1
|
Furumaya A, Willemssen FEJA, Miclea RL, Haring MPD, de Haas RJ, Feshtali S, Vanhooymissen IJS, Bos D, de Man RA, Ijzermans JNM, Erdmann JI, Verheij J, Doukas MC, van Delden OM, Thomeer MGJ. Lesions hyper- to isointense to surrounding liver in the hepatobiliary phase of gadoxetic acid-enhanced MRI. Eur Radiol 2024; 34:7661-7672. [PMID: 38900280 DOI: 10.1007/s00330-024-10829-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2023] [Revised: 04/11/2024] [Accepted: 04/22/2024] [Indexed: 06/21/2024]
Abstract
OBJECTIVES Hyper- or isointensity in the hepatobiliary phase (HBP) of gadoxetic acid-enhanced MRI has high specificity for focal nodular hyperplasia (FNH) but may be present in hepatocellular adenoma and carcinoma (HCA/HCC). This study aimed to identify imaging characteristics differentiating FNH and HCA/HCC. MATERIALS AND METHODS This multicenter retrospective cohort study included patients with pathology-proven FNH or HCA/HCC, hyper-/isointense in the HBP of gadoxetic acid-enhanced MRI between 2010 and 2020. Diagnostic performance of imaging characteristics for the differentiation between FNH and HCA/HCC were reported. Univariable analyses, multivariable logistic regression analyses, and classification and regression tree (CART) analyses were conducted. Sensitivity analyses evaluated imaging characteristics of B-catenin-activated HCA. RESULTS In total, 124 patients (mean age 40 years, standard deviation 10 years, 108 female) with 128 hyper-/isointense lesions were included. Pathology diagnoses were FNH and HCA/HCC in 64 lesions (50%) and HCA/HCC in 64 lesions (50%). Imaging characteristics observed exclusively in HCA/HCC were raster and atoll fingerprint patterns in the HBP, sinusoidal dilatation on T2-w, hemosiderin, T1-w in-phase hyperintensity, venous washout, and nodule-in-nodule partification in the HBP and T2-w. Multivariable logistic regression and CART additionally found a T2-w scar indicating FNH, less than 50% fat, and a spherical contour indicating HCA/HCC. In our selected cohort, 14/48 (29%) of HCA were B-catenin activated, most (13/14) showed extensive hyper-/isointensity, and some had a T2-w scar (4/14, 29%). CONCLUSION If the aforementioned characteristics typical for HCA/HCC are encountered in lesions extensively hyper- to isointense, further investigation may be warranted to exclude B-catenin-activated HCA. CLINICAL RELEVANCE Hyper- or isointensity in the HBP of gadoxetic acid-enhanced MRI is specific for FNH, but HCA/HCC can also exhibit this feature. Therefore, we described imaging patterns to differentiate these entities. KEY POINTS FNH and HCA/HCC have similar HBP intensities but have different malignant potentials. Six imaging patterns exclusive to HCA/HCC were identified in this lesion population. These features in liver lesions hyper- to isointense in the HBP warrant further evaluation.
Collapse
Affiliation(s)
- Alicia Furumaya
- Department of Surgery, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands.
- Cancer Center Amsterdam, Amsterdam, The Netherlands.
| | - François E J A Willemssen
- Department of Radiology and Nuclear Medicine, Erasmus MC, Erasmus University Rotterdam, Rotterdam, The Netherlands
| | - Razvan L Miclea
- Department of Radiology and Nuclear Medicine, Maastricht University Medical Center+, Maastricht University, Maastricht, The Netherlands
| | - Martijn P D Haring
- Department of Surgery, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Robbert J de Haas
- Department of Radiology, University Medical Center Groningen, University of Groningen, Groningen, The Netherlands
| | - Shirin Feshtali
- Department of Radiology, Leiden UMC, Leiden University, Leiden, The Netherlands
| | - Inge J S Vanhooymissen
- Cancer Center Amsterdam, Amsterdam, The Netherlands
- Department of Radiology, Amsterdam UMC, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Daniel Bos
- Department of Radiology and Nuclear Medicine, Erasmus MC, Erasmus University Rotterdam, Rotterdam, The Netherlands
- Department of Epidemiology, Erasmus MC, Erasmus University Rotterdam, Rotterdam, The Netherlands
| | - Robert A de Man
- Department of Gastroenterology and Hepatology, Erasmus MC, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Jan N M Ijzermans
- Department of Surgery, Erasmus MC, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Joris I Erdmann
- Department of Surgery, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Joanne Verheij
- Cancer Center Amsterdam, Amsterdam, The Netherlands
- Department of Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Michail C Doukas
- Department of Pathology, Erasmus MC, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Otto M van Delden
- Cancer Center Amsterdam, Amsterdam, The Netherlands
- Department of Radiology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Maarten G J Thomeer
- Department of Radiology and Nuclear Medicine, Erasmus MC, Erasmus University Rotterdam, Rotterdam, The Netherlands
| |
Collapse
|
2
|
Yan Y, Si Z, Chun C, Chao-Qun P, Ke M, Dong Z, Li W. Multiphase MRI-Based Radiomics for Predicting Histological Grade of Hepatocellular Carcinoma. J Magn Reson Imaging 2024; 60:2117-2127. [PMID: 38344854 DOI: 10.1002/jmri.29289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 01/27/2024] [Accepted: 01/29/2024] [Indexed: 10/11/2024] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) is a highly heterogeneous cancer. Accurate preoperative prediction of histological grade holds potential for improving clinical management and disease prognostication. PURPOSE To evaluate the performance of a radiomics signature based on multiphase MRI in assessing histological grade in solitary HCC. STUDY TYPE Retrospective. SUBJECTS A total of 405 patients with histopathologically confirmed solitary HCC and with liver gadolinium ethoxybenzyl diethylenetriamine pentaacetic acid (Gd-EOB-DTPA)-enhanced MRI within 1 month of surgery. FIELD STRENGTH/SEQUENCE Contrast-enhanced T1-weighted spoiled gradient echo sequence (LAVA) at 1.5 or 3.0 T. ASSESSMENT Tumors were graded (low/high) according to results of histopathology. Basic clinical characteristics (including age, gender, serum alpha-fetoprotein (AFP) level, history of hepatitis B, and cirrhosis) were collected and tumor size measured. Radiomics features were extracted from Gd-EOB-DTPA-enhanced MRI data. Three feature selection strategies were employed sequentially to identify the optimal features: SelectFromModel (SFM), SelectPercentile (SP), and recursive feature elimination with cross-validation (RFECV). Probabilities of five single-phase radiomics-based models were averaged to generate a radiomics signature. A combined model was built by combining the radiomics signature and clinical predictors. STATISTICAL TESTS Pearson χ2 test/Fisher exact test, Wilcoxon rank sum test, interclass correlation coefficient (ICC), univariable/multivariable logistic regression analysis, area under the receiver operating characteristic (ROC) curve (AUC), DeLong test, calibration curve, Brier score, decision curve, Kaplan-Meier curve, and log-rank test. A P-value <0.05 was considered statistically significant. RESULTS High-grade HCCs were present in 33.8% of cases. AFP levels (odds ratio [OR] 1.89) and tumor size (>5 cm; OR 2.33) were significantly associated with HCC grade. The combined model had excellent performance in assessing HCC grade in the test dataset (AUC: 0.801), and demonstrated satisfactory calibration and clinical utility. DATA CONCLUSION A model that combined a radiomics signature derived from preoperative multiphase Gd-EOB-DTPA-enhanced MRI and clinical predictors showed good performance in assessing HCC grade. LEVEL OF EVIDENCE 3 TECHNICAL EFFICACY: Stage 5.
Collapse
Affiliation(s)
- Yang Yan
- Department of Radiology, XinQiao Hospital, Army Medical University, Chongqing, China
| | - Zhang Si
- Department of Radiology, XinQiao Hospital, Army Medical University, Chongqing, China
| | - Cui Chun
- Department of Radiology, XinQiao Hospital, Army Medical University, Chongqing, China
| | - Pen Chao-Qun
- Department of Radiology, XinQiao Hospital, Army Medical University, Chongqing, China
| | - Mu Ke
- Department of Radiology, XinQiao Hospital, Army Medical University, Chongqing, China
| | - Zhang Dong
- Department of Radiology, XinQiao Hospital, Army Medical University, Chongqing, China
| | - Wen Li
- Department of Radiology, XinQiao Hospital, Army Medical University, Chongqing, China
| |
Collapse
|
3
|
Kamal O, Haghshomar M, Yang J, Lalani T, Bijan B, Yaghmai V, Mendiratta-Lala M, Hong CW, Fowler KJ, Sirlin CB, Kambadakone A, Lee J, Borhani AA, Fung A. CT/MRI technical pitfalls for diagnosis and treatment response assessment using LI-RADS and how to optimize. Abdom Radiol (NY) 2024:10.1007/s00261-024-04632-x. [PMID: 39433603 DOI: 10.1007/s00261-024-04632-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Revised: 10/02/2024] [Accepted: 10/04/2024] [Indexed: 10/23/2024]
Abstract
Hepatocellular carcinoma (HCC), the most common primary liver cancer, is a significant global health burden. Accurate imaging is crucial for diagnosis and treatment response assessment, often eliminating the need for biopsy. The Liver Imaging Reporting and Data System (LI-RADS) standardizes the interpretation and reporting of liver imaging for diagnosis and treatment response assessment, categorizing observations using defined categories that are based on the probability of malignancy or post-treatment tumor viability. Optimized imaging protocols are essential for accurate visualization and characterization of liver findings by LI-RADS. Common technical pitfalls, such as suboptimal postcontrast phase timing, and MRI-specific challenges like subtraction misregistration artifacts, can significantly reduce image quality and diagnostic accuracy. The use of hepatobiliary contrast agents introduces additional challenges including arterial phase degradation and suboptimal uptake in advanced cirrhosis. This review provides radiologists with comprehensive insights into the technical aspects of liver imaging for LI-RADS. We discuss common pitfalls encountered in routine clinical practice and offer practical solutions to optimize imaging techniques. We also highlight technical advances in liver imaging, including multi-arterial MR acquisition and compressed sensing. By understanding and addressing these technical aspects, radiologists can improve accuracy and confidence in the diagnosis and treatment response assessment for hepatocellular carcinoma.
Collapse
Affiliation(s)
- Omar Kamal
- Oregon Health and Science University, Portland, OR, USA.
| | - Maryam Haghshomar
- Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Jessica Yang
- Royal Prince Alfred and Concord Hospitals, Sydney, NSW, Australia
| | - Tasneem Lalani
- University of Massachusetts Chan Medical School, Worcester, MA, USA
| | - Bijan Bijan
- University of California Davis Medical Center, Sacramento, CA, USA
| | | | | | | | | | | | | | - James Lee
- University of Kentucky, Lexington, KY, USA
| | - Amir A Borhani
- Northwestern University Feinberg School of Medicine, Chicago, IL, USA
| | - Alice Fung
- Oregon Health and Science University, Portland, OR, USA
| |
Collapse
|
4
|
Poetter-Lang S, Ambros R, Messner A, Kristic A, Hodge JC, Bastati N, Schima W, Chernyak V, Bashir MR, Ba-Ssalamah A. Are dilution, slow injection and care bolus technique the causal solution to mitigating arterial-phase artifacts on gadoxetic acid-enhanced MRI? A large-cohort study. Eur Radiol 2024; 34:5215-5227. [PMID: 38243134 PMCID: PMC11254987 DOI: 10.1007/s00330-024-10590-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 12/11/2023] [Accepted: 12/18/2023] [Indexed: 01/21/2024]
Abstract
OBJECTIVE Arterial-phase artifacts are gadoxetic acid (GA)-enhanced MRI's major drawback, ranging from 5 to 39%. We evaluate the effect of dilution and slow injection of GA using automated fluoroscopic triggering on liver MRI arterial-phase (AP) acquisition timing, artifact frequency, and lesion visibility. METHODS AND MATERIALS Saline-diluted 1:1 GA was injected at 1 ml/s into 1413 patients for 3 T liver MRI. Initially, one senior abdominal radiologist, i.e., principal investigator (PI), assessed all MR exams and compared them to previous and follow-up images, as well as the radiology report on record, determining the standard of reference for lesion detection and characterization. Then, three other readers independently evaluated the AP images for artifact type (truncation (TA), transient severe motion (TSM) or mixed), artifact severity (on a 5-point scale), acquisition timing (on a 4-point scale) and visibility (on a 5-point scale) of hypervascular lesions ≥ 5 mm, selected by the PI. Artifact score ≥ 4 and artifact score ≤ 3 were considered significant and non-significant artifacts, respectively. RESULTS Of the 1413 exams, diagnostic-quality arterial-phase images included 1100 (77.8%) without artifacts, 220 (15.6%) with minimal, and 77 (5.4%) with moderate artifacts. Only 16 exams (1.1%) had significant artifacts, 13 (0.9%) with severe artifacts (score 4), and three (0.2%) non-diagnostic artifacts (score 5). AP acquisition timing was optimal in 1369 (96.8%) exams. Of the 449 AP hypervascular lesions, 432 (96.2%) were detected. CONCLUSION Combined dilution and slow injection of GA with MR results in well-timed arterial-phase images in 96.8% and a reduction of exams with significant artifacts to 1.1%. CLINICAL RELEVANCE STATEMENT Hypervascular lesions, in particular HCC detection, hinge on arterial-phase hyperenhancement, making well-timed, artifact-free arterial-phase images a prerequisite for accurate diagnosis. Saline dilution 1:1, slow injection (1 ml/s), and automated bolus triggering reduce artifacts and optimize acquisition timing. KEY POINTS • There was substantial agreement among the three readers regarding the presence and type of arterial-phase (AP) artifacts, acquisition timing, and lesion visibility. • Impaired AP hypervascular lesion visibility occurred in 17 (3.8%) cases; in eight lesions due to mistiming and in nine lesions due to significant artifacts. • When AP timing was suboptimal, it was too late in 40 exams (3%) and too early in 4 exams (0.2%) of exams.
Collapse
Affiliation(s)
- Sarah Poetter-Lang
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University, General Hospital of Vienna (AKH), Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Raphael Ambros
- Department of Diagnostic and Interventional Radiology, Clinic Donaustadt, Vienna Healthcare Group, Vienna, Austria
| | - Alina Messner
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University, General Hospital of Vienna (AKH), Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Antonia Kristic
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University, General Hospital of Vienna (AKH), Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Jacqueline C Hodge
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University, General Hospital of Vienna (AKH), Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Nina Bastati
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University, General Hospital of Vienna (AKH), Waehringer Guertel 18-20, 1090, Vienna, Austria
| | - Wolfgang Schima
- Department of Diagnostic and Interventional Radiology, Goettlicher Heiland Krankenhaus, Barmherzige Schwestern Krankenhaus, and Sankt Josef Krankenhaus, Vienna, Austria
| | - Victoria Chernyak
- Department of Radiology, Memorial Sloan Kettering Cancer Center, New York City, NY, USA
| | - Mustafa R Bashir
- Department of Radiology, Duke University Medical Center, Durham, NC, USA
| | - Ahmed Ba-Ssalamah
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University, General Hospital of Vienna (AKH), Waehringer Guertel 18-20, 1090, Vienna, Austria.
| |
Collapse
|
5
|
Jang W, Cho HR, Ha GW, Song JS. Quantitative and qualitative evaluation of high-quality hepatobiliary phase imaging with shortened timing and utility in patients with compromised liver function. Abdom Radiol (NY) 2024; 49:2659-2671. [PMID: 39009896 DOI: 10.1007/s00261-024-04495-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 07/05/2024] [Accepted: 07/06/2024] [Indexed: 07/17/2024]
Abstract
PURPOSE To compare high flip angle (FA) hepatobiliary-phase (hHBP) imaging with variable time intervals to conventional HBP (cHBP) to assess the impact of increased FA on image quality in shortened HBP imaging. METHODS Data from 218 patients, divided into normal liver group (n = 184) and decompensated liver group (n = 34), who underwent liver magnetic resonance imaging (MRI) including 10-min, 15-min, 20-min hHBP, and cHBP were analyzed. Signal-to-noise ratio (SNR), contrast-ratio (CR), contrast-to-noise ratio (CNR), signal intensity ratios (SIRs), and relative enhancement (RE) of the liver were calculated for quantitative analysis. Sharpness, noise, and artifacts of the image, contrast media visibility, overall image quality, and lesion conspicuity were evaluated by two abdominal radiologists. RESULTS Quantitative analysis showed that SNR, RE, SIR for liver/muscle, liver/spleen, and CR of all hHBP images demonstrated a significantly higher value compared to cHBP images in the normal liver group (p < 0.001). These values were also superior in the normal liver group compared to the decompensated liver group (p < 0.01). In qualitative analysis, both normal and decompensated liver groups exhibited significantly superior image sharpness in all hHBP images compared to cHBP images and the overall image quality of the 15-min and 20-min hHBP did not show significant difference compared to cHBP. All values tended to be better in the normal liver group than the decompensated liver group with statistical significance except for lesion conspicuity (p < 0.01). CONCLUSION High-FA HBP has proven to be a valuable image acquisition method, potentially shortening liver MR imaging time while maintaining acceptable image quality.
