1
|
Fionda L, Vanoli F, Di Pasquale A, Leonardi L, Morino S, Merlonghi G, Lauletta A, Alfieri G, Costanzo R, Tufano L, Rossini E, Bucci E, Grossi A, Tupler R, Salvetti M, Garibaldi M, Antonini G. Comparison of quantitative muscle ultrasound and whole-body muscle MRI in facioscapulohumeral muscular dystrophy type 1 patients. Neurol Sci 2023; 44:4057-4064. [PMID: 37311950 PMCID: PMC10570177 DOI: 10.1007/s10072-023-06842-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2023] [Accepted: 05/06/2023] [Indexed: 06/15/2023]
Abstract
INTRODUCTION Muscle ultrasound is a fast, non-invasive and cost-effective examination that can identify structural muscular changes by assessing muscle thickness and echointensity (EI) with a quantitative analysis (QMUS). To assess applicability and repeatability of QMUS, we evaluated patients with genetically confirmed facioscapulohumeral muscular dystrophy type 1 (FSHD1), comparing their muscle ultrasound characteristics with healthy controls and with those detected by MRI. We also evaluated relationships between QMUS and demographic and clinical characteristics. MATERIALS AND METHODS Thirteen patients were included in the study. Clinical assessment included MRC sum score, FSHD score and The Comprehensive Clinical Evaluation Form (CCEF). QMUS was performed with a linear transducer scanning bilaterally pectoralis major, deltoid, rectus femoris, tibialis anterior and semimembranosus muscles in patients and healthy subjects. For each muscle, we acquired three images, which were analysed calculating muscle EI by computer-assisted grey-scale analysis. QMUS analysis was compared with semiquantitative 1.5 T muscle MRI scale. RESULTS All muscles in FSHD patients showed a significant increased echogenicity compared to the homologous muscles in healthy subjects. Older subjects and patients with higher FSHD score presented increased muscle EI. Tibialis anterior MRC showed a significant inverse correlation with EI. Higher median EI was found in muscles with more severe MRI fat replacement. CONCLUSIONS QMUS allows quantitative evaluation of muscle echogenicity, displaying a tight correlation with muscular alterations, clinical and MRI data. Although a confirmation on larger sample is needed, our research suggests a possible future application of QMUS in diagnosis and management of muscular disorders.
Collapse
Affiliation(s)
- Laura Fionda
- Neuromuscular and Rare Disease Centre, Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), Faculty of Medicine and Psychology, SAPIENZA University of Rome, Sant'Andrea Hospital, Via di Grottarossa 1035-1039, 00189, Rome, Italy.
| | - Fiammetta Vanoli
- Neuromuscular and Rare Disease Centre, Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), Faculty of Medicine and Psychology, SAPIENZA University of Rome, Sant'Andrea Hospital, Via di Grottarossa 1035-1039, 00189, Rome, Italy
- Neurology IV-Neuroimmunology and Neuromuscular Diseases Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133, Milan, Italy
| | | | - Luca Leonardi
- Neuromuscular and Rare Disease Centre, Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), Faculty of Medicine and Psychology, SAPIENZA University of Rome, Sant'Andrea Hospital, Via di Grottarossa 1035-1039, 00189, Rome, Italy
| | - Stefania Morino
- Neuromuscular and Rare Disease Centre, Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), Faculty of Medicine and Psychology, SAPIENZA University of Rome, Sant'Andrea Hospital, Via di Grottarossa 1035-1039, 00189, Rome, Italy
| | - Gioia Merlonghi
- Neuromuscular and Rare Disease Centre, Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), Faculty of Medicine and Psychology, SAPIENZA University of Rome, Sant'Andrea Hospital, Via di Grottarossa 1035-1039, 00189, Rome, Italy
| | - Antonio Lauletta
- Neuromuscular and Rare Disease Centre, Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), Faculty of Medicine and Psychology, SAPIENZA University of Rome, Sant'Andrea Hospital, Via di Grottarossa 1035-1039, 00189, Rome, Italy
| | - Girolamo Alfieri
- Neuromuscular and Rare Disease Centre, Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), Faculty of Medicine and Psychology, SAPIENZA University of Rome, Sant'Andrea Hospital, Via di Grottarossa 1035-1039, 00189, Rome, Italy
- Neurology IV-Neuroimmunology and Neuromuscular Diseases Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, 20133, Milan, Italy
| | - Rocco Costanzo
- Neuromuscular and Rare Disease Centre, Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), Faculty of Medicine and Psychology, SAPIENZA University of Rome, Sant'Andrea Hospital, Via di Grottarossa 1035-1039, 00189, Rome, Italy
| | - Laura Tufano
- Neuromuscular and Rare Disease Centre, Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), Faculty of Medicine and Psychology, SAPIENZA University of Rome, Sant'Andrea Hospital, Via di Grottarossa 1035-1039, 00189, Rome, Italy
| | - Elena Rossini
- Neuromuscular and Rare Disease Centre, Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), Faculty of Medicine and Psychology, SAPIENZA University of Rome, Sant'Andrea Hospital, Via di Grottarossa 1035-1039, 00189, Rome, Italy
| | - Elisabetta Bucci
- Neuromuscular and Rare Disease Centre, Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), Faculty of Medicine and Psychology, SAPIENZA University of Rome, Sant'Andrea Hospital, Via di Grottarossa 1035-1039, 00189, Rome, Italy
| | - Andrea Grossi
- Neuromuscular and Rare Disease Centre, Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), Faculty of Medicine and Psychology, SAPIENZA University of Rome, Sant'Andrea Hospital, Via di Grottarossa 1035-1039, 00189, Rome, Italy
| | - Rossella Tupler
- Department of Life Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Marco Salvetti
- Neuromuscular and Rare Disease Centre, Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), Faculty of Medicine and Psychology, SAPIENZA University of Rome, Sant'Andrea Hospital, Via di Grottarossa 1035-1039, 00189, Rome, Italy
| | - Matteo Garibaldi
- Neuromuscular and Rare Disease Centre, Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), Faculty of Medicine and Psychology, SAPIENZA University of Rome, Sant'Andrea Hospital, Via di Grottarossa 1035-1039, 00189, Rome, Italy
