magnetic resonance angiography: a reliable clinical tool for evaluating transplant renal artery stenosis. Eur Radiol 2018; 28:4195-4204. [DOI: 10.1007/s00330-018-5413-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2018] [Revised: 02/22/2018] [Accepted: 02/27/2018] [Indexed: 12/13/2022]
|
32
|
Abstract
KEY POINTS • The number of publications on imaging and kidney transplantation is low. • These publications are poorly cited, as compared with other fields of imaging. • Conversely, there is a clinical need for evidence-based recommendations. • Innovative advances for the use of imaging and kidney transplantation are essential. • An increased focus and adequate research funding are highly anticipated by clinicians.
Collapse
|
33
|
Tsili AC, Ntorkou A, Astrakas L, Boukali E, Giannakis D, Maliakas V, Sofikitis N, Argyropoulou MI. Magnetic resonance diffusion tensor imaging of the testis: Preliminary observations. Eur J Radiol 2017; 95:265-270. [DOI: 10.1016/j.ejrad.2017.08.037] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2017] [Accepted: 08/28/2017] [Indexed: 01/30/2023]
|
34
|
Kaimori JY, Isaka Y, Hatanaka M, Yamamoto S, Ichimaru N, Fujikawa A, Shibata H, Fujimori A, Miyoshi S, Yokawa T, Kuroda K, Moriyama T, Rakugi H, Takahara S. Visualization of kidney fibrosis in diabetic nephropathy by long diffusion tensor imaging MRI with spin-echo sequence. Sci Rep 2017; 7:5731. [PMID: 28720778 PMCID: PMC5515876 DOI: 10.1038/s41598-017-06111-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2017] [Accepted: 06/07/2017] [Indexed: 12/27/2022] Open
Abstract
Renal fibrosis (RF) is an indicator for progression of chronic kidney disease (CKD). Although diabetic nephropathy (DN) is the leading cause of CKD and end-stage renal disease in Western populations, the ability of MRI to evaluate RF in DN patients has not been determined. As a first step to identify possible MRI methods for RF evaluation, we examined the use of diffusion tensor imaging (DTI) MRI to evaluate RF in a rat model of DN (SHR/NDmcr-cp(cp/cp): SHR/ND). The signal-to-noise ratio in DTI MRI was enhanced using a spin-echo sequence, and a special kidney attachment was developed for long-term stabilization. The changes in renal temperature and blood flow during measurement were minimal, suggesting the feasibility of this method. At 38 weeks of age, RF had aggressively accumulated in the outer stripe (OS) of the outer medulla. FA maps showed that this method was successful in visualizing and evaluating fibrosis in the OS of the SHR/ND rat kidney (r = 0.7697, P = 0.0126). Interestingly, in the FA color maps, the directions of water molecule diffusion in RF were random, but distinct from conventional water diffusion in brain neuron fibers. These findings indicate that DTI MRI may be able to evaluate RF in CKD by DN.
Collapse
Affiliation(s)
- Jun-Ya Kaimori
- Department of Advanced Technology for Transplantation, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0781, Japan. .,Department of Geriatric Medicine and Nephrology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan.
| | - Yoshitaka Isaka
- Department of Geriatric Medicine and Nephrology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Masaki Hatanaka
- Department of Geriatric Medicine and Nephrology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Satoko Yamamoto
- Department of Geriatric Medicine and Nephrology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Naotsugu Ichimaru
- Department of Advanced Technology for Transplantation, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0781, Japan
| | - Akihiko Fujikawa
- Drug Discovery Research, Astellas Pharma Inc., 21 Miyukigaoka, Tsukuba, Ibaraki, 305-8585, Japan
| | - Hiroshi Shibata
- Drug Discovery Research, Astellas Pharma Inc., 21 Miyukigaoka, Tsukuba, Ibaraki, 305-8585, Japan
| | - Akira Fujimori
- Drug Discovery Research, Astellas Pharma Inc., 21 Miyukigaoka, Tsukuba, Ibaraki, 305-8585, Japan
| | - Sosuke Miyoshi
- Drug Discovery Research, Astellas Pharma Inc., 21 Miyukigaoka, Tsukuba, Ibaraki, 305-8585, Japan
| | - Takashi Yokawa
- BioView Inc., 2-16-16 Iwamoto-cho, Chiyoda-ku, Tokyo, 101-0032, Japan
| | - Kagayaki Kuroda
- Department of Human and Information Science, Tokai University School of Information Science and Technology, 4-1-1 Kitakaname, Hiratsuka, Kanagawa, 259-1292, Japan