Collapse
Affiliation(s)
- Weon Jang
- Department of Radiology, Jeonbuk National University Medical School and Hospital, 20 Geonji-ro, Deokjin-gu, Jeonju, 54907, Jeonbuk, Korea
- Research Institute of Clinical Medicine of Jeonbuk National University, 20 Geonji-ro, Deokjin-gu, Jeonju, 54907, Jeonbuk, Korea
- Biomedical Research Institute of Jeonbuk National University Hospital, 20 Geonji-ro, Deokjin-gu, Jeonju, 54907, Jeonbuk, Korea
| | - Hyeong Ryun Cho
- Department of Radiology, Jeonbuk National University Medical School and Hospital, 20 Geonji-ro, Deokjin-gu, Jeonju, 54907, Jeonbuk, Korea
- Research Institute of Clinical Medicine of Jeonbuk National University, 20 Geonji-ro, Deokjin-gu, Jeonju, 54907, Jeonbuk, Korea
- Biomedical Research Institute of Jeonbuk National University Hospital, 20 Geonji-ro, Deokjin-gu, Jeonju, 54907, Jeonbuk, Korea
| | - Gi Won Ha
- Department of Surgery, Jeonbuk National University Medical School and Hospital, Jeonju, Korea
| | - Ji Soo Song
- Department of Radiology, Jeonbuk National University Medical School and Hospital, 20 Geonji-ro, Deokjin-gu, Jeonju, 54907, Jeonbuk, Korea.
- Research Institute of Clinical Medicine of Jeonbuk National University, 20 Geonji-ro, Deokjin-gu, Jeonju, 54907, Jeonbuk, Korea.
- Biomedical Research Institute of Jeonbuk National University Hospital, 20 Geonji-ro, Deokjin-gu, Jeonju, 54907, Jeonbuk, Korea.
| |
Collapse
|
6
|
Maheshwari S, Gu CN, Caserta MP, Kezer CA, Shah VH, Torbenson MS, Menias CO, Fidler JL, Venkatesh SK. Imaging of Alcohol-Associated Liver Disease. AJR Am J Roentgenol 2024; 222:e2329917. [PMID: 37729554 DOI: 10.2214/ajr.23.29917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2023]
Abstract
Alcohol-associated liver disease (ALD) continues to be a global health concern, responsible for a significant number of deaths worldwide. Although most individuals who consume alcohol do not develop ALD, heavy drinkers and binge drinkers are at increased risk. Unfortunately, ALD is often undetected until it reaches advanced stages, frequently associated with portal hypertension and hepatocellular carcinoma (HCC). ALD is now the leading indication for liver transplant. The incidence of alcohol-associated hepatitis (AH) surged during the COVID-19 pandemic. Early diagnosis of ALD is therefore important in patient management and determination of prognosis, as abstinence can halt disease progression. The spectrum of ALD includes steatosis, steatohepatitis, and cirrhosis, with steatosis the most common manifestation. Diagnostic techniques including ultrasound, CT, and MRI provide useful information for identifying ALD and excluding other causes of liver dysfunction. Heterogeneous steatosis and transient perfusion changes on CT and MRI in the clinical setting of alcohol-use disorder are diagnostic of severe AH. Elastography techniques are useful for assessing fibrosis and monitoring treatment response. These various imaging modalities are also useful in HCC surveillance and diagnosis. This review discusses the imaging modalities currently used in the evaluation of ALD, highlighting their strengths, limitations, and clinical applications.
Collapse
Affiliation(s)
- Sharad Maheshwari
- Department of Radiology, Kokilaben Dhirubhai Ambani Hospital, Mumbai, India
| | - Chris N Gu
- Department of Radiology, Division of Abdominal Imaging, Mayo Clinic, 200 1st St SW, Rochester, MN 55905
| | - Melanie P Caserta
- Department of Radiology, Division of Abdominal Imaging, Mayo Clinic, Jacksonville, FL
| | - Camille A Kezer
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN
| | - Vijay H Shah
- Department of Internal Medicine, Division of Gastroenterology and Hepatology, Mayo Clinic, Rochester, MN
| | - Michael S Torbenson
- Department of Laboratory Medicine and Pathology, Division of Anatomic Pathology, Mayo Clinic, Rochester, MN
| | - Christine O Menias
- Department of Radiology, Division of Abdominal Imaging, Mayo Clinic, Scottsdale, AZ
| | - Jeff L Fidler
- Department of Radiology, Division of Abdominal Imaging, Mayo Clinic, 200 1st St SW, Rochester, MN 55905
| | - Sudhakar K Venkatesh
- Department of Radiology, Division of Abdominal Imaging, Mayo Clinic, 200 1st St SW, Rochester, MN 55905
| |
Collapse
|
7
|
Kiessling F, Schulz V. Perspectives of Evidence-Based Therapy Management. Nuklearmedizin 2023; 62:314-322. [PMID: 37802059 DOI: 10.1055/a-2159-6949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2023]
Abstract
BACKGROUND Therapeutics that specifically address biological processes often require a much finer selection of patients and subclassification of diseases. Thus, diagnostic procedures must describe the diseases in sufficient detail to allow selection of appropriate therapy and to sensitively track therapy response. Anatomical features are often not sufficient for this purpose and there is a need to image molecular and pathophysiological processes. METHOD Two imaging strategies can be pursued: molecular imaging attempts to image a few biomarkers that play key roles in pathological processes. Alternatively, patterns describing a biological process can be identified from the synopsis of multiple (non-specific) imaging markers, possibly in combination with omics and other clinical findings. Here, AI-based methods are increasingly being used. RESULTS Both strategies of evidence-based therapy management are explained in this review article and examples and clinical successes are presented. In this context, reviews of clinically approved molecular diagnostics and decision support systems are listed. Furthermore, since reliable, representative, and sufficiently large datasets are further important prerequisites for AI-assisted multiparametric analyses, concepts are presented to make data available in a structured way, e. g., using Generative Adversarial Networks to complement databases with virtual cases and to build completely anonymous reference databases. CONCLUSION Molecular imaging and computer-assisted cluster analysis of diagnostic data are complementary methods to describe pathophysiological processes. Both methods have the potential to improve (evidence-based) the future management of therapies, partly on their own but also in combined approaches. KEY POINTS · Molecular imaging and radiomics provide valuable complementary disease biomarkers.. · Data-driven, model-based, and hybrid model-based integrated diagnostics advance precision medicine.. · Synthetic data generation may become essential in the development process of future AI methods..
Collapse
Affiliation(s)
- Fabian Kiessling
- Universitätsklinikum Aachen, Lehrstuhl für Experimentelle Molekulare Bildgebung, Aachen, Germany
- Group Aachen, Fraunhofer-Institut für Digitale Medizin MEVIS, Bremen, Germany
| | - Volkmar Schulz
- Universitätsklinikum Aachen, Lehrstuhl für Experimentelle Molekulare Bildgebung, Aachen, Germany
- Group Aachen, Fraunhofer-Institut für Digitale Medizin MEVIS, Bremen, Germany
| |
Collapse
|
8
|
Kwok HM, Chau CM, Lee HCH, Wong T, Chan HF, Luk WH, Yung WTA, Cheng LF, Ma KFJ. Gadoxetic acid in hepatocellular carcinoma and liver metastases: pearls and pitfalls. Clin Radiol 2023; 78:715-723. [PMID: 37453807 DOI: 10.1016/j.crad.2023.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 05/23/2023] [Accepted: 06/12/2023] [Indexed: 07/18/2023]
Abstract
Gadoxetic disodium (Primovist) is a hepatocyte-specific magnetic resonance imaging (MRI) contrast agent with increasing popularity with its unique dual dynamic and excretory properties in focal liver lesion detection and characterisation. In-depth knowledge of its diagnostic utility and pitfalls in hepatocellular carcinoma (HCC) and liver metastases is crucial in facilitating clinical management. The current article reviews the pearls and pitfalls in these aspects with highlights from the latest research evidence. Pearls for common usage of Primovist in HCC includes detection of precursor cancer lesions in cirrhotic patients. Hepatobiliary phase hypointensity precedes arterial phase hyperenhancement (APHE) in hepatocarcinogenesis. Hepatobiliary phase hypointense nodules without APHE can represent early or progressed hepatocellular carcinoma (HCC) and high-grade dysplastic nodules. In addition, Primovist is useful to differentiate HCC from pseudolesions. Pitfalls in diagnosing HCC include transient tachypnoea in the arterial phase, rare hepatobiliary phase hyperintense HCC, and decompensated liver cirrhosis compromising image quality. Primovist is currently the most sensitive technique in diagnosing liver metastases before curative hepatic resection. Other patterns of enhancement of liver metastases, "disappearing" liver metastases are important pitfalls. Radiologists should be aware of the diagnostic utility, limitations, and potential pitfalls for the common usage of hepatobiliary specific contrast agent in liver MRI.
Collapse
Affiliation(s)
- H M Kwok
- Department of Radiology, Princess Margaret Hospital, Hong Kong.
| | - C M Chau
- Department of Radiology, Princess Margaret Hospital, Hong Kong
| | - H C H Lee
- Department of Radiology, Princess Margaret Hospital, Hong Kong
| | - T Wong
- Department of Radiology, Princess Margaret Hospital, Hong Kong
| | - H F Chan
- Department of Radiology, Queen Mary Hospital, Hong Kong
| | - W H Luk
- Department of Radiology, Princess Margaret Hospital, Hong Kong
| | - W T A Yung
- Department of Radiology, Princess Margaret Hospital, Hong Kong
| | - L F Cheng
- Department of Radiology, Princess Margaret Hospital, Hong Kong
| | - K F J Ma
- Department of Radiology, Princess Margaret Hospital, Hong Kong
| |
Collapse
|
9
|
Lee JH, Calcagno C, Feuerstein IM, Solomon J, Mani V, Huzella L, Castro MA, Laux J, Reeder RJ, Kim DY, Worwa G, Thomasson D, Hagen KR, Ragland DR, Kuhn JH, Johnson RF. Magnetic Resonance Imaging for Monitoring of Hepatic Disease Induced by Ebola Virus: a Nonhuman Primate Proof-of-Concept Study. Microbiol Spectr 2023; 11:e0353822. [PMID: 37184428 PMCID: PMC10269877 DOI: 10.1128/spectrum.03538-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 04/14/2023] [Indexed: 05/16/2023] Open
Abstract
Severe liver impairment is a well-known hallmark of Ebola virus disease (EVD). However, the role of hepatic involvement in EVD progression is understudied. Medical imaging in established animal models of EVD (e.g., nonhuman primates [NHPs]) can be a strong complement to traditional assays to better investigate this pathophysiological process in vivo and noninvasively. In this proof-of-concept study, we used longitudinal multiparametric magnetic resonance imaging (MRI) to characterize liver morphology and function in nine rhesus monkeys after exposure to Ebola virus (EBOV). Starting 5 days postexposure, MRI assessments of liver appearance, morphology, and size were consistently compatible with the presence of hepatic edema, inflammation, and congestion, leading to significant hepatomegaly at necropsy. MRI performed after injection of a hepatobiliary contrast agent demonstrated decreased liver signal on the day of euthanasia, suggesting progressive hepatocellular dysfunction and hepatic secretory impairment associated with EBOV infection. Importantly, MRI-assessed deterioration of biliary function was acute and progressed faster than changes in serum bilirubin concentrations. These findings suggest that longitudinal quantitative in vivo imaging may be a useful addition to standard biological assays to gain additional knowledge about organ pathophysiology in animal models of EVD. IMPORTANCE Severe liver impairment is a well-known hallmark of Ebola virus disease (EVD), but the contribution of hepatic pathophysiology to EVD progression is not fully understood. Noninvasive medical imaging of liver structure and function in well-established animal models of disease may shed light on this important aspect of EVD. In this proof-of-concept study, we used longitudinal magnetic resonance imaging (MRI) to characterize liver abnormalities and dysfunction in rhesus monkeys exposed to Ebola virus. The results indicate that in vivo MRI may be used as a noninvasive readout of organ pathophysiology in EVD and may be used in future animal studies to further characterize organ-specific damage of this condition, in addition to standard biological assays.
Collapse
Affiliation(s)
- Ji Hyun Lee
- Integrated Research Facility at Fort Detrick, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, Maryland, USA
| | - Claudia Calcagno
- Integrated Research Facility at Fort Detrick, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, Maryland, USA
| | - Irwin M. Feuerstein
- Integrated Research Facility at Fort Detrick, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, Maryland, USA
| | - Jeffrey Solomon
- Clinical Monitoring Research Program Directorate, Frederick National Laboratory for Cancer Research sponsored by the National Cancer Institute, Frederick, Maryland, USA
| | - Venkatesh Mani
- Integrated Research Facility at Fort Detrick, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, Maryland, USA
| | - Louis Huzella
- Integrated Research Facility at Fort Detrick, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, Maryland, USA
| | - Marcelo A. Castro
- Integrated Research Facility at Fort Detrick, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, Maryland, USA
| | - Joseph Laux
- Integrated Research Facility at Fort Detrick, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, Maryland, USA
| | - Rebecca J. Reeder
- Integrated Research Facility at Fort Detrick, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, Maryland, USA
| | - Dong-Yun Kim
- Office of Biostatistics Research, National Heart, Lung and Blood Institute, National Institutes of Health, Bethesda, Maryland, USA
| | - Gabriella Worwa
- Integrated Research Facility at Fort Detrick, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, Maryland, USA
| | - David Thomasson
- Integrated Research Facility at Fort Detrick, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, Maryland, USA
| | - Katie R. Hagen
- Integrated Research Facility at Fort Detrick, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, Maryland, USA
| | - Danny R. Ragland
- Integrated Research Facility at Fort Detrick, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, Maryland, USA
| | - Jens H. Kuhn
- Integrated Research Facility at Fort Detrick, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, Maryland, USA
| | - Reed F. Johnson
- Integrated Research Facility at Fort Detrick, Division of Clinical Research, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, Maryland, USA
- Emerging Viral Pathogens Section, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Fort Detrick, Frederick, Maryland, USA
| |
Collapse
|
10
|
Vernuccio F, Mercante I, Tong XX, Crimì F, Cillo U, Quaia E. Biliary complications after liver transplantation: A computed tomography and magnetic resonance imaging pictorial review. World J Gastroenterol 2023; 29:3257-3268. [PMID: 37377585 PMCID: PMC10292145 DOI: 10.3748/wjg.v29.i21.3257] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Revised: 03/23/2023] [Accepted: 04/27/2023] [Indexed: 06/01/2023] Open
Abstract
Biliary complications are the most common complications after liver transplantation. Computed tomography (CT) and magnetic resonance imaging (MRI) are cornerstones for timely diagnosis of biliary complications after liver transplantation. The diagnosis of these complications by CT and MRI requires expertise, mainly with respect to identifying subtle early signs to avoid missed or incorrect diagnoses. For example, biliary strictures may be misdiagnosed on MRI due to size mismatch of the common ducts of the donor and recipient, postoperative edema, pneumobilia, or susceptibility artifacts caused by surgical clips. Proper and prompt diagnosis of biliary complications after transplantation allows the timely initiation of appropriate management. The aim of this pictorial review is to illustrate various CT and MRI findings related to biliary complications after liver transplantation, based on time of presentation after surgery and frequency of occurrence.
Collapse
Affiliation(s)
- Federica Vernuccio
- Department of Radiology, University Hospital of Padova, Padova 35128, Italy
| | - Irene Mercante
- Department of Radiology-DIMED, University of Padova, Padova 35128, Italy
| | - Xiao-Xiao Tong
- Department of Radiology-DIMED, University of Padova, Padova 35128, Italy
| | - Filippo Crimì
- Department of Radiology-DIMED, University of Padova, Padova 35128, Italy
| | - Umberto Cillo
- Department of Surgery, Hepatobiliary Surgery and Liver Transplant Center, Oncology and Gastroenterology (DISCOG), University of Padova, Padova 35128, Italy
| | - Emilio Quaia
- Department of Radiology-DIMED, University of Padova, Padova 35128, Italy
| |
Collapse
|
11
|
Wang C, Yuan XD, Wu N, Sun WR, Tian Y. Optimization of hepatobiliary phase imaging in gadoxetic acid-enhanced magnetic resonance imaging: a narrative review. Quant Imaging Med Surg 2023; 13:1972-1982. [PMID: 36915322 PMCID: PMC10006143 DOI: 10.21037/qims-22-916] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Accepted: 01/04/2023] [Indexed: 02/25/2023]
Abstract
Background and Objective Gadolinium ethoxybenzyl-diethylenetriamine pentaacetic acid (Gd-EOB-DTPA)-enhanced magnetic resonance imaging (MRI) is widely used in clinical practice. Its unique hepatobiliary phase (HBP) has been used to improve the detection and identification of hepatic lesions and has also been used to evaluate hepatic function and fibrosis. At the early stage of its clinical practice, the HBP was typically collected empirically with a delay of 20 minutes after intravenous administration to image the liver with sufficient enhancement for diagnosis. However, numerous methods and consensus statements for optimizing HBP acquisition have been proposed. This review details the methods and consensus statements on optimizing HBP collection. Methods The electronic literature search was performed using the databases PubMed, MEDLINE, Cochrane, and Embase without limit on publication period to identify published reports on optimizing HBP imaging in Gd-EOB-DTPA-enhanced MRI. Articles with low relevance to the topics were excluded. Key Content and Findings Recently, an increasing number of investigations suggest that collecting HBP after 20 min is too drawn-out for patients with normal liver function but is too short for patients with cirrhosis. Previous studies demonstrated that liver enhancement is closely related to liver function in Gd-EOB-DTPA-enhanced MRI. Therefore several reports have proposed various HBP delay times at different liver function levels. These delay times could be evaluated by laboratory indicators, such as prothrombin (PT) activity, total bilirubin, direct bilirubin, and the model for end-stage liver disease. Other investigations have found that the initial visualization time of the intrahepatic bile duct (IHD) in Gd-EOB-DTPA-enhanced MRI to also be related to liver enhancement and function. Therefore, initial visualization of the IHD is considered necessary for adequate HBP and has been employed in HBP acquisition in recent reports. Conclusions Optimizing HBP acquisition according to individual hepatic function is a good strategy and was followed in most of the investigations included in our review. Obtaining adequate HBP in the shortest possible time is the target condition in Gd-EOB-DTPA-enhanced MRI. However, a more concise and efficient HBP acquisition strategy is still expected to be developed in the future.