| | - Giovanni Antonini
- Neuromuscular and Rare Disease Centre, Department of Neuroscience, Mental Health and Sensory Organs (NESMOS), Faculty of Medicine and Psychology, SAPIENZA University of Rome, Sant'Andrea Hospital, Via di Grottarossa 1035-1039, 00189, Rome, Italy
| |
Collapse
|
2
|
Vivekanandam V, Suetterlin K, Matthews E, Thornton J, Jayaseelan D, Shah S, Morrow JM, Yousry T, Hanna MG. Muscle MRI in periodic paralysis shows myopathy is common and correlates with intramuscular fat accumulation. Muscle Nerve 2023; 68:439-450. [PMID: 37515374 DOI: 10.1002/mus.27947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 07/05/2023] [Accepted: 07/08/2023] [Indexed: 07/30/2023]
Abstract
INTRODUCTION/AIMS The periodic paralyses are muscle channelopathies: hypokalemic periodic paralysis (CACNA1S and SCN4A variants), hyperkalemic periodic paralysis (SCN4A variants), and Andersen-Tawil syndrome (KCNJ2). Both episodic weakness and disabling fixed weakness can occur. Little literature exists on magnetic resonance imaging (MRI) in muscle channelopathies. We undertake muscle MRI across all subsets of periodic paralysis and correlate with clinical features. METHODS A total of 45 participants and eight healthy controls were enrolled and underwent T1-weighted and short-tau-inversion-recovery (STIR) MRI imaging of leg muscles. Muscles were scored using the modified Mercuri Scale. RESULTS A total of 17 patients had CACNA1S variants, 16 SCN4A, and 12 KCNJ2. Thirty-one (69%) had weakness, and 9 (20%) required a gait-aid/wheelchair. A total of 78% of patients had intramuscular fat accumulation on MRI. Patients with SCN4A variants were most severely affected. In SCN4A, the anterior thigh and posterior calf were more affected, in contrast to the posterior thigh and posterior calf in KCNJ2. We identified a pattern of peri-tendinous STIR hyperintensity in nine patients. There were moderate correlations between Mercuri, STIR scores, and age. Intramuscular fat accumulation was seen in seven patients with no fixed weakness. DISCUSSION We demonstrate a significant burden of disease in patients with periodic paralyses. MRI intramuscular fat accumulation may be helpful in detecting early muscle involvement, particularly in those without fixed weakness. Longitudinal studies are needed to assess the role of muscle MRI in quantifying disease progression over time and as a potential biomarker in clinical trials.
Collapse
Affiliation(s)
- Vinojini Vivekanandam
- Queen Square Centre for Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
| | - Karen Suetterlin
- Queen Square Centre for Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
- AGE Research Group, NIHR Newcastle Biomedical Research Centre, Newcastle upon Tyne Hospitals NHS Foundation Trust and Newcastle University, Newcastle upon Tyne, UK
| | - Emma Matthews
- Atkinson-Morley Neuromuscular Centre, Department of Neurology, St George's University Hospitals NHS Foundation Trust, and Molecular and Clinical Sciences Research Institute, St George's University of London, London, UK
| | - John Thornton
- Neuroradiological Academic Unit, UCL Queen Square Institute of Neurology, UCL, London, UK
| | - Dipa Jayaseelan
- Queen Square Centre for Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
| | - Sachit Shah
- Neuroradiological Academic Unit, UCL Queen Square Institute of Neurology, UCL, London, UK
| | - Jasper M Morrow
- Queen Square Centre for Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
| | - Tarek Yousry
- Neuroradiological Academic Unit, UCL Queen Square Institute of Neurology, UCL, London, UK
| | - Michael G Hanna
- Queen Square Centre for Neuromuscular Diseases, UCL Queen Square Institute of Neurology, London, UK
| |
Collapse
|
3
|
Padberg GW, van Engelen BGM, Voermans NC. Facioscapulohumeral Disease as a myodevelopmental disease: Applying Ockham's razor to its various features. J Neuromuscul Dis 2023; 10:411-425. [PMID: 36872787 DOI: 10.3233/jnd-221624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/06/2023]
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) is an exclusively human neuromuscular disease. In the last decades the cause of FSHD was identified: the loss of epigenetic repression of the D4Z4 repeat on chromosome 4q35 resulting in inappropriate transcription of DUX4. This is a consequence of a reduction of the array below 11 units (FSHD1) or of a mutation in methylating enzymes (FSHD2). Both require the presence of a 4qA allele and a specific centromeric SSLP haplotype. Muscles become involved in a rostro-caudally order with an extremely variable progression rate. Mild disease and non-penetrance in families with affected individuals is common. Furthermore, 2% of the Caucasian population carries the pathological haplotype without clinical features of FSHD.In order to explain the various features of FSHD we applied Ockham's Razor to all possible scenarios and removed unnecessary complexities. We postulate that early in embryogenesis a few cells escape epigenetic silencing of the D4Z4 repeat. Their number is assumed to be roughly inversely related to the residual D4Z4 repeat size. By asymmetric cell division, they produce a rostro-caudal and medio-lateral decreasing gradient of weakly D4Z4-repressed mesenchymal stem cells. The gradient tapers towards an end as each cell-division allows renewed epigenetic silencing. Over time, this spatial gradient translates into a temporal gradient based on a decreasing number of weakly silenced stem cells. These cells contribute to a mildly abnormal myofibrillar structure of the fetal muscles. They also form a downward tapering gradient of epigenetically weakly repressed satellite cells. When activated by mechanical trauma, these satellite cells de-differentiate and express DUX4. When fused to myofibrils they contribute to muscle cell death in various ways. Over time and dependent on how far the gradient reaches the FSHD phenotype becomes progressively manifest. We thus hypothesize FSHD to be a myodevelopmental disease with a lifelong attempt to restore DUX4 repression.