| | - Toshiki Moriyama
- Osaka University Health Care Center, 2-1 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Hiromi Rakugi
- Department of Geriatric Medicine and Nephrology, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0871, Japan
| | - Shiro Takahara
- Department of Advanced Technology for Transplantation, Osaka University Graduate School of Medicine, 2-2 Yamadaoka, Suita, Osaka, 565-0781, Japan
| |
Collapse
|
35
|
Wang YT, Li YC, Kong WF, Yin LL, Pu H. Diffusion tensor imaging beyond brains: Applications in abdominal and pelvic organs. World J Meta-Anal 2017; 5:71-79. [DOI: 10.13105/wjma.v5.i3.71] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2016] [Revised: 04/12/2017] [Accepted: 04/24/2017] [Indexed: 02/06/2023] Open
Abstract
Functional magnetic resonance imaging (MRI) provided critical functional information in addition to the anatomic profiles offered by conventional MRI, and has been enormously used in the initial diagnosis and followed evaluation of various diseases. Diffusion tensor imaging (DTI) is a newly developed and advanced technique that measures the diffusion properties including both diffusion motion and its direction in situ, and has been extensively applied in central nerve system with acknowledged success. Technical advances have enabled DTI in abdominal and pelvic organs. Its application is increasing, yet remains less understood. A systematic overview of clinical application of DTI in abdominal and pelvic organs such as liver, pancreas, kidneys, prostate, uterus, etc., is therefore presented. Exploration of techniques with less artifacts and more normative post-processing enabled generally satisfactory image quality and repeatability of measurement. DTI appears to be more valuable in the evaluation of diffused diseases of organs with highly directionally arranged structures, such as the assessment of function impairment of native and transplanted kidneys. However, the utility of DTI to diagnose focal lesions, such as liver mass, pancreatic and prostate tumor, remains limited. Besides, diffusion of different layers of the uterus and the fiber structure disruption can be depicted by DTI. Finally, a discussion of future directions of research is given. The underlying heterogeneous pathologic conditions of certain diseases need to be further differentiated, and it is suggested that DTI parameters might potentially depict certain pathologic characterization such as cell density. Nevertheless, DTI should be better integrated into the current multi-modality evaluation in clinical practice.
Collapse
|
36
|
van Eijs MJM, van Zuilen AD, de Boer A, Froeling M, Nguyen TQ, Joles JA, Leiner T, Verhaar MC. Innovative Perspective: Gadolinium-Free Magnetic Resonance Imaging in Long-Term Follow-Up after Kidney Transplantation. Front Physiol 2017; 8:296. [PMID: 28559850 PMCID: PMC5432553 DOI: 10.3389/fphys.2017.00296] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 04/24/2017] [Indexed: 12/23/2022] Open
Abstract
Since the mid-1980s magnetic resonance imaging (MRI) has been investigated as a non- or minimally invasive tool to probe kidney allograft function. Despite this long-standing interest, MRI still plays a subordinate role in daily practice of transplantation nephrology. With the introduction of new functional MRI techniques, administration of exogenous gadolinium-based contrast agents has often become unnecessary and true non-invasive assessment of allograft function has become possible. This raises the question why application of MRI in the follow-up of kidney transplantation remains restricted, despite promising results. Current literature on kidney allograft MRI is mainly focused on assessment of (sub) acute kidney injury after transplantation. The aim of this review is to survey whether MRI can provide valuable diagnostic information beyond 1 year after kidney transplantation from a mechanistic point of view. The driving force behind chronic allograft nephropathy is believed to be chronic hypoxia. Based on this, techniques that visualize kidney perfusion and oxygenation, scarring, and parenchymal inflammation deserve special interest. We propose that functional MRI mechanistically provides tools for diagnostic work-up in long-term follow-up of kidney allografts.