Collapse
Affiliation(s)
- Chao Wang
- Department of Magnetic Resonance Imaging, Cangzhou Central Hospital, Cangzhou, China
| | - Xiao-Dong Yuan
- Department of Radiology, the 8th Medical Center of PLA General Hospital, Beijing, China
| | - Ning Wu
- Department of Radiology, the 8th Medical Center of PLA General Hospital, Beijing, China
| | - Wei-Rong Sun
- Department of Radiology, the 8th Medical Center of PLA General Hospital, Beijing, China
| | - Yuan Tian
- Department of Radiology, the 8th Medical Center of PLA General Hospital, Beijing, China
| |
Collapse
|
12
|
Breder VV, Alikhanov RB, Bagnenko SS, Bessonova EN, Isakov VA, Kudashkin NE, Medvedeva BM, Mishchenko AV, Novruzbekov MS, Rudakov VS. Screening and Early Diagnosis of Hepatocellular Cancer and Optimization of Diagnostic Imaging Techniques: A Review and Conclusion of the Expert Panel. RUSSIAN JOURNAL OF GASTROENTEROLOGY, HEPATOLOGY, COLOPROCTOLOGY 2023; 32:16-23. [DOI: 10.22416/1382-4376-2022-32-5-16-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/12/2023]
Abstract
Аim: to describe modern approaches for screening and early diagnosis of hepatocellular carcinoma (HCC).Key points. Screening for HCC in high-risk groups (cirrhosis of any etiology, patients with chronic viral hepatitis B and patients with F3 liver fibrosis) should be organized as regular (every 6 months) liver ultrasound in combination with determination of the serum alpha-fetoprotein (AFP) level. At an AFP level of ≥ 20 ng/ml, even in the absence of changes according to ultrasound data, it is advisable to perform MRI with a hepatospecific contrast agent (gadoxetic acid) which makes it possible to detect very small focal liver lesions. If focal liver lesions of 1–2 cm are detected on ultrasound, additional imaging of the liver using MRI with a hepatospecific contrast agent gadoxetic acid helps to identify HCC at an earlier stage or high degree dysplastic nodes. When planning surgical treatment and liver transplantation, it is preferable to use MRI with a hepatospecific contrast agent, since the presence of the hepatobiliary phase may allow the detection of additional smaller focal liver lesions and assess the nature of the focal liver lesion. When a patient is included in the waiting list for liver transplantation, the optimal frequency of liver MRI is 1 time in 3 months.Conclusion. MRI with hepatospecific contrast agent gadoxetic acid is effective in screening, early diagnosis and treatment planning for HCC.
Collapse
Affiliation(s)
- V. V. Breder
- Blokhin National Medical Research Center of Oncology
| | - R. B. Alikhanov
- Loginov Moscow Clinical Scientific Center; Lomonosov Moscow State University
| | - S. S. Bagnenko
- N.N. Petrov Research Institute of Oncology of the Ministry of Healthcare of the Russian Federation; Saint Petersburg State Pediatric Medical University
| | | | - V. A. Isakov
- Federal Research Centre of Nutrition, Biotechnology and Food Safety
| | | | | | - A. V. Mishchenko
- N.N. Petrov Research Institute of Oncology of the Ministry of Healthcare of the Russian Federation; Clinical Oncology Hospital No. 1 of the Department of Health of Moscow; Saint Petersburg State University
| | - M. S. Novruzbekov
- A.I. Yevdokimov Moscow State University of Medicine and Dentistry; N.V. Sklifosovskii Research Institute for Emergency Medicine of Moscow Healthcare Department
| | - V. S. Rudakov
- A.I. Burnasyan Federal Medical Biophysical Center FMBA
| |
Collapse
|
13
|
Kim TH, Woo S, Ebrahimzadeh S, McInnes MDF, Gerst SR, Do RK. Hepatic Adenoma Subtypes on Hepatobiliary Phase of Gadoxetic Acid-Enhanced MRI: Systematic Review and Meta-Analysis. AJR Am J Roentgenol 2023; 220:28-38. [PMID: 35920706 DOI: 10.2214/ajr.22.27989] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
BACKGROUND. Accumulating evidence indicates that hepatocellular adenoma (HCA) may have a higher frequency of hepatobiliary phase (HBP) iso- or hyperintensity than previously reported. OBJECTIVE. The purpose of this study was to evaluate the proportion of HCA that shows iso- or hyperintensity in the HBP of gadoxetic acid-enhanced MRI, stratified by HCA subtype (HNF1a-inactivated [H-HCA], inflammatory [I-HCA], β-catenin-activated [B-HCA], and unclassified [U-HCA] HCA), and to assess the diagnostic performance of HBP iso- or hyperintensity for differentiating focal nodular hyperplasia (FNH) from HCA. EVIDENCE ACQUISITION. PubMed, Embase, and Cochrane Central Register of Controlled Trials were searched through February 14, 2022, for articles reporting HBP signal intensity on gadoxetic acid-enhanced MRI among pathologically proven HCAs, stratified by subtype. The pooled proportion of HBP iso- or hyperintensity was determined for each subtype and compared using metaregression. Diagnostic performance of HBP iso- or hyperintensity for differentiating FNH from all HCA subtypes combined and from B-HCA and U-HCA combined was assessed using bivariate modeling. EVIDENCE SYNTHESIS. Twenty-eight studies (12 original investigations, 16 case reports or case series) were included, yielding 364 patients with 410 HCAs (112 H-HCAs, 203 I-HCAs, 33 B-HCAs, 62 U-HCAs). Pooled proportion of HBP iso- or hyperintensity was 14% (95% CI, 4-26%) among all HCAs, 0% (95% CI, 0-2%) among H-HCAs, 11% (95% CI, 0-29%) among U-HCAs, 14% (95% CI, 2-31%) among I-HCAs, and 59% (95% CI, 26-88%) among B-HCAs; metaregression showed significant difference among subtypes (p < .001). In four studies reporting diagnostic performance information, HBP iso- or hyperintensity had sensitivity of 99% (95% CI, 57-100%) and specificity of 89% (95% CI, 82-94%) for differentiating FNH from all HCA subtypes and sensitivity of 99% (95% CI, 53-100%) and specificity of 65% (95% CI, 44-80%) for differentiating FNH from B-HCA or U-HCA. CONCLUSION. HCA subtypes other than H-HCA show proportions of HBP iso- or hyperintensity ranging from 11% (U-HCA) to 59% (B-HCA). Low prevalence of B-HCA has contributed to prior reports of high diagnostic performance of HBP iso- or hyperintensity for differentiating FNH from HCA. CLINICAL IMPACT. Radiologists should recognize the low specificity of HBP iso- or hyperintensity on gadoxetic acid-enhanced MRI for differentiating FNH from certain HCA subtypes.
Collapse
Affiliation(s)
- Tae-Hyung Kim
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY 10065
| | - Sungmin Woo
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY 10065
| | - Sanam Ebrahimzadeh
- Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Matthew D F McInnes
- Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
- Department of Radiology, Clinical Epidemiology Program, Ottawa Hospital Research Institute, Ottawa, ON, Canada
| | - Scott R Gerst
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY 10065
| | - Richard K Do
- Department of Radiology, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, NY 10065
| |
Collapse
|
14
|
Renzulli M, Braccischi L, D'Errico A, Pecorelli A, Brandi N, Golfieri R, Albertini E, Vasuri F. State-of-the-art review on the correlations between pathological and magnetic resonance features of cirrhotic nodules. Histol Histopathol 2022; 37:1151-1165. [PMID: 35770721 DOI: 10.14670/hh-18-487] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Hepatocellular carcinoma (HCC) has become the second greatest cause of cancer-related mortality worldwide and the newest advancements in liver imaging have improved the diagnosis of both overt malignancies and premalignant lesions, such as cirrhotic or dysplastic nodules, which is crucial to improve overall patient survival rate and to choose the best treatment options. The role of Computed Tomography (CT) and Magnetic Resonance Imaging (MRI) has grown in the last 20 years. In particular, the introduction of hepatospecific contrast agents has strongly increased the definition of precursor nodules and detection of high-grade dysplastic nodules and early HCCs. Nevertheless, the diagnosis of liver tumours in cirrhotic patients sometimes remains challenging for radiologists, thus, in doubtful cases, biopsy and histological analysis become critical in clinical practice. This current review briefly summarizes the history of imaging and histology for HCC, covering the newest techniques and their limits. Then, the article discusses the links between radiological and pathological characteristics of liver lesions in cirrhotic patients, by describing the multistep process of hepatocarcinogenesis. Explaining the evolution of pathologic change from cirrhotic nodules to malignancy, the list of analyzed lesions provides regenerative nodules, low-grade and high-grade dysplastic nodules, small HCC and progressed HCC, including common subtypes (steatohepatitic HCC, scirrhous HCC, macrotrabecular massive HCC) and more rare forms (clear cell HCC, chromophobe HCC, neutrophil-rich HCC, lymphocyte-rich HCC, fibrolamellar HCC). The last chapter covers the importance of the new integrated morphological-molecular classification and its association with radiological features.
Collapse
Affiliation(s)
- Matteo Renzulli
- Department of Radiology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italia
| | - Lorenzo Braccischi
- Department of Radiology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italia
| | - Antonietta D'Errico
- Pathology Unit, IRCCS, Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Anna Pecorelli
- Department of Radiology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italia
| | - Nicolò Brandi
- Department of Radiology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italia
| | - Rita Golfieri
- Department of Radiology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italia
| | - Elisa Albertini
- Pathology Unit, IRCCS, Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| | - Francesco Vasuri
- Pathology Unit, IRCCS, Azienda Ospedaliero-Universitaria di Bologna, Bologna, Italy
| |
Collapse
|
15
|
Borrego Gómez J, Romera N, Tellado J, del Campo L, Díaz Formoso J, Fuster M, Vivas I, Ramón Botella E, Menéndez de Llano Ortega R. Recomendaciones de expertos sobre el uso de ácido gadoxético en pacientes con metástasis hepáticas en España. RADIOLOGIA 2022. [DOI: 10.1016/j.rx.2021.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
16
|
Borrego Gómez J, Romera N, Tellado J, del Campo L, Díaz Formoso J, Fuster M, Vivas I, Ramón Botella E, Menéndez de Llano Ortega R. Expert recommendations about the use of gadoxetic acid in patients with liver metastases in Spain. RADIOLOGIA 2022; 64:300-309. [DOI: 10.1016/j.rxeng.2021.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 09/03/2021] [Indexed: 10/15/2022]
|
17
|
Kiessling F, Schulz V. Perspectives of Evidence-Based Therapy Management. ROFO-FORTSCHR RONTG 2022; 194:728-736. [PMID: 35545101 DOI: 10.1055/a-1752-0839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
Abstract
BACKGROUND Therapeutics that specifically address biological processes often require a much finer selection of patients and subclassification of diseases. Thus, diagnostic procedures must describe the diseases in sufficient detail to allow selection of appropriate therapy and to sensitively track therapy response. Anatomical features are often not sufficient for this purpose and there is a need to image molecular and pathophysiological processes. METHOD Two imaging strategies can be pursued: molecular imaging attempts to image a few biomarkers that play key roles in pathological processes. Alternatively, patterns describing a biological process can be identified from the synopsis of multiple (non-specific) imaging markers, possibly in combination with omics and other clinical findings. Here, AI-based methods are increasingly being used. RESULTS Both strategies of evidence-based therapy management are explained in this review article and examples and clinical successes are presented. In this context, reviews of clinically approved molecular diagnostics and decision support systems are listed. Furthermore, since reliable, representative, and sufficiently large datasets are further important prerequisites for AI-assisted multiparametric analyses, concepts are presented to make data available in a structured way, e. g., using Generative Adversarial Networks to complement databases with virtual cases and to build completely anonymous reference databases. CONCLUSION Molecular imaging and computer-assisted cluster analysis of diagnostic data are complementary methods to describe pathophysiological processes. Both methods have the potential to improve (evidence-based) the future management of therapies, partly on their own but also in combined approaches. KEY POINTS · Molecular imaging and radiomics provide valuable complementary disease biomarkers.. · Data-driven, model-based, and hybrid model-based integrated diagnostics advance precision medicine.. · Synthetic data generation may become essential in the development process of future AI methods.. CITATION FORMAT · Kiessling F, Schulz V, . Perspectives of Evidence-Based Therapy Management. Fortschr Röntgenstr 2022; DOI: 10.1055/a-1752-0839.
Collapse
Affiliation(s)
- Fabian Kiessling
- Universitätsklinikum Aachen, Lehrstuhl für Experimentelle Molekulare Bildgebung, Aachen, Germany.,Group Aachen, Fraunhofer-Institut für Digitale Medizin MEVIS, Bremen, Germany
| | - Volkmar Schulz
- Universitätsklinikum Aachen, Lehrstuhl für Experimentelle Molekulare Bildgebung, Aachen, Germany.,Group Aachen, Fraunhofer-Institut für Digitale Medizin MEVIS, Bremen, Germany
| |
Collapse
|
18
|
Hojreh A, Ba-Ssalamah A, Lang C, Poetter-Lang S, Huber WD, Tamandl D. Influence of age on gadoxetic acid disodium-induced transient respiratory motion artifacts in pediatric liver MRI. PLoS One 2022; 17:e0264069. [PMID: 35235594 PMCID: PMC8890729 DOI: 10.1371/journal.pone.0264069] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2021] [Accepted: 02/02/2022] [Indexed: 11/27/2022] Open
Abstract
PURPOSE Gd-EOB-DTPA-enhanced liver MRI is frequently compromised by transient severe motion artifacts (TSM) in the arterial phase, which limits image interpretation for the detection and differentiation of focal liver lesions and for the recognition of the arterial vasculature before and after liver transplantation. The purpose of this study was to investigate which patient factors affect TSM in children who undergo Gd-EOB-DTPA-enhanced liver MRI and whether younger children are affected as much as adolescents. METHODS One hundred and forty-eight patients (65 female, 83 male, 0.1-18.9 years old), who underwent 226 Gd-EOB-DTPA-enhanced MRIs were included retrospectively in this single-center study. The occurrence of TSM was assessed by three readers using a four-point Likert scale. The relation to age, gender, body mass index, indication for MRI, requirement for sedation, and MR repetition was investigated using uni- and multivariate logistic regression analysis. RESULTS In Gd-EOB-DTPA-enhanced MRIs, TSM occurred in 24 examinations (10.6%). Patients with TSM were significantly older than patients without TSM (median 14.3 years; range 10.1-18.1 vs. 12.4 years; range 0.1-18.9, p<0.001). TSM never appeared under sedation. Thirty of 50 scans in patients younger than 10 years were without sedation. TSM were not observed in non-sedated patients younger than 10 years of age (p = 0.028). In a logistic regression analysis, age remained the only cofactor independently associated with the occurrence of TSM (hazard ratio 9.152, p = 0.049). CONCLUSION TSM in Gd-EOB-DTPA-enhanced liver MRI do not appear in children under the age of 10 years.
Collapse
Affiliation(s)
- Azadeh Hojreh
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Ahmed Ba-Ssalamah
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Christian Lang
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
- Department of Anaesthesia, Emergency Medicine and Intensive Care, General Hospital Wiener Neustadt, Wiener Neustadt, Austria
| | - Sarah Poetter-Lang
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Wolf-Dietrich Huber
- Department of Pediatrics and Adolescent Medicine, Medical University of Vienna, Vienna, Austria
| | - Dietmar Tamandl
- Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
19
|
Hwang JA, Min JH, Kim SH, Choi SY, Lee JE, Moon JY. Total Bilirubin Level as a Predictor of Suboptimal Image Quality of the Hepatobiliary Phase of Gadoxetic Acid-Enhanced MRI in Patients with Extrahepatic Bile Duct Cancer. Korean J Radiol 2022; 23:389-401. [PMID: 35029076 PMCID: PMC8961017 DOI: 10.3348/kjr.2021.0407] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 10/16/2021] [Accepted: 10/30/2021] [Indexed: 11/23/2022] Open
Abstract
Objective This study aimed to determine a factor for predicting suboptimal image quality of the hepatobiliary phase (HBP) of gadoxetic acid-enhanced MRI in patients with extrahepatic bile duct (EHD) cancer before MRI examination. Materials and Methods We retrospectively evaluated 259 patients (mean age ± standard deviation: 68.0 ± 8.3 years; 162 male and 97 female) with EHD cancer who underwent gadoxetic acid-enhanced MRI between 2011 and 2017. Patients were divided into a primary analysis set (n = 184) and a validation set (n = 75) based on the diagnosis date of January 2014. Two reviewers assigned the functional liver imaging score (FLIS) to reflect the HBP image quality. The FLIS consists of the sum of three HBP features, each scored on a 0–2 scale: liver parenchymal enhancement, biliary excretion, and signal intensity of the portal vein. Patients were classified into low-FLIS (0–3) or high-FLIS (4–6) groups. Multivariable analysis was performed to determine a predictor of low FLIS using serum biochemical and imaging parameters of cholestasis severity. The optimal cutoff value for predicting low FLIS was obtained using receiver operating characteristic analysis, and validation was performed. Results Of the 259 patients, 140 (54.0%) and 119 (46.0%) were classified into the low-FLIS and high-FLIS groups, respectively. In the primary analysis set, total bilirubin was an independent factor associated with low FLIS (adjusted odds ratio per 1-mg/dL increase, 1.62; 95% confidence interval [CI], 1.32–1.98). The optimal cutoff value of total bilirubin for predicting low FLIS was 2.1 mg/dL with a sensitivity of 95.1% (95% CI: 88.9–98.4) and a specificity of 89.0% (95% CI: 80.2–94.9). In the validation set, the total bilirubin cutoff showed a sensitivity of 92.1% (95% CI: 78.6–98.3) and a specificity of 83.8% (95% CI: 68.0–93.8). Conclusion Serum total bilirubin before acquisition of gadoxetic acid-enhanced MRI may help predict suboptimal HBP image quality in patients with EHD cancer.