Collapse
Affiliation(s)
- G W Padberg
- Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
| | - B G M van Engelen
- Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
| | - N C Voermans
- Department of Neurology, Donders Institute for Brain, Cognition and Behavior, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
4
|
Li M, Huang J, Liu M, Duan C, Guo H, Chen X, Wang Y. A novel variant of COL6A3 c.6817-2(IVS27)A>G causing Bethlem myopathy: A case report. Front Neurol 2023; 14:1063090. [PMID: 36779064 PMCID: PMC9911450 DOI: 10.3389/fneur.2023.1063090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Accepted: 01/05/2023] [Indexed: 01/28/2023] Open
Abstract
Bethlem myopathy (BM) is a disease that is caused by mutations in the collagen VI genes. It is a mildly progressive disease characterized by proximal muscle weakness and contracture of the fingers, the wrist, the elbow, and the ankle. BM is an autosomal dominant inheritance that is mainly caused by dominant COL6A1, COL6A2, or COL6A3 mutations. However, a few cases of collagen VI mutations with bilateral facial weakness and Beevor's sign have also been reported. This study presents a 50-year-old female patient with symptoms of facial weakness beginning in childhood and with the slow progression of the disease with age. At the age of 30 years, the patient presented with asymmetrical proximal muscle weakness, and the neurological examination revealed bilateral facial weakness and a positive Beevor's sign. Phosphocreatine kinase was slightly elevated with electromyography showing myopathic changes and magnetic resonance imaging (MRI) of the lower limb muscles showing the muscle MRI associated with collagen VI (COL6)-related myopathy (COL6-RM). The whole-genome sequencing technology identified the heterozygous mutation c.6817-2(IVS27)A>G in the COL6A3 gene, which was in itself a novel mutation. The present study reports yet another case of BM, which is caused by the recessive COL6A3 intron variation, widening the clinical spectrum and genetic heterogeneity of BM.
Collapse
Affiliation(s)
- Maohua Li
- Department of Neurology, The Second Affiliated Hospital (Xinqiao Hospital), Army Medical University (Third Military Medical University), Chongqing, China
| | - Jiandi Huang
- Department of Neurology, The Second Affiliated Hospital (Xinqiao Hospital), Army Medical University (Third Military Medical University), Chongqing, China
| | - Min Liu
- Department of Neurology, The Second Affiliated Hospital (Xinqiao Hospital), Army Medical University (Third Military Medical University), Chongqing, China
| | - Chunmei Duan
- Department of Neurology, The Second Affiliated Hospital (Xinqiao Hospital), Army Medical University (Third Military Medical University), Chongqing, China
| | - Hong Guo
- Department of Medical Genetics, College of Basic Medical Science, Army Medical University (Third Military Medical University), Chongqing, China,Hong Guo ✉
| | - Xiaoyan Chen
- Department of Neurology, The Second Affiliated Hospital (Xinqiao Hospital), Army Medical University (Third Military Medical University), Chongqing, China,Xiaoyan Chen ✉
| | - Yue Wang
- Department of Neurology, The Second Affiliated Hospital (Xinqiao Hospital), Army Medical University (Third Military Medical University), Chongqing, China,*Correspondence: Yue Wang ✉
| |
Collapse
|
5
|
Chen Z, Saini M, Koh JS, Prasad K, Koh SH, Tay KSS, Lee M, Tan YJ, Ng ASL, Tay SKH, Tan KB, Tandon A, Tan JMM, Chai JYH. Unique Clinical, Radiological and Histopathological Characteristics of a Southeast Asian Cohort of Patients with Limb-Girdle Muscular Dystrophy 2G/LGMD-R7-Telethonin-Related. J Neuromuscul Dis 2023; 10:91-106. [PMID: 36463458 DOI: 10.3233/jnd-221517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
AIM We describe a cohort of five patients with limb-girdle muscular dystrophy (LGMD) 2G/LGMD-R7 in a South-east Asian cohort. BACKGROUND LGMD2G/LGMD-R7-telethonin-related is caused by mutations in the TCAP gene that encodes for telethonin. METHODS We identified consecutive patients with LGMD2G/LGMD-R7-telethonin-related, diagnosed at the National Neuroscience Institute (NNI) and National University Hospital (NUH) between January 2000 and June 2021. RESULTS At onset, three patients presented with proximal lower limb weakness, one patient presented with Achilles tendon contractures, and one patient presented with delayed gross motor milestones. At last follow up, three patients had a limb girdle pattern of muscle weakness and two had a facioscapular humeral pattern of weakness. Whole body muscle MRI performed for one patient with a facioscapular-humeral pattern of weakness showed a pattern of muscle atrophy similar to facioscapular-humeral dystrophy. One patient had histological features consistent with myofibrillar myopathy; electron microscopy confirmed the disruption of myofibrillar architecture. One patients also had reduced staining to telethonin antibody on immunohistochemistry. CONCLUSION We report the unique clinical and histological features of a Southeast Asian cohort of five patients with LGMD2G/LGMD-R7-telethonin-related muscular dystrophy and further expand its clinical and histopathological spectrum.
Collapse
Affiliation(s)
- Zhiyong Chen
- Department of Neurology, National Neuroscience Institute, Singapore
| | - Monica Saini
- Department of Neurology, National Neuroscience Institute, Singapore
| | - Jasmine S Koh
- Department of Neurology, National Neuroscience Institute, Singapore
| | - Kalpana Prasad
- Department of Neurology, National Neuroscience Institute, Singapore
| | - Swee Hoon Koh
- Neuromuscular Laboratory, National Neuroscience Institute, Singapore
| | - Karine S S Tay
- Neuromuscular Laboratory, National Neuroscience Institute, Singapore
| | - Ming Lee
- Department of Pathology, Singapore General Hospital, Singapore
| | - Yi Jayne Tan
- Department of Neurology, National Neuroscience Institute, Singapore
| | - Adeline S L Ng
- Department of Neurology, National Neuroscience Institute, Singapore.,Duke NUS Graduate Medical School, Singapore
| | - Stacey Kiat Hong Tay
- Department of Paediatrics, Khoo Teck Puat-National University Children's Medical Institute, National University Health System, Singapore.,Department of Paediatrics, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | - Kong Bing Tan
- Department of Pathology, National University Hospital, Singapore
| | - Ankit Tandon
- Department of Diagnostic Radiology, Tan Tock Seng Hospital, Singapore
| | - Jeane M M Tan
- Department of Neurology, National Neuroscience Institute, Singapore
| | - Josiah Y H Chai
- Department of Neurology, National Neuroscience Institute, Singapore.,Neuromuscular Laboratory, National Neuroscience Institute, Singapore
| |
Collapse
|
6
|
Correlation between whole body muscle MRI and functional measures in paediatric patients with facioscapulohumeral muscular dystrophy. Neuromuscul Disord 2023; 33:15-23. [PMID: 36522253 DOI: 10.1016/j.nmd.2022.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 11/21/2022] [Accepted: 11/24/2022] [Indexed: 11/26/2022]
Abstract
Symptoms and severity of facioscapulohumeral muscular dystrophy (FSHD) can vary greatly, even within the same family. Clinical trial readiness requires accurate and reliable methods of assessing disease stage and progression. MRI has not previously been assessed as a disease biomarker in paediatric FSHD. Eleven patients with FSHD1 underwent whole body muscle MRI. Pre-selected muscles were analysed by a paediatric radiologist using the semi-quantitative Mercuri/Kim method. Within each domain (oedema, fat replacement, atrophy) scores for each muscle were then summated to give each participant three cumulative domain scores. The same participants had functional measures scored: FSHD-CSS (Ricci), FSHD-CS (Lamperti), FSHD-COM, PUL2.0, MFM-32, 6MWT, myometry and manual muscle testing. Pearson coefficient was calculated to determine strength of correlation. The scores for atrophy and fat replacement showed strong correlation with functional outcome measures, particularly FSHD-CSS, FSHD-CS and FSHD-COM. In contrast, muscle oedema correlated poorly with all functional outcome measures, with no relationship seen to the 6MWT. This study of eleven children suggests that semi-quantitative visual Mercuri score utilising fat replacement or atrophy on whole body muscle MRI correlates strongly with disease-specific functional measures and may be a useful measure of disease severity in paediatric FSHD.