Collapse
Affiliation(s)
- Mick J M van Eijs
- Department of Nephrology and Hypertension, University Medical Center UtrechtUtrecht, Netherlands
| | - Arjan D van Zuilen
- Department of Nephrology and Hypertension, University Medical Center UtrechtUtrecht, Netherlands
| | - Anneloes de Boer
- Department of Radiology, University Medical Center UtrechtUtrecht, Netherlands
| | - Martijn Froeling
- Department of Radiology, University Medical Center UtrechtUtrecht, Netherlands
| | - Tri Q Nguyen
- Department of Pathology, University Medical Center UtrechtUtrecht, Netherlands
| | - Jaap A Joles
- Department of Nephrology and Hypertension, University Medical Center UtrechtUtrecht, Netherlands
| | - Tim Leiner
- Department of Radiology, University Medical Center UtrechtUtrecht, Netherlands
| | - Marianne C Verhaar
- Department of Nephrology and Hypertension, University Medical Center UtrechtUtrecht, Netherlands
| |
Collapse
|
37
|
Zhang JL. Functional Magnetic Resonance Imaging of the Kidneys-With and Without Gadolinium-Based Contrast. Adv Chronic Kidney Dis 2017; 24:162-168. [PMID: 28501079 DOI: 10.1053/j.ackd.2017.03.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Assessment of renal function with magnetic resonance imaging (MRI) has been actively explored in the past decade. In this review, we introduce the principle of MRI and review recent progress of MRI methods (contrast enhanced and noncontrast) in assessing renal function. Contrast-enhanced MRI using ultra-low dose of gadolinium-based agent has been validated for measuring single-kidney glomerular filtration rate and renal plasma flow accurately. For routine functional test, contrast-enhanced MRI may not replace the simple serum-creatinine method. However, for patients with renal diseases, it is often worthy to perform MRI to accurately monitor renal function, particularly for the diseased kidney. As contrast-enhanced MRI is already an established clinical tool for characterizing renal structural abnormalities, including renal mass and ureteral obstruction, it is possible to adapt the clinical MRI protocol to measure single-kidney glomerular filtration rate and renal plasma flow, as demonstrated by recent studies. What makes MRI unique is the promise of its noncontrast methods. These methods include arterial spin labeling for tissue perfusion, blood oxygen-level dependent for blood and tissue oxygenation, and diffusion-weighted imaging for water diffusion. For each method, we reviewed recent findings and summarized challenges.
Collapse
|
38
|
Razek AAKA, Al-Adlany MAAA, Alhadidy AM, Atwa MA, Abdou NEA. Diffusion tensor imaging of the renal cortex in diabetic patients: correlation with urinary and serum biomarkers. Abdom Radiol (NY) 2017; 42:1493-1500. [PMID: 28044190 DOI: 10.1007/s00261-016-1021-3] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
PURPOSE To demonstrate role of diffusion tensor imaging of the kidney in diabetic patients and to correlate renal fractional anisotropy (FA) and apparent diffusion coefficient (ADC) of the renal cortex with urinary and serum biomarkers of diabetes. MATERIAL AND METHODS Prospective study was conducted upon 42 diabetic patients (28 males, 14 females; mean age = 33 years) and 17 age- and sex-matched volunteers. Diabetic patients were micro-normoalbuminuric (n = 27) and macroalbuminuric (n = 15). Patients and volunteers underwent diffusion tensor imaging of the kidney. The FA and ADC of the renal cortex were calculated from 3 regions of interests of both kidneys. RESULTS The mean FA and ADC of the renal cortex in diabetic patients (0.36 ± 0.10 and 1.74 ± 0.16 × 10-3 mm2/s) was significantly different (p = 0.001) from that of volunteers (0.26 ± 0.02 and 1.88 ± 0.03 × 10-3 mm2/s). The cut-off renal FA and ADC used to differentiate diabetic patients from volunteers were 0.28 and 1.89 × 10-3 mm2/s with AUC of 0.791 and 0.773 and accuracy of 71% and 76%. The FA and ADC calculated in the renal cortex in patients with macroalbuminuria (0.43 ± 0.10 and 1.63 ± 0.19 × 10-3 mm2/s) was significantly different (p = 0.001) from that of patients with micro-normoalbuminuria (0.35 ± 0.12 and 1.80 ± 0.18 × 10-3 mm2/s). The FA and ADC of the renal cortex in diabetic patients correlated with urinary albumin (r = 0.530; p = 0.001, r = -0.421; p = 0.006), urinary NAG (r = 0.376; p = 0.014, r = -0.245; p = 0.01), urinary TGF-β1 (r = 0.287; p = 0.065, r = -0.214; p = 0.175), and serum creatinine (r = 0.381; p = 0.013, r = -0.349; p = 0.023). CONCLUSION The FA and ADC of the renal cortex may help in differentiation of diabetic kidney from volunteers and prediction of the presence of macroalbuminuria in diabetic patients and correlated with some of the urinary and serum biomarkers of diabetes.