Collapse
Affiliation(s)
- Jeong Ah Hwang
- Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Ji Hye Min
- Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea.
| | - Seong Hyun Kim
- Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Seo-Youn Choi
- Department of Radiology, Soonchunhyang University Bucheon Hospital, Soonchunhyang University College of Medicine, Bucheon, Korea
| | - Ji Eun Lee
- Department of Radiology, Soonchunhyang University Bucheon Hospital, Soonchunhyang University College of Medicine, Bucheon, Korea
| | - Ji Yoon Moon
- Department of Radiology, Kangdong Seong-Sim Hospital, Hallym University College of Medicine, Seoul, Korea
| |
Collapse
|
20
|
Öcal O, Peynircioglu B, Loewe C, van Delden O, Vandecaveye V, Gebauer B, Zech CJ, Sengel C, Bargellini I, Iezzi R, Benito A, Schütte K, Gasbarrini A, Seidensticker R, Wildgruber M, Pech M, Malfertheiner P, Ricke J, Seidensticker M. Correlation of liver enhancement in gadoxetic acid-enhanced MRI with liver functions: a multicenter-multivendor analysis of hepatocellular carcinoma patients from SORAMIC trial. Eur Radiol 2021; 32:1320-1329. [PMID: 34467453 PMCID: PMC8795026 DOI: 10.1007/s00330-021-08218-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2021] [Revised: 07/01/2021] [Accepted: 07/15/2021] [Indexed: 02/08/2023]
Abstract
OBJECTIVES To evaluate the correlation between liver enhancement on hepatobiliary phase and liver function parameters in a multicenter, multivendor study. METHODS A total of 359 patients who underwent gadoxetic acid-enhanced MRI using a standardized protocol with various scanners within a prospective multicenter phase II trial (SORAMIC) were evaluated. The correlation between liver enhancement on hepatobiliary phase normalized to the spleen (liver-to-spleen ratio, LSR) and biochemical laboratory parameters, clinical findings related to liver functions, liver function grading systems (Child-Pugh and Albumin-Bilirubin [ALBI]), and scanner characteristics were analyzed using uni- and multivariate analyses. RESULTS There was a significant positive correlation between LSR and albumin (rho = 0.193; p < 0.001), platelet counts (rho = 0.148; p = 0.004), and sodium (rho = 0.161; p = 0.002); and a negative correlation between LSR and total bilirubin (rho = -0.215; p < 0.001) and AST (rho = -0.191; p < 0.001). Multivariate analysis confirmed independent significance for each of albumin (p = 0.022), total bilirubin (p = 0.045), AST (p = 0.031), platelet counts (p = 0.012), and sodium (p = 0.006). The presence of ascites (1.47 vs. 1.69, p < 0.001) and varices (1.55 vs. 1.69, p = 0.006) was related to significantly lower LSR. Similarly, patients with ALBI grade 1 had significantly higher LSR than patients with grade 2 (1.74 ± 0.447 vs. 1.56 ± 0.408, p < 0.001); and Child-Pugh A patients had a significantly higher LSR than Child-Pugh B (1.67 ± 0.44 vs. 1.49 ± 0.33, p = 0.021). Also, LSR was negatively correlated with MELD-Na scores (rho = -0.137; p = 0.013). However, one scanner brand was significantly associated with lower LSR (p < 0.001). CONCLUSIONS The liver enhancement on the hepatobiliary phase of gadoxetic acid-enhanced MRI is correlated with biomarkers of liver functions in a multicenter cohort. However, this correlation shows variations between scanner brands. KEY POINTS • The correlation between liver enhancement on the hepatobiliary phase of gadoxetic acid-enhanced MRI and liver function is consistent in a multicenter-multivendor cohort. • Signal intensity-based indices (liver-to-spleen ratio) can be used as an imaging biomarker of liver function. • However, absolute values might change between vendors.
Collapse
Affiliation(s)
- Osman Öcal
- Department of Radiology, University Hospital, Ludwig Maximilian University of Munich, Marchioninistrasse 15, 81377, Munich, Germany
| | | | - Christian Loewe
- Section of Cardiovascular and Interventional Radiology, Department of Bioimaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria
| | - Otto van Delden
- Department of Radiology and Nuclear Medicine, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | | | - Bernhard Gebauer
- Department of Radiology, Charité - University Medicine Berlin, Berlin, Germany
| | - Christoph J Zech
- Radiology and Nuclear Medicine, University Hospital Basel, University of Basel, Basel, Switzerland
| | - Christian Sengel
- Radiology Department, Grenoble University Hospital, La Tronche, France
| | - Irene Bargellini
- Department of Vascular and Interventional Radiology, University Hospital of Pisa, Pisa, Italy
| | - Roberto Iezzi
- Dipartimento di Diagnostica per Immagini, Radioterapia Oncologica ed Ematologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, UOC di Radiologia, Rome, Italy
| | - Alberto Benito
- Abdominal Radiology Unit, Deparment of Radiology, Clínica Universidad de Navarra, Pamplona, Spain
| | - Kerstin Schütte
- Department of Internal Medicine and Gastroenterology, Niels-Stensen-Kliniken Marienhospital, Osnabrück, Germany
| | - Antonio Gasbarrini
- Fondazione Policlinico Gemelli IRCCS, Università' Cattolica del Sacro Cuore, Rome, Italy
| | - Ricarda Seidensticker
- Department of Radiology, University Hospital, Ludwig Maximilian University of Munich, Marchioninistrasse 15, 81377, Munich, Germany
| | - Moritz Wildgruber
- Department of Radiology, University Hospital, Ludwig Maximilian University of Munich, Marchioninistrasse 15, 81377, Munich, Germany
| | - Maciej Pech
- Departments of Radiology and Nuclear Medicine, University of Magdeburg, Magdeburg, Germany
| | | | - Jens Ricke
- Department of Radiology, University Hospital, Ludwig Maximilian University of Munich, Marchioninistrasse 15, 81377, Munich, Germany
| | - Max Seidensticker
- Department of Radiology, University Hospital, Ludwig Maximilian University of Munich, Marchioninistrasse 15, 81377, Munich, Germany.
| |
Collapse
|
21
|
Chen QF, Li W, Yu SCH, Chou YH, Rhim H, Yang X, Shen L, Dong A, Huang T, Huang J, Zhang F, Fan W, Zhao M, Gu Y, Huang Z, Zuo M, Zhai B, Xiao Y, Kuang M, Li J, Han J, Song W, Ma J, Wu P. Consensus of Minimally Invasive and Multidisciplinary Comprehensive Treatment for Hepatocellular Carcinoma - 2020 Guangzhou Recommendations. Front Oncol 2021; 11:621834. [PMID: 34277397 PMCID: PMC8284077 DOI: 10.3389/fonc.2021.621834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Accepted: 06/15/2021] [Indexed: 12/24/2022] Open
Abstract
In China, the majority of patients with hepatocellular carcinoma (HCC) result from long-term infection of hepatitis B. Pathologically, HCC is characterized by rich blood supply, multicentric origins, early vascular invasion and intrahepatic metastasis. Therefore, HCC is not a local disease but a systemic disease at the beginning of its occurrence. For this reason, a comprehensive treatment strategy should be adopted in the management of HCC, including local treatments (such as surgical resection, radiofrequency ablation, microwave ablation, chemical ablation and cryoablation, etc.), organ-level treatments [such as transcatheter arterial infusion of chemotherapy and transcatheter arterial chemoembolization (TACE)], and systemic treatments (such as immunotherapy, antiviral therapy and molecular targeted therapy, etc.). This consensus sets forth the minimally-invasive and multidisciplinary comprehensive guideline of HCC, focusing on the following eight aspects (1) using hepaticarteriography, CT hepatic arteriography (CTHA), CT arterial portography (CTAP), lipiodol CT (Lp-CT), TACE-CT to find the intrahepatic lesion and make precise staging (2) TACE combined with ablation or ablation as the first choice of treatment for early stage or small HCC, while other therapies are considered only when ablation is not applicable (3) infiltrating HCC should be regarded as an independent subtype of HCC (4) minimally-invasive comprehensive treatment could be adopted in treating metastatic lymph nodes (5) multi-level subdivision of M-staging should be used for individualized treatment and predicting prognosis (6) HCC with severe hepatic decompensation is the only candidate criterion for liver transplantation (7) bio-immunotherapy, traditional Chinese medicine therapy, antiviral therapy, and psychosocial and psychopharmacological interventions should be advocated through the whole course of HCC treatment (8) implementation of multicenter randomized controlled trials of minimally-invasive therapy versus surgery for early and intermediate stage HCC is recommended.
Collapse
Affiliation(s)
- Qi-Feng Chen
- Department of Medical Imaging and Interventional Radiology, Sun Yat-sen University Cancer Center, Guangzhou, China.,State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China.,Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Wang Li
- Department of Medical Imaging and Interventional Radiology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Simon Chun-Ho Yu
- Department of Imaging and Interventional Radiology, The Chinese University of Hong Kong, Hong Kong, China
| | - Yi-Hong Chou
- Department of Medical Imaging and Radiological Technology, Yuanpei University of Medical Technology, Hsinchu, China.,Department of Radiology, Taipei General Hospital and School of Medicine, National YangMing University, Taipei, China.,Department of Radiology, Yeezen General Hospital, Taoyuan, China
| | - Hyunchul Rhim
- Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, South Korea
| | - Xiaoming Yang
- Image-Guided Bio-Molecular Intervention Research and Division of Vascular and Interventional Radiology, Department of Radiology, University of Washington School of Medicine, Seattle, WA, United States
| | - Lujun Shen
- Department of Medical Imaging and Interventional Radiology, Sun Yat-sen University Cancer Center, Guangzhou, China.,State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China.,Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Annan Dong
- Department of Medical Imaging and Interventional Radiology, Sun Yat-sen University Cancer Center, Guangzhou, China.,State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China.,Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Tao Huang
- Department of Medical Imaging and Interventional Radiology, Sun Yat-sen University Cancer Center, Guangzhou, China.,State Key Laboratory of Oncology in South China, Sun Yat-sen University Cancer Center, Guangzhou, China.,Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Jinhua Huang
- Department of Medical Imaging and Interventional Radiology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Fujun Zhang
- Department of Medical Imaging and Interventional Radiology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Weijun Fan
- Department of Medical Imaging and Interventional Radiology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Ming Zhao
- Department of Medical Imaging and Interventional Radiology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Yangkui Gu
- Department of Medical Imaging and Interventional Radiology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Zhimei Huang
- Department of Medical Imaging and Interventional Radiology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Mengxuan Zuo
- Department of Medical Imaging and Interventional Radiology, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Bo Zhai
- Department of Surgery, Shanghai Jiaotong University School of Medicine Renji Hospital, Shanghai, China
| | - Yueyong Xiao
- Department of Radiology, The First Medical Centre, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Ming Kuang
- Department of Liver Surgery, The First Affiliated Hospital of Sun Yat-sen University, Guangzhou, China
| | - Jiaping Li
- Department of Interventional Oncology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jianjun Han
- Department of Intervention, Shandong Cancer Hospital, Jinan, China
| | - Wei Song
- Department of Oncology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Jie Ma
- Department of Biotherapy, Beijing Hospital, National Center of Gerontology, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, China
| | - Peihong Wu
- Department of Medical Imaging and Interventional Radiology, Sun Yat-sen University Cancer Center, Guangzhou, China
| |
Collapse
|
22
|
Zhu M, Li H, Wang C, Yang B, Wang X, Hou F, Yang S, Wang Y, Guo X, Qi X. Focal nodular hyperplasia mimicking hepatocellular adenoma and carcinoma in two cases. Drug Discov Ther 2021; 15:112-117. [PMID: 33952777 DOI: 10.5582/ddt.2021.01033] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Focal nodular hyperplasia (FNH) is a solid benign tumor of the liver, predominantly in young women. A correct diagnosis of FNH is essential for making appropriate clinical decisions and avoiding unnecessary liver resection. Herein, we reported that two male cases with FNH, who initially presented with persistent abdominal discomfort, were misdiagnosed with hepatocellular adenoma (HCA) and hepatocellular carcinoma (HCC) on contrast-enhanced magnetic resonance imaging and computed tomography scans, respectively. After surgery, a histological diagnosis of FNH was finally established. In this paper, we also reviewed the knowledge regarding diagnosis and differential diagnosis of FNH on imaging examinations, which are helpful for avoiding misdiagnoses and guiding clinical interventions.
Collapse
Affiliation(s)
- Menghua Zhu
- Department of Gastroenterology, General Hospital of Northern Theater Command, Shenyang, China
- Postgraduate College, Jinzhou Medical University, Jinzhou, China
| | - Hongyu Li
- Department of Gastroenterology, General Hospital of Northern Theater Command, Shenyang, China
| | - Chunhui Wang
- Department of Hepatobiliary Surgery, General Hospital of Northern Theater Command, Shenyang, China
| | - Benqiang Yang
- Department of Radiology, General Hospital of Northern Theater Command, Shenyang, China
| | - Xuehan Wang
- Department of Pathology, General Hospital of Northern Theater Command, Shenyang, China
| | - Feifei Hou
- Department of Gastroenterology, General Hospital of Northern Theater Command, Shenyang, China
| | - Shengye Yang
- Department of Gastroenterology, General Hospital of Northern Theater Command, Shenyang, China
| | - Yuye Wang
- Department of Gastroenterology, General Hospital of Northern Theater Command, Shenyang, China
- Postgraduate College, Jinzhou Medical University, Jinzhou, China
| | - Xiaozhong Guo
- Department of Gastroenterology, General Hospital of Northern Theater Command, Shenyang, China
| | - Xingshun Qi
- Department of Gastroenterology, General Hospital of Northern Theater Command, Shenyang, China
| |
Collapse
|
23
|
Tsili AC, Alexiou G, Naka C, Argyropoulou MI. Imaging of colorectal cancer liver metastases using contrast-enhanced US, multidetector CT, MRI, and FDG PET/CT: a meta-analysis. Acta Radiol 2021; 62:302-312. [PMID: 32506935 DOI: 10.1177/0284185120925481] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
BACKGROUND Imaging of colorectal cancer liver metastases (CRCLMs) has improved in recent years. Therefore, the role of current imaging techniques needs to be defined. PURPOSE To assess the diagnostic performance of contrast-enhanced ultrasound (CEUS), multidetector computed tomography (MDCT), magnetic resonance imaging (MRI), and fluorodeoxyglucose (FDG) positron emission tomography (PET)/CT in the detection of CRCLMs. MATERIAL AND METHODS PubMed database was searched for articles published during 2000-2019. Inclusion criteria were as follows: diagnosis/suspicion of CRCLMs; CEUS, MDCT, MRI, or FDG PET/CT performed for the detection of CRCLMs; prospective study design; histopathologic examination, intraoperative findings and/or follow-up used as reference standard; and data for calculating sensitivity and specificity reported. RESULTS Twelve prospective studies were assessed, including 536 patients with CRCLMs (n = 1335). On a per-lesion basis, the sensitivity of CEUS, MDCT, MRI, and FDG PET/CT was 86%, 84%, 89%, and 62%, respectively. MRI had the highest sensitivity on a per-lesion analysis. CEUS and MDCT had comparable sensitivities. On a per-patient basis, the sensitivity and specificity of CEUS, MDCT, MRI, and FDG PET/CT was 80% and 97%, 87% and 95%, 87% and 94%, and 96% and 97%, respectively. The per-patient sensitivities for MRI and MDCT were similar. The sensitivity for MRI was higher than that for CEUS, MDCT, and FDG PET/CT for lesions <10 mm and lesions at least 10 mm in size. Hepatospecific contrast agent did not improve diagnostic performances. CONCLUSION MRI is the preferred imaging modality for evaluating CRCLMs. Both MDCT and CEUS can be used as alternatives.
Collapse
Affiliation(s)
- Athina C Tsili
- Department of Clinical Radiology, School of Health Sciences, Faculty of Medicine, University of Ioannina, Ioannina, Greece
| | - George Alexiou
- Department of Neurosurgery, School of Health Sciences, Faculty of Medicine, University of Ioannina, Ioannina, Greece
| | - Christina Naka
- Department of Clinical Radiology, School of Health Sciences, Faculty of Medicine, University of Ioannina, Ioannina, Greece
| | - Maria I Argyropoulou
- Department of Clinical Radiology, School of Health Sciences, Faculty of Medicine, University of Ioannina, Ioannina, Greece
| |
Collapse
|
24
|
Zhou N, Hu A, Shi Z, Wang X, Zhu Q, Zhou Q, Ma J, Zhao F, Kong W, He J. Inter-observer agreement of computed tomography and magnetic resonance imaging on gross tumor volume delineation of intrahepatic cholangiocarcinoma: an initial study. Quant Imaging Med Surg 2021; 11:579-585. [PMID: 33532258 DOI: 10.21037/qims-19-1093] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Background Intrahepatic cholangiocarcinoma (ICC) is the second most common primary liver tumor, and local radiotherapy has a positive effect on patients with an unresectable tumor. Accurate delineation of gross tumor volume (GTV) is crucial to improve the efficacy of radiotherapy. The purpose of this article was to evaluate the consistency of CT, diffusion weighted imaging (DWI) and Gadoxetic acid disodium (Gd-EOB-DTPA)-enhanced MRI on GTV delineation of ICC. Methods Fourteen patients with ICC underwent CT (Plain and Portal, CT scans before and 70 s after the injection of Omnipaque, respectively), DWI, and Gd-EOB-DTPA-enhanced MRI (EOB 70 s and EOB 15 min, mDIXON scans at 70 s and 15 min after the injection of Gd-EOB-DTPA, respectively) examinations before radiotherapy. Volumes of GTV delineation on CT and MRI images were recorded. Dice similarity coefficient (DSC) was calculated to evaluate the spatial overlap. Results Tumor volume on DWI and EOB 15 min were larger than that on EOB 70 s significantly (both P=0.004). DSC of DWI was significantly larger than that of other CT and MRI sequences (all P≤0.002). DSC of EOB 15 min tended to be larger than that of other CT sequences and EOB 70 s, however, without significances (all P>0.005). Significant correlation was found between DSC and tumor volume (R=0.35, P=0.003). Conclusions DWI had significantly higher agreement on GTV delineation of ICC. GTV delineations of ICC on Gd-EOB-DTPA-enhanced MRI showed excellent inter-observer agreement. Fusion of CT and MRI images should be considered to improve the accuracy of GTV delineation.