Collapse
|
7
|
Colelli G, Barzaghi L, Paoletti M, Monforte M, Bergsland N, Manco G, Deligianni X, Santini F, Ricci E, Tasca G, Mira A, Figini S, Pichiecchio A. Radiomics and machine learning applied to STIR sequence for prediction of quantitative parameters in facioscapulohumeral disease. Front Neurol 2023; 14:1105276. [PMID: 36908599 PMCID: PMC9999017 DOI: 10.3389/fneur.2023.1105276] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Accepted: 01/30/2023] [Indexed: 03/14/2023] Open
Abstract
Purpose Quantitative Muscle MRI (qMRI) is a valuable and non-invasive tool to assess disease involvement and progression in neuromuscular disorders being able to detect even subtle changes in muscle pathology. The aim of this study is to evaluate the feasibility of using a conventional short-tau inversion recovery (STIR) sequence to predict fat fraction (FF) and water T2 (wT2) in skeletal muscle introducing a radiomic workflow with standardized feature extraction combined with machine learning algorithms. Methods Twenty-five patients with facioscapulohumeral muscular dystrophy (FSHD) were scanned at calf level using conventional STIR sequence and qMRI techniques. We applied and compared three different radiomics workflows (WF1, WF2, WF3), combined with seven Machine Learning regression algorithms (linear, ridge and lasso regression, tree, random forest, k-nearest neighbor and support vector machine), on conventional STIR images to predict FF and wT2 for six calf muscles. Results The combination of WF3 and K-nearest neighbor resulted to be the best predictor model of qMRI parameters with a mean absolute error about ± 5 pp for FF and ± 1.8 ms for wT2. Conclusion This pilot study demonstrated the possibility to predict qMRI parameters in a cohort of FSHD subjects starting from conventional STIR sequence.
Collapse
Affiliation(s)
- Giulia Colelli
- Department of Mathematics, University of Pavia, Pavia, Italy.,Neuroradiology Department, Advanced Imaging and Radiomics Center, IRCCS Mondino Foundation, Pavia, Italy.,INFN, Group of Pavia, Pavia, Italy
| | - Leonardo Barzaghi
- Department of Mathematics, University of Pavia, Pavia, Italy.,Neuroradiology Department, Advanced Imaging and Radiomics Center, IRCCS Mondino Foundation, Pavia, Italy
| | - Matteo Paoletti
- Neuroradiology Department, Advanced Imaging and Radiomics Center, IRCCS Mondino Foundation, Pavia, Italy
| | - Mauro Monforte
- UOC di Neurologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Niels Bergsland
- Department of Neurology, Jacobs School of Medicine and Biomedical Sciences, Buffalo Neuroimaging Analysis Center, University of Buffalo, The State University of New York, Buffalo, NY, United States.,IRCCS, Fondazione Don Carlo Gnocchi ONLUS, Milan, Italy
| | - Giulia Manco
- Neuroradiology Department, Advanced Imaging and Radiomics Center, IRCCS Mondino Foundation, Pavia, Italy
| | - Xeni Deligianni
- Department of Radiology, University Hospital Basel, Basel, Switzerland.,Basel Muscle MRI, Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| | - Francesco Santini
- Department of Radiology, University Hospital Basel, Basel, Switzerland.,Basel Muscle MRI, Department of Biomedical Engineering, University of Basel, Basel, Switzerland
| | - Enzo Ricci
- UOC di Neurologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Giorgio Tasca
- UOC di Neurologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.,John Walton Muscular Dystrophy Research Centre, Newcastle University and Newcastle Hospitals NHS Foundation Trusts, Newcastle upon Tyne, United Kingdom
| | - Antonietta Mira
- Data Science Lab, Università della Svizzera italiana, Lugano, Switzerland.,Department of Science and High Technology, University of Insubria, Como, Italy
| | - Silvia Figini
- Department of Political and Social Sciences, University of Pavia, Pavia, Italy.,BioData Science Center, IRCCS Mondino Foundation, Pavia, Italy
| | - Anna Pichiecchio
- Neuroradiology Department, Advanced Imaging and Radiomics Center, IRCCS Mondino Foundation, Pavia, Italy.,Department of Brain and Behavioural Sciences, University of Pavia, Pavia, Italy
| |
Collapse
|
8
|
Eren İ, Gedik CC, Kılıç U, Abay B, Birsel O, Demirhan M. Management of scapular dysfunction in facioscapulohumeral muscular dystrophy: the biomechanics of winging, arthrodesis indications, techniques and outcomes. EFORT Open Rev 2022; 7:734-746. [PMID: 36475552 PMCID: PMC9780611 DOI: 10.1530/eor-22-0080] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) is a common hereditary disorder which typically results in scapular winging due to wasting of the periscapular muscles affected by this condition. Scapulothoracic arthrodesis (STA) is the current surgical treatment for FSHD patients with severe winging and preserved deltoid muscle. There are several different techniques in the literature such as multifilament cables alone and cable or cerclage wires combined with single or multiple plates. We prefer cables without plates as it provides independent strong fixation points and strongly recommend utilization of autograft. The functional results of studies report that regardless of the technique used, shoulder elevation and thus quality of life is improved, as shown with outcome scores. There are several complications associated with STA. Pulmonary complications are common and usually resolve spontaneously. Meticulous surgical technique and effective postoperative analgesia may reduce the incidence. Scapular complications which are associated with the fixation may be encountered in the early or late period, which are related to the learning curve of the surgeon. In conclusion, STA is a reliable solution to a major problem in FSHD patients that helps them maintain their activities of daily living until a cure for the disease is found. A successful result is strongly dependent on patient selection, and a multidisciplinary team of neurologists, geneticists and orthopaedic surgeons is required to achieve good results.