Collapse
Affiliation(s)
| | | | | | - Mohammed Ali Atwa
- Department of Clinical Pathology, Mansoura Faculty of Medicine, Mansoura, Egypt
| | | |
Collapse
|
39
|
Comparison of Turbo Spin Echo and Echo Planar Imaging for intravoxel incoherent motion and diffusion tensor imaging of the kidney at 3Tesla. Z Med Phys 2017; 27:193-201. [PMID: 28410964 DOI: 10.1016/j.zemedi.2016.12.001] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2016] [Revised: 07/26/2016] [Accepted: 12/19/2016] [Indexed: 01/09/2023]
Abstract
Echo Planar Imaging (EPI) is most commonly applied to acquire diffusion-weighted MR-images. EPI is able to capture an entire image in very short time, but is prone to distortions and artifacts. In diffusion-weighted EPI of the kidney severe distortions may occur due to intestinal gas. Turbo Spin Echo (TSE) is robust against distortions and artifacts, but needs more time to acquire an entire image compared to EPI. Therefore, TSE is more sensitive to motion during the readout. In this study we compare diffusion-weighted TSE and EPI of the human kidney with regard to intravoxel incoherent motion (IVIM) and diffusion tensor imaging (DTI). Images were acquired with b-values between 0 and 750s/mm2 with TSE and EPI. Distortions were observed with the EPI readout in all volunteers, while the TSE images were virtually distortion-free. Fractional anisotropy of the diffusion tensor was significantly lower for TSE than for EPI. All other parameters of DTI and IVIM were comparable for TSE and EPI. Especially the main diffusion directions yielded by TSE and EPI were similar. The results demonstrate that TSE is a worthwhile distortion-free alternative to EPI for diffusion-weighted imaging of the kidney at 3Tesla.
Collapse
|
40
|
Selection for biopsy of kidney transplant patients by diffusion-weighted MRI. Eur Radiol 2017; 27:4336-4344. [PMID: 28374076 DOI: 10.1007/s00330-017-4814-z] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Revised: 02/26/2017] [Accepted: 03/14/2017] [Indexed: 10/19/2022]
|
41
|
Hueper K, Gutberlet M, Bräsen JH, Jang MS, Thorenz A, Chen R, Hertel B, Barrmeyer A, Schmidbauer M, Meier M, von Vietinghoff S, Khalifa A, Hartung D, Haller H, Wacker F, Rong S, Gueler F. Multiparametric Functional MRI: Non-Invasive Imaging of Inflammation and Edema Formation after Kidney Transplantation in Mice. PLoS One 2016; 11:e0162705. [PMID: 27632553 PMCID: PMC5025122 DOI: 10.1371/journal.pone.0162705] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Accepted: 08/27/2016] [Indexed: 11/19/2022] Open
Abstract
Background Kidney transplantation (ktx) in mice is used to learn about rejection and to develop new treatment strategies. Past studies have mainly been based on histological or molecular biological methods. Imaging techniques to monitor allograft pathology have rarely been used. Methods Here we investigated mice after isogenic and allogenic ktx over time with functional MRI with diffusion-weighted imaging (DWI) and mapping of T2-relaxation time (T2-mapping) to assess graft inflammation and edema formation. To characterize graft pathology, we used PAS-staining, counted CD3-positive T-lymphocytes, analyzed leukocytes by means flow cytometry. Results DWI revealed progressive restriction of diffusion of water molecules in allogenic kidney grafts. This was paralleled by enhanced infiltration of the kidney by inflammatory cells. Changes in tissue diffusion were not seen following isogenic ktx. T2-times in renal cortex were increased after both isogenic and allogenic transplantation, consistent with tissue edema due to ischemic injury following prolonged cold ischemia time of 60 minutes. Lack of T2 increase in the inner stripe of the inner medulla in allogenic kidney grafts matched loss of tubular autofluorescence and may result from rejection-driven reductions in tubular water content due to tubular dysfunction and renal functional impairment. Conclusions Functional MRI is a valuable non-invasive technique for monitoring inflammation, tissue edema and tubular function. It permits on to differentiate between acute rejection and ischemic renal injury in a mouse model of ktx.