Collapse
Affiliation(s)
- Nan Zhou
- Department of Radiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Anning Hu
- Department of Radiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Zhihao Shi
- Department of Radiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Xiaolu Wang
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University & Clinical Cancer Institute of Nanjing University, Nanjing, China
| | - Qiongjie Zhu
- Department of Radiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Qun Zhou
- Department of Radiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Jun Ma
- Department of Mathematics, Nanjing University of Science and Technology, Nanjing, China
| | - Feng Zhao
- Department of Radiation Oncology, the First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Weiwei Kong
- The Comprehensive Cancer Centre of Drum Tower Hospital, Medical School of Nanjing University & Clinical Cancer Institute of Nanjing University, Nanjing, China.,Department of Oncology of Yizheng Hospital, Nanjing Drum Tower Hospital Group, Yizheng, China
| | - Jian He
- Department of Radiology, Nanjing Drum Tower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| |
Collapse
|
25
|
Ghorra C, Pommier R, Piveteau A, Rubbia-Brandt L, Vilgrain V, Terraz S, Ronot M. The diagnostic performance of a simulated "short" gadoxetic acid-enhanced MRI protocol is similar to that of a conventional protocol for the detection of colorectal liver metastases. Eur Radiol 2020; 31:2451-2460. [PMID: 33025173 DOI: 10.1007/s00330-020-07344-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/28/2020] [Accepted: 09/23/2020] [Indexed: 12/11/2022]
Abstract
OBJECTIVES To compare the performance of standard and simulated short gadoxetic acid-enhanced MRI protocols for the detection of colorectal liver metastases (CRLM). METHODS From 2008 to 2017, 67 patients (44 men (66%); mean age 65 ± 11 years old) who underwent gadoxetic acid-enhanced MRI during the initial work-up for colorectal cancer were included. Exams were independently reviewed by two readers blinded to clinical data in two reading sessions: (1) all acquired sequences (standard "long" protocol) and (2) only T2-weighted, diffusion-weighted, and hepatobiliary phase images (simulated "short" protocol). Readers characterized detected lesions using a 5-point scale (1-certainly benign to 5-certainly malignant). A lesion was considered a CRLM when the score was ≥ 3. The reference standard was histopathology or 12-month imaging follow-up. Chi-square, Student's t, and McNemar tests were used for comparisons. RESULTS A total of 486 lesions including 331 metastases (68%) were analyzed. The metastasis detection rate was 86.1% (95% CI 82-89.4)-86.7% (82.6-90) and 85.8% (81.6-89.2)-87% (82.9-90.2) with the short and long protocols, respectively (p > 0.99). Among detected lesions, 92.1% (89.1-94.4)-94.8% (92.2-96.6) and 84.6% (80.8-87.7)-88.8% (85.4-91.5) were correctly classified with the short and long protocols, respectively (p = 0.13 and p = 0.10). The results remained unchanged when lesions scored ≥ 4 were considered as CRLM. CONCLUSION The diagnostic performance of a simulated short gadoxetic enhanced-MR protocol including T2-weighted, diffusion-weighted, and hepatobiliary phase appears similar to that of a standard long protocol including dynamic phase images. Since this protocol shortens the duration of MR examination, it could facilitate the evaluation of patients with colorectal liver metastases. KEY POINTS • The detection rate of colorectal metastases with a simulated, short, MRI protocol was similar to that of a standard protocol. • The performance of both protocols for the differentiation of metastases and benign lesions appears to be similar. • A short MR imaging protocol could facilitate the evaluation of patients with colorectal liver metastases.
Collapse
Affiliation(s)
- Camille Ghorra
- Department of Radiology, University Hospitals Paris Nord Val de Seine, Beaujon, Clichy, Hauts-de-Seine, France
| | - Romain Pommier
- Department of Radiology, University Hospitals Paris Nord Val de Seine, Beaujon, Clichy, Hauts-de-Seine, France
| | - Arthur Piveteau
- Department of Radiology, University Hospitals of Geneva - HUG, Geneva, Switzerland
| | - Laura Rubbia-Brandt
- Department of Pathology, University Hospitals of Geneva - HUG, Geneva, Switzerland
| | - Valérie Vilgrain
- Department of Radiology, University Hospitals Paris Nord Val de Seine, Beaujon, Clichy, Hauts-de-Seine, France.,Université de Paris, Paris, France.,INSERM U1149, CRI, Paris, France
| | - Sylvain Terraz
- Department of Radiology, University Hospitals of Geneva - HUG, Geneva, Switzerland
| | - Maxime Ronot
- Department of Radiology, University Hospitals Paris Nord Val de Seine, Beaujon, Clichy, Hauts-de-Seine, France. .,Université de Paris, Paris, France. .,INSERM U1149, CRI, Paris, France.
| |
Collapse
|
26
|
Fernandes DA, Martins DL, Penachim TJ, Barros RHDO, Costa LBED, Ataíde ECD, Boin IDFSF, Caserta NMG. The value of morphofunctional magnetic resonance imaging with hepatospecific contrast agent in the characterization of hepatocellular carcinoma in a non-cirrhotic patient with hepatitis C. REVISTA DA ASSOCIACAO MEDICA BRASILEIRA (1992) 2020; 66:908-912. [PMID: 32844950 DOI: 10.1590/1806-9282.66.7.908] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2019] [Accepted: 01/19/2020] [Indexed: 02/08/2023]
Abstract
Hepatocellular carcinoma in patients with hepatitis C in the absence of cirrhosis is uncommon. We demonstrate the importance of morphofunctional magnetic resonance imaging (MRI) with a hepatospecific contrast agent by describing an asymptomatic female patient with HCV, who presented with a nodule detected on ultrasound. She underwent inconclusive computed tomography, presenting no signs of chronic liver disease. MRI with hepatospecific contrast providing functional information combined with the superior tissue contrast inherent to this method stands out for its greater accuracy with the possibility of not resorting to invasive diagnostic methods. With increasing experience and the dissemination of this new diagnostic modality in the medical field, its use and other potential benefits of morphofunctional MRI with hepatospecific contrast agents may be established, benefiting patients with challenging focal liver lesions.
Collapse
Affiliation(s)
- Daniel Alvarenga Fernandes
- Departamento de Radiologia, Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Campinas, SP, Brasil
| | - Daniel Lahan Martins
- Departamento de Radiologia, Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Campinas, SP, Brasil
| | - Thiago José Penachim
- Departamento de Radiologia, Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Campinas, SP, Brasil
| | | | - Larissa Bastos Eloy da Costa
- Departamento de Anatomia Patológica, Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Campinas, SP, Brasil
| | - Elaine Cristina de Ataíde
- Departamento de Cirurgia, Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Campinas, SP, Brasil
| | | | - Nelson Marcio Gomes Caserta
- Departamento de Radiologia, Faculdade de Ciências Médicas, Universidade Estadual de Campinas, Campinas, SP, Brasil
| |
Collapse
|
27
|
Rybczynska D, Pienkowska J, Frydrychowski A, Szurowska E, Jankowska A. Understanding the Role of Gadoxetic Acid in MRI. Curr Med Imaging 2020; 16:572-577. [DOI: 10.2174/1573405615666181224125909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2018] [Revised: 11/13/2018] [Accepted: 11/28/2018] [Indexed: 11/22/2022]
Abstract
Background:
Radiological imaging methods used at a large scale in the assessment of
hepatic lesions include: Ultrasound, computed tomography and magnetic resonance. To further characterize
these lesions, specific contrast agents may be added, thus revealing the vascularity of the
lesions.
Discussion:
This review focuses on gadoxetic acid, which is a hepatospecific contrast agent used in
MRI. The aim of the review is to briefly explain the mechanism of GA enhancement, describe the
enhancement patterns of some benign and malignant hepatic lesions and discuss possible advantages
of GA over standard contrast agents.
Conclusion:
The role of GA in functional MR cholangiography and the idea of accessing liver function
by measuring parenchymal enhancement will also be explained.
Collapse
Affiliation(s)
- Dorota Rybczynska
- 2nd Department of Radiology, Medical University of Gdansk, Smoluchowskiego 17, Gdansk 80-214, Poland
| | - Joanna Pienkowska
- 2nd Department of Radiology, Medical University of Gdansk, Smoluchowskiego 17, Gdansk 80-214, Poland
| | - Andrzej Frydrychowski
- Institute of Human Physiology, Medical University of Gdansk, Tuwima 15, Gdansk 80-210, Poland
| | - Edyta Szurowska
- 2nd Department of Radiology, Medical University of Gdansk, Smoluchowskiego 17, Gdansk 80-214, Poland
| | - Anna Jankowska
- 2nd Department of Radiology, University Clinical Centre in Gdansk, Gdansk, Poland
| |
Collapse
|
28
|
Delli Pizzi A, Mastrodicasa D, Cianci R, Serafini FL, Mincuzzi E, Di Fabio F, Giammarino A, Mannetta G, Basilico R, Caulo M. Multimodality Imaging of Hepatocellular Carcinoma: From Diagnosis to Treatment Response Assessment in Everyday Clinical Practice. Can Assoc Radiol J 2020; 72:714-727. [PMID: 32436394 DOI: 10.1177/0846537120923982] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The Liver Imaging Reporting and Data System (LI-RADS) is a recently developed classification aiming to improve the standardization of liver imaging assessment in patients at risk of developing hepatocellular carcinoma (HCC). The LI-RADS v2017 implemented new algorithms for ultrasound (US) screening and surveillance, contrast-enhanced US diagnosis and computed tomography/magnetic resonance imaging treatment response assessment. A minor update of LI-RADS was released in 2018 to comply with the American Association for the Study of the Liver Diseases guidance recommendations. The scope of this review is to provide a practical overview of LI-RADS v2018 focused both on the multimodality HCC diagnosis and treatment response assessment.
Collapse
Affiliation(s)
- Andrea Delli Pizzi
- ITAB-Institute of Advanced Biomedical Technologies, "G. d'Annunzio" University, Chieti, Italy.,Department of Neuroscience, Imaging and Clinical Sciences, "G. d'Annunzio" University, Chieti, Italy
| | | | - Roberta Cianci
- Department of Neuroscience, Imaging and Clinical Sciences, "G. d'Annunzio" University, Chieti, Italy
| | | | - Erica Mincuzzi
- Department of Neuroscience, Imaging and Clinical Sciences, "G. d'Annunzio" University, Chieti, Italy
| | - Francesca Di Fabio
- Department of Neuroscience, Imaging and Clinical Sciences, "G. d'Annunzio" University, Chieti, Italy
| | - Alberto Giammarino
- Department of Neuroscience, Imaging and Clinical Sciences, "G. d'Annunzio" University, Chieti, Italy
| | - Gianluca Mannetta
- Department of Neuroscience, Imaging and Clinical Sciences, "G. d'Annunzio" University, Chieti, Italy
| | - Raffaella Basilico
- Department of Neuroscience, Imaging and Clinical Sciences, "G. d'Annunzio" University, Chieti, Italy
| | - Massimo Caulo
- ITAB-Institute of Advanced Biomedical Technologies, "G. d'Annunzio" University, Chieti, Italy.,Department of Neuroscience, Imaging and Clinical Sciences, "G. d'Annunzio" University, Chieti, Italy
| |
Collapse
|
29
|
Abstract
The imaging of focal liver lesions is a common task in daily radiological routine. The objectives of diagnostic imaging are, in addition to lesion detection, the characterization of the lesion as well as the follow-up assessment after surgical or local treatment or under systemic therapy. This article presents the typical morphologies observed in computed tomography and magnetic resonance imaging of hepatocellular carcinomas and intrahepatic cholangiocarcinomas as the most important representatives of primary malignant liver tumors and juxtaposes them with benign primary liver lesions such as adenoma and focal nodular hyperplasia (FNH). In addition, relevant technical aspects of imaging are briefly summarized. Finally, the main and additional criteria of the Liver Imaging Reporting and Data System (LI-RADS®) classification, which are becoming increasingly established clinically for the evaluation of liver lesions in the cirrhotic liver, are presented.
Collapse
Affiliation(s)
- H-J Raatschen
- Institut für Diagnostische und Interventionelle Radiologie, Medizinische Hochschule Hannover, Carl-Neuberg-Str. 1, 30625, Hannover, Deutschland.
| |
Collapse
|
30
|
Zamboni G, Mazzaro A, Mansueto G. How to Best Image Colorectal Liver Metastases. CURRENT COLORECTAL CANCER REPORTS 2020. [DOI: 10.1007/s11888-019-00447-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
31
|
Zech CJ, Ba-Ssalamah A, Berg T, Chandarana H, Chau GY, Grazioli L, Kim MJ, Lee JM, Merkle EM, Murakami T, Ricke J, B. Sirlin C, Song B, Taouli B, Yoshimitsu K, Koh DM. Consensus report from the 8th International Forum for Liver Magnetic Resonance Imaging. Eur Radiol 2020; 30:370-382. [PMID: 31385048 PMCID: PMC6890618 DOI: 10.1007/s00330-019-06369-4] [Citation(s) in RCA: 51] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Revised: 06/27/2019] [Accepted: 07/12/2019] [Indexed: 02/08/2023]
Abstract
OBJECTIVES The 8th International Forum for Liver Magnetic Resonance Imaging (MRI), held in Basel, Switzerland, in October 2017, brought together clinical and academic radiologists from around the world to discuss developments in and reach consensus on key issues in the field of gadoxetic acid-enhanced liver MRI since the previous Forum held in 2013. METHODS Two main themes in liver MRI were considered in detail at the Forum: the use of gadoxetic acid for contrast-enhanced MRI in patients with liver cirrhosis and the technical performance of gadoxetic acid-enhanced liver MRI, both opportunities and challenges. This article summarises the expert presentations and the delegate voting on consensus statements discussed at the Forum. RESULTS AND CONCLUSIONS It was concluded that gadoxetic acid-enhanced MRI has higher sensitivity for the diagnosis of hepatocellular carcinoma (HCC), when compared with multidetector CT, by utilising features of hyperenhancement in the arterial phase and hypointensity in the hepatobiliary phase (HBP). Recent HCC management guidelines recognise an increasing role for gadoxetic acid-enhanced MRI in early diagnosis and monitoring post-resection. Additional research is needed to define the role of HBP in predicting microvascular invasion, to better define washout during the transitional phase in gadoxetic acid-enhanced MRI for HCC diagnosis, and to reduce the artefacts encountered in the arterial phase. Technical developments are being directed to shortening the MRI protocol for reducing time and patient discomfort and toward utilising faster imaging and non-Cartesian free-breathing approaches that have the potential to improve multiphasic dynamic imaging. KEY POINTS • Gadoxetic acid-enhanced MRI provides higher diagnostic sensitivity than CT for diagnosing HCC. • Gadoxetic acid-enhanced MRI has roles in early-HCC diagnosis and monitoring post-resection response. • Faster imaging and free-breathing approaches have potential to improve multiphasic dynamic imaging.
Collapse
Affiliation(s)
- Christoph J. Zech
- grid.410567.1Radiology and Nuclear Medicine, University Hospital Basel, 4031 Basel, Switzerland
| | - Ahmed Ba-Ssalamah
- grid.22937.3d0000 0000 9259 8492Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, 1090 Vienna, Austria
| | - Thomas Berg
- grid.411339.d0000 0000 8517 9062Section of Hepatology, Clinic for Neurology; Department of Internal Medicine, Neurology and Dermatology, University Hospital Leipzig, 04103 Leipzig, Germany
| | - Hersh Chandarana
- grid.137628.90000 0004 1936 8753Center for Advanced Imaging Innovation and Research (CAI2R), Department of Radiology, New York University School of Medicine, New York, NY 10016 USA
- grid.137628.90000 0004 1936 8753Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY 10016 USA
| | - Gar-Yang Chau
- grid.260770.40000 0001 0425 5914Division of General Surgery, Department of Surgery, Taipei Veterans General Hospital, National Yang-Ming University, Taipei, 112 Taiwan
| | - Luigi Grazioli
- grid.412725.7Department of Radiology, Spedali Civili di Brescia, 25123 Brescia, Italy
| | - Myeong-Jin Kim
- grid.15444.300000 0004 0470 5454Department of Radiology, Yonsei University College of Medicine, Seoul, 120-752 South Korea
| | - Jeong Min Lee
- grid.412484.f0000 0001 0302 820XDepartment of Radiology, Seoul National University Hospital, Seoul, 110-744 South Korea
| | - Elmar M. Merkle
- grid.410567.1Radiology and Nuclear Medicine, University Hospital Basel, 4031 Basel, Switzerland
| | - Takamichi Murakami
- grid.31432.370000 0001 1092 3077Department of Diagnostic and Interventional Radiology, Kobe University Graduate School of Medicine, Kobe, 650-0017 Japan
| | - Jens Ricke
- grid.5252.00000 0004 1936 973XKlinik und Poliklinik für Radiologie, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Claude B. Sirlin
- grid.266100.30000 0001 2107 4242Liver Imaging Group, University of California San Diego, San Diego, CA 92093-0888 USA
| | - Bin Song
- grid.13291.380000 0001 0807 1581Department of Radiology, West China Hospital, Sichuan University, Chengdu, 610041 People’s Republic of China
| | - Bachir Taouli
- grid.59734.3c0000 0001 0670 2351Department of Diagnostic, Molecular and Interventional Radiology and Translational and Molecular Imaging Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029-6574 USA
| | - Kengo Yoshimitsu
- grid.411497.e0000 0001 0672 2176Department of Radiology, Fukuoka University Faculty of Medicine, Fukuoka City, 801-1011 Japan
| | - Dow-Mu Koh
- grid.18886.3f0000 0001 1271 4623Department of Radiology, Royal Marsden Hospital and The Institute of Cancer Research, London, SM2 5NG UK
| |
Collapse
|
32
|
Saleh TY, Bahig S, Shebrya N, Ahmed AY. Value of dynamic and DWI MRI in evaluation of HCC viability after TACE via LI-RADS v2018 diagnostic algorithm. THE EGYPTIAN JOURNAL OF RADIOLOGY AND NUCLEAR MEDICINE 2019. [DOI: 10.1186/s43055-019-0120-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
|
33
|
Ikeno H, Kobayashi S, Kozaka K, Ogi T, Inoue D, Yoneda N, Yoshida K, Ohno N, Gabata T, Kitao A. Relationship between the degree of abdominal wall movement and the image quality of contrast-enhanced MRI: semi-quantitative study especially focused on the occurrence of transient severe motion artifact. Jpn J Radiol 2019; 38:165-177. [PMID: 31691090 DOI: 10.1007/s11604-019-00896-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2019] [Accepted: 10/24/2019] [Indexed: 11/29/2022]
Abstract
PURPOSE To reveal the relationship between abdominal movement and artifact, and to reveal if the transient artifact in arterial phase is caused by transient abdominal movement (TAM) in contrast-enhanced (CE) MRI. MATERIALS AND METHODS 325 CE-MRI series (206 with EOB and 119 with EGCM) were included. The abdominal movement was classified into three groups by respiratory bellows waveform (= bellows grade, BG 1-3), and MR image quality (= artifact score, AS) was graded 1-5 for the precontrast, arterial and portal venous phase, respectively. The relationship between the BG and AS was evaluated. The occurrence of transient artifact in arterial phase was compared to the degree of TAM. RESULTS In the acquisitions with BG3, all images showed AS of > 2, while no images had AS of > 4 in the acquisitions with BG1. Numbers of transient artifact in the arterial phase with no-abdominal movement (NAM), mild-TAM, severe-TAM were 0 of 120, 4 of 27, 7 of 8 in EOB and 0 of 91, 1 of 4, 0 of 0 in EGCM, respectively. CONCLUSION Image quality is highly correlated with abdominal movement. Moreover, artifact in arterial phase was not observed in NAM, which indicated abdominal movement is the direct cause of artifact.