Collapse
Affiliation(s)
- İlker Eren
- Koç University, School of Medicine, Department of Orthopaedics and Traumatology, Istanbul, Turkey
| | - Cemil Cihad Gedik
- Koç University, School of Medicine, Department of Orthopaedics and Traumatology, Istanbul, Turkey
| | - Uğur Kılıç
- Koç University, School of Medicine, Istanbul, Turkey
| | - Berk Abay
- Koç University, School of Medicine, Istanbul, Turkey
| | - Olgar Birsel
- Koç University, School of Medicine, Department of Orthopaedics and Traumatology, Istanbul, Turkey
| | - Mehmet Demirhan
- Koç University, School of Medicine, Department of Orthopaedics and Traumatology, Istanbul, Turkey
| |
Collapse
|
9
|
Deligianni X, Santini F, Paoletti M, Solazzo F, Bergsland N, Savini G, Faggioli A, Germani G, Monforte M, Ricci E, Tasca G, Pichiecchio A. Dynamic magnetic resonance imaging of muscle contraction in facioscapulohumeral muscular dystrophy. Sci Rep 2022; 12:7250. [PMID: 35508609 PMCID: PMC9068910 DOI: 10.1038/s41598-022-11147-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Accepted: 04/11/2022] [Indexed: 11/09/2022] Open
Abstract
Quantitative muscle MRI (water-T2 and fat mapping) is being increasingly used to assess disease involvement in muscle disorders, while imaging techniques for assessment of the dynamic and elastic muscle properties have not yet been translated into clinics. In this exploratory study, we quantitatively characterized muscle deformation (strain) in patients affected by facioscapulohumeral muscular dystrophy (FSHD), a prevalent muscular dystrophy, by applying dynamic MRI synchronized with neuromuscular electrical stimulation (NMES). We evaluated the quadriceps muscles in 34 ambulatory patients and 13 healthy controls, at 6-to 12-month time intervals. While a subgroup of patients behaved similarly to controls, for another subgroup the median strain decreased over time (approximately 57% over 1.5 years). Dynamic MRI parameters did not correlate with quantitative MRI. Our results suggest that the evaluation of muscle contraction by NMES-MRI is feasible and could potentially be used to explore the elastic properties and monitor muscle involvement in FSHD and other neuromuscular disorders.
Collapse
Affiliation(s)
- Xeni Deligianni
- Radiology, Division of Radiological Physics, University Hospital of Basel, Petersgraben 4, 4031, Basel, Switzerland.,Basel Muscle MRI, Department of Biomedical Engineering, University of Basel, Allschwil, Switzerland
| | - Francesco Santini
- Radiology, Division of Radiological Physics, University Hospital of Basel, Petersgraben 4, 4031, Basel, Switzerland. .,Basel Muscle MRI, Department of Biomedical Engineering, University of Basel, Allschwil, Switzerland.
| | - Matteo Paoletti
- Neuroradiology Department, Advanced Imaging and Radiomics Center, IRCCS Mondino Foundation, Pavia, Italy
| | - Francesca Solazzo
- School of Specialization in Clinical Pharmacology and Toxicology Center of Research in Medical Pharmacology, School of Medicine, University of Insubria, Varese, Italy
| | - Niels Bergsland
- Department of Neurology, Buffalo Neuroimaging Analysis Center, Jacobs School of Medicine and Biomedical Sciences, Buffalo, NY, USA.,IRCCS Fondazione Don Carlo Gnocchi ONLUS, Milan, Italy
| | - Giovanni Savini
- Neuroradiology Department, Advanced Imaging and Radiomics Center, IRCCS Mondino Foundation, Pavia, Italy
| | - Arianna Faggioli
- Neuroradiology Department, Advanced Imaging and Radiomics Center, IRCCS Mondino Foundation, Pavia, Italy
| | - Giancarlo Germani
- Neuroradiology Department, Advanced Imaging and Radiomics Center, IRCCS Mondino Foundation, Pavia, Italy
| | - Mauro Monforte
- Unità Operativa Complessa di Neurologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Enzo Ricci
- Unità Operativa Complessa di Neurologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Giorgio Tasca
- Unità Operativa Complessa di Neurologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Anna Pichiecchio
- Neuroradiology Department, Advanced Imaging and Radiomics Center, IRCCS Mondino Foundation, Pavia, Italy.,Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| |
Collapse
|
10
|
Ghasemi M, Emerson CP, Hayward LJ. Outcome Measures in Facioscapulohumeral Muscular Dystrophy Clinical Trials. Cells 2022; 11:687. [PMID: 35203336 PMCID: PMC8870318 DOI: 10.3390/cells11040687] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 02/11/2022] [Accepted: 02/15/2022] [Indexed: 02/04/2023] Open
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) is a debilitating muscular dystrophy with a variable age of onset, severity, and progression. While there is still no cure for this disease, progress towards FSHD therapies has accelerated since the underlying mechanism of epigenetic derepression of the double homeobox 4 (DUX4) gene leading to skeletal muscle toxicity was identified. This has facilitated the rapid development of novel therapies to target DUX4 expression and downstream dysregulation that cause muscle degeneration. These discoveries and pre-clinical translational studies have opened new avenues for therapies that await evaluation in clinical trials. As the field anticipates more FSHD trials, the need has grown for more reliable and quantifiable outcome measures of muscle function, both for early phase and phase II and III trials. Advanced tools that facilitate longitudinal clinical assessment will greatly improve the potential of trials to identify therapeutics that successfully ameliorate disease progression or permit muscle functional recovery. Here, we discuss current and emerging FSHD outcome measures and the challenges that investigators may experience in applying such measures to FSHD clinical trial design and implementation.