Collapse
Affiliation(s)
- Katja Hueper
- Institute for Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany
- * E-mail:
| | - Marcel Gutberlet
- Institute for Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany
| | | | - Mi-Sun Jang
- Department of Nephrology, Hannover Medical School, Hannover, Germany
| | - Anja Thorenz
- Department of Nephrology, Hannover Medical School, Hannover, Germany
| | - Rongjun Chen
- Department of Nephrology, Hannover Medical School, Hannover, Germany
- The kidney disease centre of the First Affiliated Hospital, Zhejiang University, Hangzhou, China
| | - Barbara Hertel
- Department of Nephrology, Hannover Medical School, Hannover, Germany
| | - Amelie Barrmeyer
- Institute for Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany
| | - Martina Schmidbauer
- Institute for Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany
| | - Martin Meier
- Institute for Laboratory Animal Science, Hannover Medical School, Hannover, Germany
| | | | | | - Dagmar Hartung
- Institute for Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany
| | - Hermann Haller
- Department of Nephrology, Hannover Medical School, Hannover, Germany
| | - Frank Wacker
- Institute for Diagnostic and Interventional Radiology, Hannover Medical School, Hannover, Germany
| | - Song Rong
- Department of Nephrology, Hannover Medical School, Hannover, Germany
- The Transplantation Center of the affiliated hospital, Zunyi Medical College, Zunyi, China
| | - Faikah Gueler
- Department of Nephrology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
42
|
Ren T, Wen CL, Chen LH, Xie SS, Cheng Y, Fu YX, Oesingmann N, de Oliveira A, Zuo PL, Yin JZ, Xia S, Shen W. Evaluation of renal allografts function early after transplantation using intravoxel incoherent motion and arterial spin labeling MRI. Magn Reson Imaging 2016; 34:908-14. [PMID: 27114341 DOI: 10.1016/j.mri.2016.04.022] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2016] [Revised: 03/25/2016] [Accepted: 04/17/2016] [Indexed: 12/30/2022]
Abstract
PURPOSE To evaluate renal allografts function early after transplantation using intravoxel incoherent motion (IVIM) and arterial spin labeling (ASL) MRI. METHODS This prospective study was approved by the local ethics committee, and written informed consent was obtained from all participants. A total of 82 participants with 62 renal allograft recipients (2-4weeks after kidney transplantation) and 20 volunteers were enrolled to be scanned using IVIM and ASL MRI on a 3.0T MR scanner. Recipients were divided into two groups with either normal or impaired function according to the estimated glomerular filtration rate (eGFR) with a threshold of 60ml/min/1.73m(2). The apparent diffusion coefficient (ADC) of pure diffusion (ADCslow), the ADC of pseudodiffusion (ADCfast), perfusion fraction (PF), and renal blood flow (RBF) of cortex were compared among three groups. The correlation of ADCslow, ADCfast, PF and RBF with eGFR was evaluated. The receiver operating characteristic (ROC) curve and binary logistic regression analyses were performed to assess the diagnostic efficiency of using IVIM and ASL parameters to discriminate allografts with impaired function from normal function. P<0.05 was considered statistically significant. RESULTS In allografts with normal function, no significant difference of mean cortical ADCslow, ADCfast, and PF was found compared with healthy controls (P>0.05). Cortical RBF in allografts with normal function was statistically lower than that of healthy controls (P<0.001). Mean cortical ADCslow, ADCfast, PF and RBF were lower for allografts with impaired function than that with normal function (P<0.05). Mean cortical ADCslow, ADCfast, PF and RBF showed a positive correlation with eGFR (all P<0.01) for recipients. The combination of IVIM and ASL MRI showed a higher area under the ROC curve (AUC) (0.865) than that of ASL MRI alone (P=0.02). CONCLUSION Combined IVIM and ASL MRI can better evaluate the diffusion and perfusion properties for allografts early after kidney transplantation.
Collapse
Affiliation(s)
- Tao Ren
- Department of Radiology, Tianjin Medical University First Center Hospital, 300192, Tianjin, China.
| | - Cheng-Long Wen
- Department of Radiology, Tianjin Medical University First Center Hospital, 300192, Tianjin, China.
| | - Li-Hua Chen
- Department of Radiology, Tianjin Medical University First Center Hospital, 300192, Tianjin, China.
| | - Shuang-Shuang Xie
- Department of Radiology, Tianjin Medical University First Center Hospital, 300192, Tianjin, China.
| | - Yue Cheng
- Department of Radiology, Tianjin Medical University First Center Hospital, 300192, Tianjin, China.
| | - Ying-Xin Fu
- Department of Transplantation Surgery, Tianjin First Center Hospital, 300192, Tianjin, China.
| | | | | | - Pan-Li Zuo
- Siemens Healthcare, MR Collaborations NE Asia, 100010,Beijing, China.
| | - Jian-Zhong Yin
- Department of Radiology, Tianjin Medical University First Center Hospital, 300192, Tianjin, China.
| | - Shuang Xia
- Department of Radiology, Tianjin Medical University First Center Hospital, 300192, Tianjin, China.
| | - Wen Shen
- Department of Radiology, Tianjin Medical University First Center Hospital, 300192, Tianjin, China.
| |
Collapse
|