Collapse
Affiliation(s)
- Hiroshi Ikeno
- Department of Radiology, Kanazawa University Graduate School of Medical Sciences, 13-1 Takara-machi, Kanazawa, 920-8641, Japan
| | - Satoshi Kobayashi
- Department of Radiology, Kanazawa University Graduate School of Medical Sciences, 13-1 Takara-machi, Kanazawa, 920-8641, Japan. .,Department of Quantum Medical Technology, Kanazawa University Graduate School of Medical Sciences, 13-1 Takara-machi, Kanazawa, 920-8641, Japan.
| | - Kazuto Kozaka
- Department of Radiology, Kanazawa University Graduate School of Medical Sciences, 13-1 Takara-machi, Kanazawa, 920-8641, Japan
| | - Takahiro Ogi
- Department of Radiology, Kanazawa University Graduate School of Medical Sciences, 13-1 Takara-machi, Kanazawa, 920-8641, Japan
| | - Dai Inoue
- Department of Radiology, Kanazawa University Graduate School of Medical Sciences, 13-1 Takara-machi, Kanazawa, 920-8641, Japan
| | - Norihide Yoneda
- Department of Radiology, Kanazawa University Graduate School of Medical Sciences, 13-1 Takara-machi, Kanazawa, 920-8641, Japan
| | - Kotaro Yoshida
- Department of Radiology, Kanazawa University Graduate School of Medical Sciences, 13-1 Takara-machi, Kanazawa, 920-8641, Japan
| | - Naoki Ohno
- Department of Quantum Medical Technology, Kanazawa University Graduate School of Medical Sciences, 13-1 Takara-machi, Kanazawa, 920-8641, Japan
| | - Toshifumi Gabata
- Department of Radiology, Kanazawa University Graduate School of Medical Sciences, 13-1 Takara-machi, Kanazawa, 920-8641, Japan
| | - Azusa Kitao
- Department of Radiology, Kanazawa University Graduate School of Medical Sciences, 13-1 Takara-machi, Kanazawa, 920-8641, Japan
| |
Collapse
|
34
|
Kim JW, Lee CH, Park YS, Lee J, Kim KA. Abbreviated Gadoxetic Acid-enhanced MRI with Second-Shot Arterial Phase Imaging for Liver Metastasis Evaluation. Radiol Imaging Cancer 2019; 1:e190006. [PMID: 33778670 PMCID: PMC7983790 DOI: 10.1148/rycan.2019190006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 04/16/2019] [Accepted: 04/23/2019] [Indexed: 05/15/2023]
Abstract
PURPOSE To evaluate the feasibility of an abbreviated gadoxetic acid-enhanced MRI protocol including second-shot arterial phase (SSAP) imaging for liver metastasis evaluation. MATERIALS AND METHODS For this retrospective study, a total of 197 patients with cancer (117 men and 80 women; mean age, 62.9 years) were included who underwent gadoxetic acid-enhanced MRI performed by using a modified injection protocol for liver metastasis evaluation from July to August 2017. The modified injection protocol included routine dynamic imaging after a first injection of 6 mL and SSAP imaging after a second injection of 4 mL. Image set 1 was obtained with the full original protocol. Image set 2 consisted of T2-weighted, diffusion-weighted, hepatobiliary phase, and SSAP images (the simulated abbreviated protocol). Acquisition time was measured in each image set. The diagnostic performance of each image set was compared by using a jackknife alternative free-response receiver operating characteristic analysis. Image quality evaluation and visual assessment of vascularity were performed on the original arterial phase images, the SSAP images, and their subtraction images. RESULTS The acquisition time was significantly shorter in image set 2 than in image set 1 (18.6 vs 6.2 minutes, P <.0001). The reader-averaged figure-of-merit was not significantly different between image sets 1 and 2 (P = .197). The mean motion artifact score was significantly lower for the SSAP images than for the original arterial phase images (P <.001). All hypervascular metastases (n = 72) showed hyperintensity on the SSAP and/or the second subtraction images. CONCLUSION An abbreviated MRI protocol including SSAP is feasible for liver metastasis evaluation, providing faster image acquisition while preserving diagnostic performance, image quality, and visual vascularity.Keywords: Abdomen/GI, Comparative Studies, Liver, MR-Imaging, Metastases© RSNA, 2019Supplemental material is available for this article.
Collapse
|
35
|
Taibbi A, Brancatelli G, Matranga D, Midiri M, Lagalla R, Bartolotta TV. Focal nodular hyperplasia: a weight-based, intraindividual comparison of gadobenate dimeglumine and gadoxetate disodium-enhanced MRI. ACTA ACUST UNITED AC 2019; 25:95-101. [PMID: 30860073 DOI: 10.5152/dir.2019.18165] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE We aimed to qualitatively and quantitatively compare the enhancement pattern of focal nodular hyperplasia after gadobenate dimeglumine and gadoxetate disodium injection in the same patient. METHODS 1.5 T magnetic resonance imaging (MRI) examinations of 16 patients with 21 focal nodular hyperplasias studied after the injection of both contrast media were evaluated. Both MRI studies were performed in all patients. A qualitative analysis was performed evaluating each lesion in all phases. For quantitative analysis we calculated signal intensity ratio, lesion-to-liver contrast ratio and liver parenchyma signal intensity gain on hepatobiliary phase. Statistical analysis was performed with the Wilcoxon sign-rank test for clustered paired data and the McNemar test for paired frequencies. A P value < 0.05 was considered statistically significant. RESULTS At qualitative analysis no statistically significant differences were evident during any of the contrast-enhanced phases. Signal intensity ratio (P = 0.048), lesion-to-liver contrast ratio (P = 0.032) and liver parenchyma signal intensity gain (P = 0.012) were significantly higher on hepatobiliary phase after gadoxetate disodium injection. CONCLUSION There were no significant differences in the MRI findings of focal nodular hyperplasia after the injection of a weight-based dose of either gadobenate dimeglumine or gadoxetate disodium.
Collapse
Affiliation(s)
- Adele Taibbi
- Department of Radiology, Palermo University Hospital, Palermo, Italy
| | | | - Domenica Matranga
- Department of Radiology, Palermo University Hospital, Palermo, Italy
| | - Massimo Midiri
- Department of Radiology, Palermo University Hospital, Palermo, Italy
| | - Roberto Lagalla
- Department of Radiology, Palermo University Hospital, Palermo, Italy
| | | |
Collapse
|
36
|
Lebert P, Adens-Fauquembergue M, Azahaf M, Gnemmi V, Behal H, Luciani A, Ernst O. MRI for characterization of benign hepatocellular tumors on hepatobiliary phase: the added value of in-phase imaging and lesion-to-liver visual signal intensity ratio. Eur Radiol 2019; 29:5742-5751. [PMID: 30993437 DOI: 10.1007/s00330-019-06210-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 03/27/2019] [Accepted: 03/29/2019] [Indexed: 12/15/2022]
Abstract
OBJECTIVES To evaluate the lesion-to-liver visual signal intensity ratio (SIR) before and at the hepatobiliary phase MRI (HBP-MRI) after gadobenate dimeglumine (Gd-BOPTA) injection, using several T1-weighted images (T1-WI), for the characterization of benign hepatocellular lesions. METHODS Patients with histologically proven focal nodular hyperplasia (FNH) and hepatocellular adenoma (HCA), who underwent Gd-BOPTA-enhanced HBP-MRI from 2009 to 2017, were retrospectively identified. The lesion-to-liver SIR was visually assessed by two radiologists on HBP (post-HBP analysis) and compared with that of unenhanced sequences (pre/post-HBP analysis) on T1-WI in-phase (T1-IP), out-of-phase (T1-OP), and fat suppression (T1-FS). Lesions were classified as hyper-, iso-, or hypointense on post-HBP, and as decreasing, stable, or increasing SIR on pre/post-HBP analyses. The performance of the different T1-WI sequences for the diagnostic of FNH was evaluated on post-HBP analysis. RESULTS Twenty-nine FNHs and 33 HCAs were analyzed. On post-HBP analysis, FNHs appeared hyper-/isointense in 89.7% of all T1-WI. HCAs appeared hypointense in 93.9%, 63.6%, and 69.7% of T1-IP, T1-OP, and T1-FS, respectively. FNHs exhibited an increasing SIR in 55.2-58.6%, a stable SIR in 44.8-58.6%, and a decreasing SIR in 0%, whereas HCAs exhibited a decreasing SIR in 66.7-93.9%, a stable SIR in 6.1-33.3%, and an increasing SIR in 0% (p < 0.0001). The specificity of T1-IP was significantly higher than that of T1-OP (p = 0.015) and T1-FS (p = 0.042). CONCLUSION T1-IP is the most reliable sequence due to misleading tumor/liver signal ratio in the case of fatty liver when using T1-FS or T1-OP. The pre/post-HBP lesion-to-liver SIR is accurate to classify benign hepatocellular lesions and contributes to avoid biopsy. KEY POINTS •The T1-weighted images in-phase should be systematically included in the HBP-MRI protocol, as it is the most reliable sequence especially in the case of fatty liver. •The comparison between lesion-to-liver signal intensity ratios on unenhanced and at the hepatobiliary phase sequences is useful to classify benign hepatocellular lesions in three categories without misclassification: FNH (increasing signal intensity ratio), HCA (decreasing signal intensity ration), and indeterminate lesions (stable signal intensity ratio).
Collapse
Affiliation(s)
- P Lebert
- Department of Gastrointestinal Imaging, Lille University Hospital, Rue Michel Polonovski, 59037, Lille Cedex, France.
| | - M Adens-Fauquembergue
- Department of Gastrointestinal Imaging, Lille University Hospital, Rue Michel Polonovski, 59037, Lille Cedex, France
| | - M Azahaf
- Department of Gastrointestinal Imaging, Lille University Hospital, Rue Michel Polonovski, 59037, Lille Cedex, France
| | - V Gnemmi
- Department of Pathology, Lille University Hospital, avenue Oscar-Lambret, 59037, Lille Cedex, France
| | - H Behal
- Department of Biostatistics, Lille University Hospital, avenue Oscar-Lambret, 59037, Lille Cedex, France
| | - A Luciani
- Groupe Henri Mondor Albert Chenevier, Imagerie Medicale, AP-HP, 94010, Creteil, France
| | - O Ernst
- Department of Gastrointestinal Imaging, Lille University Hospital, Rue Michel Polonovski, 59037, Lille Cedex, France
| |
Collapse
|
37
|
Reizine E, Ronot M, Pigneur F, Purcell Y, Mulé S, Dioguardi Burgio M, Calderaro J, Amaddeo G, Laurent A, Vilgrain V, Luciani A. Iso- or hyperintensity of hepatocellular adenomas on hepatobiliary phase does not always correspond to hepatospecific contrast-agent uptake: importance for tumor subtyping. Eur Radiol 2019; 29:3791-3801. [DOI: 10.1007/s00330-019-06150-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2018] [Revised: 02/21/2019] [Accepted: 03/08/2019] [Indexed: 12/25/2022]
|
38
|
Shu Z, Fang S, Ding Z, Mao D, Cai R, Chen Y, Pang P, Gong X. MRI-based Radiomics nomogram to detect primary rectal cancer with synchronous liver metastases. Sci Rep 2019; 9:3374. [PMID: 30833648 PMCID: PMC6399278 DOI: 10.1038/s41598-019-39651-y] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Accepted: 01/29/2019] [Indexed: 12/30/2022] Open
Abstract
Synchronous liver metastasis (SLM) remains a major challenge for rectal cancer. Early detection of SLM is a key factor to improve the survival rate of rectal cancer. In this radiomics study, we predicted the SLM based on the radiomics of primary rectal cancer. A total of 328 radiomics features were extracted from the T2WI images of 194 patients. The least absolute shrinkage and selection operator (LASSO) regression was used to reduce the feature dimension and to construct the radiomics signature. after LASSO, principal component analysis (PCA) was used to sort the features of the surplus characteristics, and selected the features of the total contribution of 85%. Then the prediction model was built by linear regression, and the decision curve analysis was used to judge the net benefit of LASSO and PCA. In addition, we used two independent cohorts for training (n = 135) and validation (n = 159). We found that the model based on LASSO dimensionality construction had the maximum net benefit (in the training set (AUC [95% confidence interval], 0.857 [0.787–0.912]) and in the validation set (0.834 [0.714–0.918]). The radiomics nomogram combined with clinical risk factors and LASSO features showed a good predictive performance in the training set (0.921 [0.862–0.961]) and validation set (0.912 [0.809–0.97]). Our study indicated that radiomics based on primary rectal cancer could provide a non-invasive way to predict the risk of SLM in clinical practice.
Collapse
Affiliation(s)
- Zhenyu Shu
- Department of Radiology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Songhua Fang
- Department of Radiology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Zhongxiang Ding
- Department of Radiology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Dewang Mao
- Department of Radiology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital of Hangzhou Medical College, Hangzhou, China
| | - Rui Cai
- Department of Anorectal, Zhejiang Provincial People's Hospital, Affiliated People's Hospital of Hangzhou Medical College, Hangzhou, China
| | | | | | - Xiangyang Gong
- Department of Radiology, Zhejiang Provincial People's Hospital, Affiliated People's Hospital of Hangzhou Medical College, Hangzhou, China.
| |
Collapse
|
39
|
Rimola J, Davenport MS, Liu PS, Brown T, Marrero JA, McKenna BJ, Hussain HK. Diagnostic accuracy of MRI with extracellular vs. hepatobiliary contrast material for detection of residual hepatocellular carcinoma after locoregional treatment. Abdom Radiol (NY) 2019; 44:549-558. [PMID: 30218239 DOI: 10.1007/s00261-018-1775-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
PURPOSE To compare the diagnostic accuracy of extracellular gadolinium-based contrast-enhanced MRI (Gd-MRI) and gadoxetic acid-enhanced MRI (EOB-MRI) for the assessment of hepatocellular carcinoma (HCC) response to locoregional therapy (LRT) using explant correlation as the reference standard. METHODS Forty-nine subjects with cirrhosis and HCC treated with LRT who underwent liver MRI using either Gd-MRI (n = 26) or EOB-MRI (n = 23) within 90 days of liver transplantation were included. Four radiologists reviewed the MR images blinded to histology to determine the size and percentage of viable residual HCC using a per-lesion explant reference standard. Sensitivities, specificities, accuracies, and agreement with histology for the detection residual HCC were calculated. RESULTS Gd-MRI had greater agreement with histology (ICC: 0.98 [0.95-0.99] vs. 0.80 [0.63-0.90]) and greater sensitivity for viable HCC (76% [13/17 50-93%] vs. 58% [7/12; 28-85%]) than EOB-MRI; specificities were similar (84% [16/19; 60-97%] vs. 85% [23/27; 66-96%]). Areas under ROC curves for detecting residual viable tumor were 0.80 (0.64-0.92) for Gd-MRI and 0.72 (0.55-0.85) for EOB-MRI. Gd-MRI had greater inter-rater agreement than EOB-MRI for determining the size of residual viable HCC (ICC: 0.96 [0.92-0.98] vs. 0.85 [0.72-0.92]). CONCLUSION Gd-MRI may be more accurate and precise than EOB-MRI for the assessment of viable HCC following LRT.