Collapse
Affiliation(s)
- Mehdi Ghasemi
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA; (C.P.E.J.); (L.J.H.)
- Wellstone Muscular Dystrophy Program, Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Charles P. Emerson
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA; (C.P.E.J.); (L.J.H.)
- Wellstone Muscular Dystrophy Program, Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| | - Lawrence J. Hayward
- Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA; (C.P.E.J.); (L.J.H.)
- Wellstone Muscular Dystrophy Program, Department of Neurology, University of Massachusetts Chan Medical School, Worcester, MA 01655, USA
| |
Collapse
|
11
|
Hsu WC, Lin YC, Chuang HH, Yeh KY, Chan WP, Ro LS. A Muscle Biosignature Differentiating Between Limb-Girdle Muscular Dystrophy and Idiopathic Inflammatory Myopathy on Magnetic Resonance Imaging. Front Neurol 2021; 12:783095. [PMID: 34987467 PMCID: PMC8720967 DOI: 10.3389/fneur.2021.783095] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Accepted: 11/23/2021] [Indexed: 12/02/2022] Open
Abstract
Background: The overlapping clinical presentations of limb-girdle muscular dystrophy (LGMD) and idiopathic inflammatory myopathy (IIM) make clinical diagnosis challenging. This study provides a comprehensive evaluation of the distributions and characteristics of muscle fat substitution and edema and aims to differentiate those two diseases. Methods: This retrospective study reviewed magnetic resonance imaging (MRI) of seventeen patients with pathologically proved diagnosis, comprising 11 with LGMD and 6 with IIM. The fat-only and water-only images from a Dixon sequence were used to evaluate muscle fat substitution and edema, respectively. The degrees of muscle fat substitution and edema were graded and compared using the appropriate statistical methods. Results: In LGMD, more than 50% of patients had high-grade fat substitution in the majority of muscle groups in the thigh and calf. However, <50% of IIM patients had high-grade fat substitution in all muscle groups. Moreover, LGMD patients had significantly higher grade fat substitution than IIM patients in all large muscle groups (p < 0.05). However, there was no significant difference in edema in the majority of muscle groups, except the adductor magnus (p = 0.012) and soleus (p = 0.009) with higher grade edema in IIM. Additionally, all the adductor magnus muscles in LGMD (100%) showed high-grade fat substitution, but none of them showed high-grade edema. Conclusions: MRI could be a valuable tool to differentiate LGMD from IIM based on the discrepancy in muscle fat substitution, and the adductor magnus muscle could provide a biosignature to categorizing LGMD.
Collapse
Affiliation(s)
- Wen-Chi Hsu
- Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Yu-Ching Lin
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Hai-Hua Chuang
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Family Medicine, Chang Gung Memorial Hospital, Taoyuan, Taiwan
| | - Kun-Yun Yeh
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Division of Hemato-Oncology, Department of Internal Medicine, Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Wing P. Chan
- Department of Radiology, Wan Fang Hospital, Taipei Medical University, Taipei, Taiwan
- Department of Radiology, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan
| | - Long-Sun Ro
- College of Medicine, Chang Gung University, Taoyuan, Taiwan
- Department of Neurology, Chang Gung Memorial Hospital, Taoyuan, Taiwan
- *Correspondence: Long-Sun Ro
| |
Collapse
|
12
|
Veeger TTJ, van Zwet EW, al Mohamad D, Naarding KJ, van de Velde NM, Hooijmans MT, Webb AG, Niks EH, de Groot JH, Kan HE. Muscle architecture is associated with muscle fat replacement in Duchenne and Becker muscular dystrophies. Muscle Nerve 2021; 64:576-584. [PMID: 34383334 PMCID: PMC9290788 DOI: 10.1002/mus.27399] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 08/02/2021] [Accepted: 08/07/2021] [Indexed: 12/21/2022]
Abstract
INTRODUCTION/AIMS Duchenne and Becker muscular dystrophies (DMD and BMD, respectively) are characterized by fat replacement of different skeletal muscles in a specific temporal order. Given the structural role of dystrophin in skeletal muscle mechanics, muscle architecture could be important in the progressive pathophysiology of muscle degeneration. Therefore, the aim of this study was to assess the role of muscle architecture in the progression of fat replacement in DMD and BMD. METHODS We assessed the association between literature-based leg muscle architectural characteristics and muscle fat fraction from 22 DMD and 24 BMD patients. Dixon-based magnetic resonance imaging estimates of fat fractions at baseline and 12 (only DMD) and 24 months were related to fiber length and physiological cross-sectional area (PCSA) using age-controlled linear mixed modeling. RESULTS DMD and BMD muscles with long fibers and BMD muscles with large PCSAs were associated with increased fat fraction. The effect of fiber length was stronger in muscles with larger PCSA. DISCUSSION Muscle architecture may explain the pathophysiology of muscle degeneration in dystrophinopathies, in which proximal muscles with a larger mass (fiber length × PCSA) are more susceptible, confirming the clinical observation of a temporal proximal-to-distal progression. These results give more insight into the mechanical role in the pathophysiology of muscular dystrophies. Ultimately, this new information can be used to help support the selection of current and the development of future therapies.