Collapse
|
40
|
Cha DI, Kang TW, Jang KM, Kim YK, Kim SH, Ha SY, Sohn I. Hepatic neuroendocrine tumors: gadoxetic acid-enhanced magnetic resonance imaging findings with an emphasis on differentiation between primary and secondary tumors. Abdom Radiol (NY) 2018; 43:3331-3339. [PMID: 29858937 DOI: 10.1007/s00261-018-1653-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
PURPOSE To describe the findings of magnetic resonance (MR) imaging of hepatic neuroendocrine tumors (hNET) and to identify the features that differentiate secondary from primary tumors. METHODS This retrospective study was approved by the institutional review board, and the requirement for informed consent was waived. Between August 2008 and December 2014, 50 patients with pathologically proven hNETs who underwent gadoxetic acid-enhanced MR imaging with diffusion-weighted images were included. The patients were divided into two groups according to whether they had primary (n = 17) or secondary (n = 33) hNETs. Qualitative values based on a consensus between two observers [morphologic findings, signal intensity, and enhancement pattern (poor or indeterminate; hepatocellular carcinoma-like or cholangiocarcinoma-like)], and quantitative values (apparent diffusion coefficient) were evaluated as predictors of secondary hNETs using multivariable logistic regression and receiver operating characteristic (ROC) analysis. RESULTS In multivariate analysis, the presence of multiple lesions (p = 0.011), a tumor size less than 6.3 cm (p = 0.001), and a hepatocellular carcinoma-like enhancement pattern (p = 0.031) were significant independent factors for differentiating secondary from primary hNETs, and achieved a sensitivity of 91%, a specificity of 82%, and an accuracy of 88%, with a value of the area under the ROC curve of 0.931. CONCLUSION Using these specific MR imaging criteria, secondary hNETs could be differentiated from primary hNETs with a high degree of accuracy in patients with histopathologically proven hNETs.
Collapse
Affiliation(s)
- Dong Ik Cha
- Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 50 Irwon-Dong, Gangnam-gu, Seoul, 135-710, Republic of Korea
| | - Tae Wook Kang
- Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 50 Irwon-Dong, Gangnam-gu, Seoul, 135-710, Republic of Korea.
| | - Kyoung Mi Jang
- Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 50 Irwon-Dong, Gangnam-gu, Seoul, 135-710, Republic of Korea
| | - Young Kon Kim
- Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 50 Irwon-Dong, Gangnam-gu, Seoul, 135-710, Republic of Korea
| | - Seong Hyun Kim
- Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, 50 Irwon-Dong, Gangnam-gu, Seoul, 135-710, Republic of Korea
| | - Sang Yun Ha
- Department of Pathology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Republic of Korea
| | - Insuk Sohn
- Biostatics and Clinical Epidemiology Center, Samsung Medical Center, Seoul, Republic of Korea
| |
Collapse
|
41
|
A prospective clinical study using a dynamic contrast-enhanced CT-protocol for detection of colorectal liver metastases. Eur J Radiol 2018; 107:143-148. [DOI: 10.1016/j.ejrad.2018.08.022] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Revised: 07/14/2018] [Accepted: 08/25/2018] [Indexed: 01/14/2023]
|
42
|
Gadoxetic Acid-Enhanced Hepatobiliary-Phase Magnetic Resonance Imaging for Delineation of Focal Nodular Hyperplasia: Superiority of High-Flip-Angle Imaging. J Comput Assist Tomogr 2018; 42:667-674. [PMID: 30119067 DOI: 10.1097/rct.0000000000000777] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
OBJECTIVE The aim of this study was to investigate whether hepatobiliary-phase (HBP) flip-angle (FA) increase to 25° improves conspicuity of focal nodular hyperplasia (FNH) and enables HBP delay reduction. METHODS This was a retrospective study of 23 patients with 46 FNHs. In each patient, HBP was performed with reduced-delay high FA (early/high), standard-delay high FA (late/high), and standard-delay standard FA (standard). Relative enhancement of liver and FNH periphery, FNH periphery-to-liver contrast ratio, and FNH periphery-to-central scar contrast ratio were compared between each HBP. RESULTS Early/high, late/high, and standard HBPs were performed after 13.00 ± 2.12, 19.12 ± 3.10, and 19.68 ± 3.22 minutes, respectively. Liver and FNH periphery relative enhancement, FNH periphery-to-liver contrast ratio, and FNH periphery-to-central scar contrast ratio were higher for early/high and late/high than for standard HBP (P < 0.001 to P = 0.0048). CONCLUSIONS Increasing FA to 25° improves delineation of FNHs in HBP. Combining FA increase with delay reduction is superior to standard HBP and is sufficient for FNH characterization.
Collapse
|
43
|
Zhou J, Sun HC, Wang Z, Cong WM, Wang JH, Zeng MS, Yang JM, Bie P, Liu LX, Wen TF, Han GH, Wang MQ, Liu RB, Lu LG, Ren ZG, Chen MS, Zeng ZC, Liang P, Liang CH, Chen M, Yan FH, Wang WP, Ji Y, Cheng WW, Dai CL, Jia WD, Li YM, Li YX, Liang J, Liu TS, Lv GY, Mao YL, Ren WX, Shi HC, Wang WT, Wang XY, Xing BC, Xu JM, Yang JY, Yang YF, Ye SL, Yin ZY, Zhang BH, Zhang SJ, Zhou WP, Zhu JY, Liu R, Shi YH, Xiao YS, Dai Z, Teng GJ, Cai JQ, Wang WL, Dong JH, Li Q, Shen F, Qin SK, Fan J. Guidelines for Diagnosis and Treatment of Primary Liver Cancer in China (2017 Edition). Liver Cancer 2018; 7:235-260. [PMID: 30319983 PMCID: PMC6167671 DOI: 10.1159/000488035] [Citation(s) in RCA: 412] [Impact Index Per Article: 68.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Accepted: 02/24/2018] [Indexed: 02/05/2023] Open
Abstract
BACKGROUND Hepatocellular carcinoma (HCC) (about 85-90% of primary liver cancer) is particularly prevalent in China because of the high prevalence of chronic hepatitis B infection. HCC is the fourth most common malignancy and the third leading cause of tumor-related deaths in China. It poses a significant threat to the life and health of Chinese people. SUMMARY This guideline presents official recommendations of the National Health and Family Planning Commission of the People's Republic of China on the surveillance, diagnosis, staging, and treatment of HCC occurring in China. The guideline was written by more than 50 experts in the field of HCC in China (including liver surgeons, medical oncologists, hepatologists, interventional radiologists, and diagnostic radiologists) on the basis of recent evidence and expert opinions, balance of benefits and harms, cost-benefit strategies, and other clinical considerations. KEY MESSAGES The guideline presents the Chinese staging system, and recommendations regarding patients with HCC in China to ensure optimum patient outcomes.
Collapse
Affiliation(s)
- Jian Zhou
- Department of Liver Surgery & Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Fudan University, Shanghai, China
| | - Hui-Chuan Sun
- Department of Liver Surgery & Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Fudan University, Shanghai, China
| | - Zheng Wang
- Department of Liver Surgery & Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Fudan University, Shanghai, China
| | - Wen-Ming Cong
- Department of Pathology, the Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Jian-Hua Wang
- Department of Interventional Radiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Meng-Su Zeng
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jia-Mei Yang
- Department of Hepatic Surgery, the Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Ping Bie
- Institute of Hepatobiliary Surgery, Southwest Hospital, Third Military Medical University, Chongqing, China
| | - Lian-Xin Liu
- Department of General Surgery, the First Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Tian-Fu Wen
- Department of Liver Surgery, West China Hospital of Sichuan University, Chengdu, China
| | - Guo-Hong Han
- Department of Liver Diseases and Digestive Interventional Radiology, Xijing Hospital, Fourth Military Medical University, Xi'an, China
| | - Mao-Qiang Wang
- Department of Interventional Radiology, Chinese PLA General Hospital, Beijing, China
| | - Rui-Bao Liu
- Department of Interventional Radiology, the Tumor Hospital of Harbin Medical University, Harbin, China
| | - Li-Gong Lu
- Department of Interventional Oncology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Zheng-Gang Ren
- Department of Liver Surgery & Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Fudan University, Shanghai, China
| | - Min-Shan Chen
- Department of Hepatobiliary Surgery, Sun Yat-sen University Cancer Center, Guangzhou, China
| | - Zhao-Chong Zeng
- Department of Radiation Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ping Liang
- Department of Interventional Ultrasound, Chinese PLA General Hospital, Beijing, China
| | - Chang-Hong Liang
- Department of Radiology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, China
| | - Min Chen
- Editorial Department of Chinese Journal of Digestive Surgery, Chongqing, China
| | - Fu-Hua Yan
- Department of Radiology, Ruijin Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | - Wen-Ping Wang
- Department of Ultrasound, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yuan Ji
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Wen-Wu Cheng
- Department of integrated treatment, Tumor Hospital of Fudan University, Shanghai, China
| | - Chao-Liu Dai
- Department of Hepatobiliary and Spleenary Surgery, the Affiliated Shengjing Hospital, China Medical University, Shenyang, China
| | - Wei-Dong Jia
- Department of Hepatic Surgery, Affiliated Provincial Hospital, Anhui Medical University, Hefei, China
| | - Ya-Ming Li
- Department of Nuclear Medicine, the First Hospital of China Medical University, Shenyang, China
| | - Ye-Xiong Li
- Department of Radiation Oncology, National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jun Liang
- Department of Oncology, Peking University International Hospital, Beijing, China
| | - Tian-Shu Liu
- Department of Oncology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Guo-Yue Lv
- Department of General Surgery, the First Hospital of Jilin University, Jilin, China
| | - Yi-Lei Mao
- Department of Liver Surgery, Peking Union Medical College (PUMC) Hospital, PUMC and Chinese Academy of Medical Sciences, Beijing, China
| | - Wei-Xin Ren
- Department of Interventional Radiology, the First Affiliated Hospital of Xinjiang Medical University, Urumqi, China
| | - Hong-Cheng Shi
- Department of Nuclear Medicine, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Wen-Tao Wang
- Department of Liver Surgery, West China Hospital of Sichuan University, Chengdu, China
| | - Xiao-Ying Wang
- Department of Liver Surgery & Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Fudan University, Shanghai, China
| | - Bao-Cai Xing
- Department of Hepato-Pancreato-Biliary Surgery, Peking University Cancer Hospital and Institute, Beijing, China
| | - Jian-Ming Xu
- Department of Gastrointestinal Oncology, Affiliated Hospital Cancer Center, Academy of Military Medical Sciences, Beijing, China
| | - Jian-Yong Yang
- Department of Interventional Oncology, the First Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Ye-Fa Yang
- Department of Hepatic Surgery and Interventional Radiology, Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Sheng-Long Ye
- Department of Liver Surgery & Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Fudan University, Shanghai, China
| | - Zheng-Yu Yin
- Department of Hepatobiliary Surgery, Zhongshan Hospital of Xiamen University, Xiamen, China
| | - Bo-Heng Zhang
- Department of Liver Surgery & Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Fudan University, Shanghai, China
| | - Shui-Jun Zhang
- Department of Hepatobiliary and Pancreatic Surgery, the First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Wei-Ping Zhou
- Department of Hepatic Surgery, the Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Ji-Ye Zhu
- Department of Hepatobiliary Surgery, Peking University People's Hospital, Beijing, China
| | - Rong Liu
- Department of Interventional Radiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Ying-Hong Shi
- Department of Liver Surgery & Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Fudan University, Shanghai, China
| | - Yong-Sheng Xiao
- Department of Liver Surgery & Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Fudan University, Shanghai, China
| | - Zhi Dai
- Department of Liver Surgery & Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Fudan University, Shanghai, China
| | - Gao-Jun Teng
- Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing, China
| | - Jian-Qiang Cai
- Department of Abdominal Surgical Oncology, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wei-Lin Wang
- Department of Hepatobiliary and Pancreatic Surgery, First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Jia-Hong Dong
- Department of Hepatobiliary and Pancreas Surgery, Beijing Tsinghua Changgung Hospital (BTCH), School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Qiang Li
- Department of Hepatobiliary Surgery, Tianjin Medical University Cancer Institute and Hospital, Tianjin, China
| | - Feng Shen
- Department of Hepatic Surgery, the Eastern Hepatobiliary Surgery Hospital, Second Military Medical University, Shanghai, China
| | - Shu-Kui Qin
- Department of Medical Oncology, PLA Cancer Center, Nanjing Bayi Hospital, Nanjing, China,**Dr. Shu-Kui Qin, Department of Medical Oncology, PLA Cancer Center, Nanjing Bayi Hospital, Nanjing 210002 (China), E-Mail
| | - Jia Fan
- Department of Liver Surgery & Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, Key Laboratory of Carcinogenesis and Cancer Invasion, Ministry of Education, Fudan University, Shanghai, China,*Dr. Jia Fan, Department of Liver Surgery & Transplantation, Liver Cancer Institute, Zhongshan Hospital, Fudan University, 180 Fenglin Road, Shanghai 200032 (China), E-Mail
| |
Collapse
|
44
|
Abstract
RATIONALE Rectal neuroendocrine tumor is a rare disease that is difficult to diagnose by clinical and imageological examinations. The treatment of rectal neuroendocrine tumors is still controversial. PATIENT CONCERNS A 50-year-old woman complained of abdominal pain beneath the xiphoid process for 1 day. Physical checkup revealed tenderness at the right upper abdomen. A fecal occult blood test was positive. MRI showed an occupation lesion in the right lobe of the liver. Colonoscopy examination showed a lesion at the lower rectum with an ulcerated surface that was tough in texture. No abnormality was found in the tumor markers. DIAGNOSIS Rectal neuroendocrine tumor (G3) with liver metastasis. INTERVENTIONS Neoadjuvant chemotherapy followed by laparoscopic surgery was given. OUTCOMES The patient followed up regularly in the outpatient department for 13 months after surgery, and no sign of recurrence was found. LESSONS Neoadjuvant chemotherapy followed by laparoscopic surgery is a new idea for the treatment of rectal neuroendocrine carcinoma with distant metastasis, which offers favorable conditions for saving the anus during the surgery to enhance the patient's quality of life.
Collapse
Affiliation(s)
| | - Yuanyuan Yang
- Department of Radiology, the First Affiliated Hospital of Chongqing Medical University, Chongqing, China
| | - Wuyi Wang
- Department of Gastrointestinal Surgery
| | | |
Collapse
|
45
|
Inchingolo R, Faletti R, Grazioli L, Tricarico E, Gatti M, Pecorelli A, Ippolito D. MR with Gd-EOB-DTPA in assessment of liver nodules in cirrhotic patients. World J Hepatol 2018; 10:462-473. [PMID: 30079132 PMCID: PMC6068846 DOI: 10.4254/wjh.v10.i7.462] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2018] [Revised: 04/25/2018] [Accepted: 05/30/2018] [Indexed: 02/06/2023] Open
Abstract
To date the imaging diagnosis of liver lesions is based mainly on the identification of vascular features, which are typical of overt hepatocellular carcinoma (HCC), but the hepatocarcinogenesis is a complex and multistep event during which, a spectrum of nodules develop within the liver parenchyma, including benign small and large regenerative nodule (RN), low-grade dysplastic nodule (LGDN), high-grade dysplastic nodule (HGDN), early HCC, and well differentiated HCC. These nodules may be characterised not only on the basis of their respective different blood supplies, but also on their different hepatocyte function. Recently, in liver imaging the introduction of hepatobiliary magnetic resonance imaging contrast agent offered the clinicians the possibility to obtain, at once, information not only related to the vascular changes of liver nodules but also information on hepatocyte function. For this reasons this new approach becomes the most relevant diagnostic clue for differentiating low-risk nodules (LGDN-RN) from high-risk nodules (HGDN/early HCC or overt HCC) and consequently new diagnostic algorithms for HCC have been proposed. The use of hepatobiliary contrast agents is constantly increasing and gradually changing the standard of diagnosis of HCC. The main purpose of this review is to underline the added value of Gd-EOB-DTPA in early-stage diagnoses of HCC. We also analyse the guidelines for the diagnosis and management of HCC, the key concepts of HCC development, growth and spread and the imaging appearance of precursor nodules that eventually may transform into overt HCC.
Collapse
Affiliation(s)
- Riccardo Inchingolo
- Division of Interventional Radiology, Department of Radiology, Madonna delle Grazie Hospital, Matera 75100, Italy
| | - Riccardo Faletti
- Department of Surgical Sciences, Radiology Unit, University of Turin, Turin 10126, Italy
| | - Luigi Grazioli
- Department of Radiology, University of Brescia “Spedali Civili”, Brescia 25123, Italy
| | - Eleonora Tricarico
- Division of Interventional Radiology, Department of Radiology, Madonna delle Grazie Hospital, Matera 75100, Italy
| | - Marco Gatti
- Department of Surgical Sciences, Radiology Unit, University of Turin, Turin 10126, Italy
| | - Anna Pecorelli
- Department of Diagnostic Radiology, School of Medicine, University of Milano-Bicocca, Monza 20900, Italy
| | - Davide Ippolito
- Department of Diagnostic Radiology, School of Medicine, University of Milano-Bicocca, Monza 20900, Italy
| |
Collapse
|
46
|
Joo I, Lee JM, Yoon JH. Imaging Diagnosis of Intrahepatic and Perihilar Cholangiocarcinoma: Recent Advances and Challenges. Radiology 2018; 288:7-13. [DOI: 10.1148/radiol.2018171187] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Ijin Joo
- From the Department of Radiology (I.J., J.M.L., J.H.Y.) and Institute of Radiation Medicine (J.M.L.), Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Korea; and Department of Radiology, Seoul National University College of Medicine, Seoul, Korea (I.J., J.M.L., J.H.Y.)
| | - Jeong Min Lee
- From the Department of Radiology (I.J., J.M.L., J.H.Y.) and Institute of Radiation Medicine (J.M.L.), Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Korea; and Department of Radiology, Seoul National University College of Medicine, Seoul, Korea (I.J., J.M.L., J.H.Y.)
| | - Jeong Hee Yoon
- From the Department of Radiology (I.J., J.M.L., J.H.Y.) and Institute of Radiation Medicine (J.M.L.), Seoul National University Hospital, 101 Daehak-ro, Jongno-gu, Seoul, 03080, Korea; and Department of Radiology, Seoul National University College of Medicine, Seoul, Korea (I.J., J.M.L., J.H.Y.)
| |
Collapse
|
47
|
Roux M, Pigneur F, Baranes L, Calderaro J, Chiaradia M, Decaens T, Kastahian S, Charles-Nelson A, Tselikas L, Costentin C, Laurent A, Azoulay D, Mallat A, Rahmouni A, Luciani A. Differentiating focal nodular hyperplasia from hepatocellular adenoma: Is hepatobiliary phase MRI (HBP-MRI) using linear gadolinium chelates always useful? Abdom Radiol (NY) 2018; 43:1670-1681. [PMID: 29110059 DOI: 10.1007/s00261-017-1377-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
PURPOSE To assess the value of Hepatobiliary phase MRI (HPB-MRI) to differentiate FNH and HCA, and evaluate its impact on diagnostic accuracy, diagnostic confidence, inter-observer variability, and patient clinical management. METHODS Forty-nine patients referred for Gd-BOPTA-enhanced MRI were retrospectively included in this IRB-approved study, with a total of 119 lesions-90 FNH and 29 HCA. Two observers separately assessed in 2 distinct randomized reading sessions the performance of MRI with (HBP-MRI) or without (conventional MRI) the use of HBP images. Each lesion was ranked with a 5-point scale (from 1 Typical FNH to 5 Certainly not a FNH). Sensitivity, specificity, overall accuracy, and inter-observer agreement for the differentiation of FNH from HCA were calculated and compared between conventional and HBP-MRI. RESULTS Both sensitivity (respective values of 38.9% and 97.8%), overall accuracy (respective values of 53.8% and 98.3%), and inter-observer agreement (respective values of Kappa 0.56 and 0.88) were significantly higher using HBP-MRI than with conventional MRI, with unchanged specificity (100%). The sensitivity of conventional MRI for the diagnosis of FNH was significantly lower in lesions ≤ 3 cm (20% vs. 88%). Overall, HBP could have changed lesion management in 59/119 cases (49.5%), including 53 FNH and 6 HCA with no impact in 60/119 lesions (50.5%) including all 35 lesions classified as scores 1 and 2 for the diagnosis of FNH. CONCLUSIONS The clinical impact of HBP-MRI is mostly important for smaller than 3-cm FNH, and more limited in larger FNH lesions as well as for HCA diagnosis for which conventional MRI is already accurate. The use of extracellular contrast agents upfront could limit the required use of linear HBP contrast agents for benign hepatocellular lesion characterization. On HBP, all FNH appeared hypointense compared to adjacent liver while close to 97% of HCA appeared hypointense.
Collapse
Affiliation(s)
- Marion Roux
- Service de Radiodiagnostic et Radiologie interventionnelle, CHUV, Rue du Bugnon 46, 1011, Lausanne, Switzerland.
| | - Frederic Pigneur
- Groupe Henri Mondor Albert Chenevier, Imagerie Medicale, AP-HP, 94010, Creteil, France
| | - Laurence Baranes
- Groupe Henri Mondor Albert Chenevier, Imagerie Medicale, AP-HP, 94010, Creteil, France
- Faculte de Medecine de Creteil, Universite Paris Est Creteil, 94010, Creteil, France
| | - Julien Calderaro
- Faculte de Medecine de Creteil, Universite Paris Est Creteil, 94010, Creteil, France
- Groupe Henri Mondor Albert Chenevier, Pathology, AP-HP, 94010, Creteil, France
| | - Mélanie Chiaradia
- Groupe Henri Mondor Albert Chenevier, Imagerie Medicale, AP-HP, 94010, Creteil, France
- Faculte de Medecine de Creteil, Universite Paris Est Creteil, 94010, Creteil, France
| | - Thomas Decaens
- Faculte de Medecine de Creteil, Universite Paris Est Creteil, 94010, Creteil, France
- Groupe Henri Mondor Albert Chenevier, Hepato-Gastroenterology Department, AP-HP, 94010, Creteil, France
| | - Sandrine Kastahian
- Groupe Henri Mondor Albert Chenevier, Unite de Recherche Clinique (URC), AP-HP, 94010, Creteil, France
| | - Anaïs Charles-Nelson
- Groupe Henri Mondor Albert Chenevier, Unite de Recherche Clinique (URC), AP-HP, 94010, Creteil, France
| | - Lambros Tselikas
- Groupe Henri Mondor Albert Chenevier, Imagerie Medicale, AP-HP, 94010, Creteil, France
| | - Charlotte Costentin
- Faculte de Medecine de Creteil, Universite Paris Est Creteil, 94010, Creteil, France
- Groupe Henri Mondor Albert Chenevier, Hepato-Gastroenterology Department, AP-HP, 94010, Creteil, France
| | - Alexis Laurent
- Faculte de Medecine de Creteil, Universite Paris Est Creteil, 94010, Creteil, France
- Groupe Henri Mondor Albert Chenevier, Liver Surgery, AP-HP, 94010, Creteil, France
| | - Daniel Azoulay
- Faculte de Medecine de Creteil, Universite Paris Est Creteil, 94010, Creteil, France
- Groupe Henri Mondor Albert Chenevier, Liver Surgery, AP-HP, 94010, Creteil, France
| | - Ariane Mallat
- Faculte de Medecine de Creteil, Universite Paris Est Creteil, 94010, Creteil, France
- Groupe Henri Mondor Albert Chenevier, Hepato-Gastroenterology Department, AP-HP, 94010, Creteil, France
| | - Alain Rahmouni
- Groupe Henri Mondor Albert Chenevier, Imagerie Medicale, AP-HP, 94010, Creteil, France
- Faculte de Medecine de Creteil, Universite Paris Est Creteil, 94010, Creteil, France
| | - Alain Luciani
- Groupe Henri Mondor Albert Chenevier, Imagerie Medicale, AP-HP, 94010, Creteil, France
- Faculte de Medecine de Creteil, Universite Paris Est Creteil, 94010, Creteil, France
- INSERM Unite U 955, Equipe 18, 94010, Creteil, France
| |
Collapse
|
48
|
Patella F, Pesapane F, Fumarola EM, Emili I, Spairani R, Angileri SA, Tresoldi S, Franceschelli G, Carrafiello G. CT-MRI LI-RADS v2017: A Comprehensive Guide for Beginners. J Clin Transl Hepatol 2018; 6:222-236. [PMID: 29951368 PMCID: PMC6018316 DOI: 10.14218/jcth.2017.00062] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2017] [Revised: 12/02/2017] [Accepted: 12/05/2017] [Indexed: 12/16/2022] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common primary liver malignancy and the second leading cause of cancer-related deceases worldwide. Early diagnosis is essential for correct management and improvement of prognosis. Proposed for the first time in 2011 and updated for the last time in 2017, the Liver Imaging-Reporting and Data System (LI-RADS) is a comprehensive system for standardized interpretation and reporting of computed tomography (CT) and magnetic resonance imaging (MRI) liver examinations, endorsed by the American College of Radiology to achieve congruence with HCC diagnostic criteria in at-risk populations. Understanding its algorithm is fundamental to correctly apply LI-RADS in clinical practice. In this pictorial review, we provide a guide for beginners, explaining LI-RADS indications, describing major and ancillary features and eventually elucidating the diagnostic algorithm with the use of some clinical examples.
Collapse
Affiliation(s)
- Francesca Patella
- Postgraduation School in Radiodiagnostics, Università degli Studi di Milano, Milan, Italy
| | - Filippo Pesapane
- Postgraduation School in Radiodiagnostics, Università degli Studi di Milano, Milan, Italy
- *Correspondence to: Filippo Pesapane, Postgraduation School in Radiodiagnostics, Università degli Studi di Milano, Via Festa del Perdono 7, Milan 20122, Italy. Tel: +39-13012751123; Fax: +39-2-50323393; E-mail:
| | - Enrico Maria Fumarola
- Postgraduation School in Radiodiagnostics, Università degli Studi di Milano, Milan, Italy
| | - Ilaria Emili
- Postgraduation School in Radiodiagnostics, Università degli Studi di Milano, Milan, Italy
| | - Riccardo Spairani
- Postgraduation School in Radiodiagnostics, Università degli Studi di Milano, Milan, Italy
| | - Salvatore Alessio Angileri
- Department of Health Sciences, Diagnostic and Interventional Radiology, ASST Santi Paolo e Carlo, San Paolo Hospital, Milan, Italy
| | - Silvia Tresoldi
- Department of Health Sciences, Diagnostic and Interventional Radiology, ASST Santi Paolo e Carlo, San Paolo Hospital, Milan, Italy
| | - Giuseppe Franceschelli
- Department of Health Sciences, Diagnostic and Interventional Radiology, ASST Santi Paolo e Carlo, San Paolo Hospital, Milan, Italy
| | - Gianpaolo Carrafiello
- Department of Health Sciences, Diagnostic and Interventional Radiology, ASST Santi Paolo e Carlo, San Paolo Hospital, Milan, Italy
| |
Collapse
|
49
|
Ni T, Shang XS, Wang WT, Hu XX, Zeng MS, Rao SX. Different MR features for differentiation of intrahepatic mass-forming cholangiocarcinoma from hepatocellular carcinoma according to tumor size. Br J Radiol 2018; 91:20180017. [PMID: 29791202 DOI: 10.1259/bjr.20180017] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
OBJECTIVE To identify reliable magnetic resonance (MR) features for distinguishing mass-forming type of intrahepatic cholangiocarcinoma (IMCC) from hepatocellular carcinoma (HCC) based on tumor size. METHODS This retrospective study included 395 patients with pathologically confirmed IMCCs (n = 180) and HCCs (n = 215) who underwent pre-operative contrast-enhanced MRI including diffusion-weighted imaging (DWI). MR features were evaluated and clinical data were also recorded. All the characteristics were compared in small (≤3 cm) and large tumor (>3 cm) groups by univariate analysis and subsequently calculated by multivariable logistic regression analysis. RESULTS Multivariable analysis revealed that rim arterial phase hyperenhancement [odds ratios (ORs) = 13.16], biliary dilation (OR = 23.42) and CA19-9 (OR = 21.45) were significant predictors of large IMCCs (n = 138), and washout appearance (OR = 0.036), enhancing capsule appearance (OR = 0.039), fat in mass (OR = 0.057), chronic liver disease (OR = 0.088) and alpha fetoprotein (OR = 0.019) were more frequently found in large HCCs (n = 143). For small IMCCs (n = 42) and HCCs (n = 72), rim arterial phase hyperenhancement (OR = 9.68), target appearance at DWI (OR = 12.51), alpha fetoprotein (OR = 0.12) and sex (OR = 0.20) were independent predictors in multivariate analysis. CONCLUSION Valuable MR features and clinical factors varied for differential diagnosis of IMCCs and HCCs according to tumor size. Advances in knowledge: MR features for differential diagnosis of large IMCC and HCC (>3 cm) are in keeping with that recommended by LI-RADS. However, for small IMCCs and HCCs (≤3 cm), only rim enhancement on arterial phase and target appearance at DWI are reliable predictors.
Collapse
Affiliation(s)
- Ting Ni
- 1 Department of Radiology, Zhongshan Hospital, Fudan University, and Shanghai Medical Imaging Institute , Shanghai , China
| | - Xiao-Sha Shang
- 1 Department of Radiology, Zhongshan Hospital, Fudan University, and Shanghai Medical Imaging Institute , Shanghai , China
| | - Wen-Tao Wang
- 1 Department of Radiology, Zhongshan Hospital, Fudan University, and Shanghai Medical Imaging Institute , Shanghai , China
| | - Xin-Xing Hu
- 1 Department of Radiology, Zhongshan Hospital, Fudan University, and Shanghai Medical Imaging Institute , Shanghai , China
| | - Meng-Su Zeng
- 1 Department of Radiology, Zhongshan Hospital, Fudan University, and Shanghai Medical Imaging Institute , Shanghai , China
| | - Sheng-Xiang Rao
- 1 Department of Radiology, Zhongshan Hospital, Fudan University, and Shanghai Medical Imaging Institute , Shanghai , China
| |
Collapse
|
50
|
Reizine E, Amaddeo G, Pigneur F, Baranes L, Legou F, Mulé S, Zegai B, Roche V, Laurent A, Rahmouni A, Calderaro J, Luciani A. Quantitative correlation between uptake of Gd-BOPTA on hepatobiliary phase and tumor molecular features in patients with benign hepatocellular lesions. Eur Radiol 2018; 28:4243-4253. [PMID: 29721686 DOI: 10.1007/s00330-018-5438-7] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2017] [Revised: 03/07/2018] [Accepted: 03/19/2018] [Indexed: 12/11/2022]
Abstract
PURPOSE The purpose of our study was to correlate the quantitative analysis of benign hepatocellular tumor uptake on delayed hepatobiliary phase (HBP) imaging with the quantitative level of OATP expression. METHODS This single-center retrospective study, which took place between September 2009 and March 2015, included 20 consecutive patients with a proven pathologic and immunohistochemical (IHC) diagnosis of FNH or HCA, including quantification of the OATP expression. The patients underwent Gd-BOPTA-enhancement MRI, including an HBP. The analysis of HBP uptake was performed using the liver-to-lesion contrast enhancement ratio (LLCER). Mean LLCER and OATP expressions were compared between FNH and HCA, and the expression of OATP was correlated with the LLCER value. RESULTS Of the 23 benign hepatocellular tumors, 9 (39%) were FNH and 14 (61%) were HCA, including 6 inflammatory, 2 HNF1a inactivated, 3 β-catenin-mutated and 3 unclassified HCAs. On HBP, 100% of the FNH appeared hyper- or isointense, and 79% of the adenomas appeared hypointense. The mean OATP expression of FNH (46.67 ± 26.58%) was significantly higher than that of HCA (22.14 ± 30.74%) (p = 0.0273), and the mean LLCER of FNH (10.66 ± 7.403%) was significantly higher than that of HCA (-13.5 ± 12.25%) (p < 0.0001). The mean LLCER of β-catenin-mutated HCA was significantly higher than that of other HCAs (p = 0.011). Significant correlation was found between the OATP expression and LLCER values (r = 0.661; p = 0.001). CONCLUSION In benign hepatocellular tumors, the quantitative analysis of hepatobiliary contrast agent uptake on HBP is correlated with the level of OATP expression and could be used as an imaging biomarker of the molecular background of HCA and FNH. KEY POINTS • Gd-BOPTA uptake on HBP correlates with the OATP level in benign hepatocellular tumors • FNH and β-catenin-mutated HCA showed an increased lesion-to-liver contrast enhancement ratio (LLCER) • Increased LLCER may be explained by activation of the Wnt β-catenin pathway.
Collapse
Affiliation(s)
- Edouard Reizine
- Imagerie Medicale, AP-HP, Groupe Henri Mondor Albert Chenevier, 51 avenue du Marechal de Lattre de Tassigny, 94010, Créteil, France.
| | - Giuliana Amaddeo
- Hepatology Department, AP-HP, Groupe Henri Mondor Albert Chenevier, F-94010, Creteil, France.,Faculté de Médecine, Universite Paris Est Creteil, F-94010, Creteil, France.,INSERM Unit U 955, Equipe 18, F-94010, Creteil, France
| | - Frederic Pigneur
- Imagerie Medicale, AP-HP, Groupe Henri Mondor Albert Chenevier, 51 avenue du Marechal de Lattre de Tassigny, 94010, Créteil, France
| | - Laurence Baranes
- Imagerie Medicale, AP-HP, Groupe Henri Mondor Albert Chenevier, 51 avenue du Marechal de Lattre de Tassigny, 94010, Créteil, France
| | - François Legou
- Imagerie Medicale, AP-HP, Groupe Henri Mondor Albert Chenevier, 51 avenue du Marechal de Lattre de Tassigny, 94010, Créteil, France
| | - Sebastien Mulé
- Imagerie Medicale, AP-HP, Groupe Henri Mondor Albert Chenevier, 51 avenue du Marechal de Lattre de Tassigny, 94010, Créteil, France
| | - Benhalima Zegai
- Imagerie Medicale, AP-HP, Groupe Henri Mondor Albert Chenevier, 51 avenue du Marechal de Lattre de Tassigny, 94010, Créteil, France
| | - Vincent Roche
- Imagerie Medicale, AP-HP, Groupe Henri Mondor Albert Chenevier, 51 avenue du Marechal de Lattre de Tassigny, 94010, Créteil, France
| | - Alexis Laurent
- Faculté de Médecine, Universite Paris Est Creteil, F-94010, Creteil, France.,INSERM Unit U 955, Equipe 18, F-94010, Creteil, France.,Liver Surgery, AP-HP, Groupe Henri Mondor Albert Chenevier, F-94010, Creteil, France
| | - Alain Rahmouni
- Imagerie Medicale, AP-HP, Groupe Henri Mondor Albert Chenevier, 51 avenue du Marechal de Lattre de Tassigny, 94010, Créteil, France.,Faculté de Médecine, Universite Paris Est Creteil, F-94010, Creteil, France
| | - Julien Calderaro
- Faculté de Médecine, Universite Paris Est Creteil, F-94010, Creteil, France.,INSERM Unit U 955, Equipe 18, F-94010, Creteil, France.,Pathology, AP-HP, Groupe Henri Mondor Albert Chenevier, F-94010, Creteil, France
| | - Alain Luciani
- Imagerie Medicale, AP-HP, Groupe Henri Mondor Albert Chenevier, 51 avenue du Marechal de Lattre de Tassigny, 94010, Créteil, France.,Faculté de Médecine, Universite Paris Est Creteil, F-94010, Creteil, France.,INSERM Unit U 955, Equipe 18, F-94010, Creteil, France
| |
Collapse
|