Collapse
Affiliation(s)
- Thom T. J. Veeger
- C.J. Gorter Center for High Field MRI, Department of RadiologyLeiden University Medical CenterLeidenThe Netherlands
| | - Erik W. van Zwet
- Department of BiostatisticsLeiden University Medical CenterLeidenThe Netherlands
| | - Diaa al Mohamad
- Department of BiostatisticsLeiden University Medical CenterLeidenThe Netherlands
| | - Karin J. Naarding
- Department of NeurologyLeiden University Medical CenterLeidenThe Netherlands
| | | | - Melissa T. Hooijmans
- Department of Radiology & Nuclear MedicineAmsterdam University Medical Centers, Location AMCAmsterdamThe Netherlands
| | - Andrew G. Webb
- C.J. Gorter Center for High Field MRI, Department of RadiologyLeiden University Medical CenterLeidenThe Netherlands
| | - Erik H. Niks
- Department of NeurologyLeiden University Medical CenterLeidenThe Netherlands
| | - Jurriaan H. de Groot
- Department of Rehabilitation MedicineLeiden University Medical CenterLeidenThe Netherlands
| | - Hermien E. Kan
- C.J. Gorter Center for High Field MRI, Department of RadiologyLeiden University Medical CenterLeidenThe Netherlands
| |
Collapse
|
13
|
Sakr HM, Fahmy N, Elsayed NS, Abdulhady H, El-Sobky TA, Saadawy AM, Beroud C, Udd B. Whole-body muscle MRI characteristics of LAMA2-related congenital muscular dystrophy children: An emerging pattern. Neuromuscul Disord 2021; 31:814-823. [PMID: 34481707 DOI: 10.1016/j.nmd.2021.06.012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 06/22/2021] [Accepted: 06/23/2021] [Indexed: 11/25/2022]
Abstract
Merosin-deficient or LAMA2-related congenital muscular dystrophy (CMD) belongs to a group of muscle diseases with an overlapping diagnostic spectrum. MRI plays an important role in the diagnosis and disease-tracking of muscle diseases. Whole-body MRI is ideal for describing patterns of muscle involvement. We intended to analyze the pattern of muscle involvement in merosin-deficient CMD children employing whole-body muscle MRI. Ten children with merosin-deficient CMD underwent whole-body muscle MRI. Eight of which were genetically-confirmed. We used a control group of other hereditary muscle diseases, which included 13 children (mean age was 13 SD +/- 5.5 years), (8 boys and 5 girls) for comparative analysis. Overall, 37 muscles were graded for fatty infiltration using Mercuri scale modified by Fischer et al. The results showed a fairly consistent pattern of muscle fatty infiltration in index group, which differs from that in control group. There was a statistically significant difference between the two groups in regard to the fatty infiltration of the neck, serratus anterior, intercostal, rotator cuff, deltoid, triceps, forearm, gluteus maximus, gluteus medius, gastrocnemius and soleus muscles. Additionally, the results showed relative sparing of the brachialis, biceps brachii, gracilis, sartorius, semitendinosus and extensor muscles of the ankle in index group, and specific texture abnormalities in other muscles. There is evidence to suggest that whole-body muscle MRI can become a useful contributor to the differential diagnosis of children with merosin deficient CMD. The presence of a fairly characteristic pattern of involvement was demonstrated. MRI findings should be interpreted in view of the clinical and molecular context to improve diagnostic accuracy.
Collapse
Affiliation(s)
- Hossam M Sakr
- Department of Diagnostic & Interventional Radiology and Molecular Imaging, Faculty of Medicine, Ain Shams University, Cairo, Egypt.
| | - Nagia Fahmy
- Department of Neuropsychiatry, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Nermine S Elsayed
- Centre of Medical Genetics, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Hala Abdulhady
- Department of Physical Medicine and Rehabilitation, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Tamer A El-Sobky
- Division of Pediatric Orthopedics, Department of Orthopedic Surgery, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Amr M Saadawy
- Department of Diagnostic & Interventional Radiology and Molecular Imaging, Faculty of Medicine, Ain Shams University, Cairo, Egypt
| | - Christophe Beroud
- Aix Marseille Université, INSERM, MMG, Bioinformatics & Genetics, Marseille, France
| | - Bjarne Udd
- Neuromuscular Research Center, University of Tampere and Tampere University Hospital, Tampere, Finland
| |
Collapse
|
14
|
Chen TH, Wu YZ, Tseng YH. Early-Onset Infantile Facioscapulohumeral Muscular Dystrophy: A Timely Review. Int J Mol Sci 2020; 21:E7783. [PMID: 33096728 PMCID: PMC7589635 DOI: 10.3390/ijms21207783] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Revised: 10/16/2020] [Accepted: 10/19/2020] [Indexed: 01/08/2023] Open
Abstract
Facioscapulohumeral muscular dystrophy (FSHD)-the worldwide third most common inherited muscular dystrophy caused by the heterozygous contraction of a 3.3 kb tandem repeat (D4Z4) on a chromosome with a 4q35 haplotype-is a progressive genetic myopathy with variable onset of symptoms, distribution of muscle weakness, and clinical severity. While much is known about the clinical course of adult FSHD, data on the early-onset infantile phenotype, especially on the progression of the disease, are relatively scarce. Contrary to the classical form, patients with infantile FSHD more often have a rapid decline in muscle wasting and systemic features with multiple extramuscular involvements. A rough correlation between the phenotypic severity of FSHD and the D4Z4 repeat size has been reported, and the majority of patients with infantile FSHD obtain a very short D4Z4 repeat length (one to three copies, EcoRI size 10-14 kb), in contrast to the classical, slowly progressive, form of FSHD (15-38 kb). With the increasing identifications of case reports and the advance in genetic diagnostics, recent studies have suggested that the infantile variant of FSHD is not a genetically separate entity but a part of the FSHD spectrum. Nevertheless, many questions about the clinical phenotype and natural history of infantile FSHD remain unanswered, limiting evidence-based clinical management. In this review, we summarize the updated research to gain insight into the clinical spectrum of infantile FSHD and raise views to improve recognition and understanding of its underlying pathomechanism, and further, to advance novel treatments and standard care methods.
Collapse
Affiliation(s)
- Tai-Heng Chen
- Section of Neurobiology, Department of Biological Sciences, University of Southern California, Los Angeles, CA 90089, USA
- Department of Pediatrics, Division of Pediatric Emergency, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (Y.-Z.W.); (Y.-H.T.)
- School of Post-Baccalaureate Medicine, College of Medicine, Kaohsiung Medical University, Kaohsiung 80708, Taiwan
| | - Yan-Zhang Wu
- Department of Pediatrics, Division of Pediatric Emergency, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (Y.-Z.W.); (Y.-H.T.)
| | - Yung-Hao Tseng
- Department of Pediatrics, Division of Pediatric Emergency, Kaohsiung Medical University Hospital, Kaohsiung Medical University, Kaohsiung 80708, Taiwan; (Y.-Z.W.); (Y.-H.T.)
| |
Collapse
|
15
|
Lassche S, Voermans NC, Schreuder T, Heerschap A, Küsters B, Ottenheijm CA, Hopman MT, van Engelen BG. Reduced specific force in patients with mild and severe facioscapulohumeral muscular dystrophy. Muscle Nerve 2020; 63:60-67. [PMID: 32959362 PMCID: PMC7821115 DOI: 10.1002/mus.27074] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2020] [Revised: 09/05/2020] [Accepted: 09/11/2020] [Indexed: 12/18/2022]
Abstract
BACKGROUND Specific force, that is the amount of force generated per unit of muscle tissue, is reduced in patients with facioscapulohumeral muscular dystrophy (FSHD). The causes of reduced specific force and its relation with FSHD disease severity are unknown. METHODS Quantitative muscle magnetic resonance imaging (MRI), measurement of voluntary maximum force generation and quadriceps force-frequency relationship, and vastus lateralis muscle biopsies were performed in 12 genetically confirmed patients with FSHD and 12 controls. RESULTS Specific force was reduced by ~33% in all FSHD patients independent of disease severity. Quadriceps force-frequency relationship shifted to the right in severe FSHD compared to controls. Fiber type distribution in vastus lateralis muscle biopsies did not differ between groups. CONCLUSIONS Reduced quadriceps specific force is present in all FSHD patients regardless of disease severity or fatty infiltration. Early myopathic changes, including fibrosis, and non-muscle factors, such as physical fatigue and musculoskeletal pain, may contribute to reduced specific force.
Collapse
Affiliation(s)
- Saskia Lassche
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Nicol C Voermans
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Tim Schreuder
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Arend Heerschap
- Department of Radiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Benno Küsters
- Department of Pathology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Coen Ac Ottenheijm
- Department of Physiology, Institute for Cardiovascular Research, Amsterdam University Medical Center, Amsterdam, The Netherlands
| | - Maria Te Hopman
- Department of Physiology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Baziel Gm van Engelen
- Department of Neurology, Donders Institute for Brain, Cognition and Behaviour, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
16
|
Fernández-Carnero S, Garrido-Marín A, Achalandabaso-Ochoa A, Ferragut-Garcías A, Fernández-Matías R, Pecos-Martín D, Gallego-Izquierdo T. Evaluation of the Lower Trapezius Muscle Using Ultrasound Panoramic View (a Novel Approach): An Intra- and Inter-Rater Reliability Study. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2020; 17:ijerph17197123. [PMID: 33003390 PMCID: PMC7579079 DOI: 10.3390/ijerph17197123] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 09/25/2020] [Accepted: 09/27/2020] [Indexed: 11/16/2022]
Abstract
The panoramic view ultrasound remains uncommon in clinical practice, probably because of its difficulty, high-cost, and lack of research. Morphological changes in muscles have been demonstrated to be related to symptomatology and provide data of interest for clinical assessment. Thus, the aim of this study was to evaluate the measurement reliability of the length of the lower trapezius muscle with the panoramic view ultrasound using a novel tool, SIG_VIP®. Twenty healthy volunteers were measured by two expert sonographers using the SIG_VIP® tool with a novel approach. Statistical analyses were performed with the R software. The intraclass correlation coefficient (ICC), standard error of measurement (SEM), minimal detectable change (MDC), and Bland-Altman plots were calculated. All the results indicated good intra-rater reliability (ICC3,1, 0.92 to 0.96; SEM, 0.59 to 0.85; MDC, 1.64 to 2.35) and inter-rater reliability (ICC3,2, 0.84 to 0.89; SEM, 1.22 to 1.53; MDC, 3.39 to 4.25). The novel system used with the described methodology can reliably measure the length of the inferior fibers of the trapezius muscle. Further research must be conducted to evaluate the reliability in patients and how pathology is related to the length of the lower trapezius muscle.
Collapse
Affiliation(s)
- Samuel Fernández-Carnero
- Department of Physiotherapy and Nursing, Alcalá University, 28871 Alcalá de Henares, Spain; (S.F.-C.); (D.P.-M.); (T.G.-I.)
| | | | | | | | - Rubén Fernández-Matías
- Research Institute of Physical Therapy and Pain, Alcalá University, 28871 Alcalá de Henares, Spain;
| | - Daniel Pecos-Martín
- Department of Physiotherapy and Nursing, Alcalá University, 28871 Alcalá de Henares, Spain; (S.F.-C.); (D.P.-M.); (T.G.-I.)
| | - Tomás Gallego-Izquierdo
- Department of Physiotherapy and Nursing, Alcalá University, 28871 Alcalá de Henares, Spain; (S.F.-C.); (D.P.-M.); (T.G.-I.)
| |
Collapse
|
17
|
Jesuthasan A, Shah S, Morrow JM. Use of muscle MRI in an atypical presentation of FSHD2. BMJ Case Rep 2020; 13:13/6/e236444. [PMID: 32532898 DOI: 10.1136/bcr-2020-236444] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Affiliation(s)
- Aaron Jesuthasan
- University College Hospital, University College London Hospitals NHS Foundation Trust, London, UK
| | - Sachit Shah
- Lysholm Department of Neuroradiology, National Hospital for Neurology and Neurosurgery, London, UK
| | - Jasper M Morrow
- Department of Neuromuscular Diseases, Queen Square UCL Institute of Neurology, London, UK
| |
Collapse
|
18
|
Abstract
PURPOSE OF REVIEW Facioscapulohumeral muscular dystrophy (FSHD) is a common muscular dystrophy affecting both pediatric and adult patients. This article reviews the phenotype and pathophysiology of the disease as well as the recent efforts in clinical outcome measures and clinical trials. RECENT FINDINGS As the name implies, FSHD involves weakness of facial muscles, muscles that fix the scapula, and muscles overlying the humerus (biceps and triceps). The distinctive phenotype of FSHD occurs secondary to two different genetic mechanisms. FSHD type 1 (FSHD1) is due to a deletion on chromosome 4q, leading to hypomethylation and derepression of DUX4. FSHD type 2 (FSHD2) is due to mutations in SMCHD1 with resulting hypomethylation of the same subtelomeric region of chromosome 4q and derepression of DUX4. Understanding the central role of DUX4 has opened up the possibility of disease-modifying treatments. In preparation for clinical trials of novel agents, researchers are in the process of validating a number of clinical trial outcome measures including MRI, the 6-minute walk test, the FSHD Composite Outcome Measure, reachable workspace, electrical impedance myography, and the FSHD Health Index. SUMMARY The treatment of FSHD is currently supportive only. While past clinical trials in FSHD have been largely disappointing, novel agents in development, including antisense oligonucleotides, gene therapy, and small molecules, hold promise for future meaningful therapies.
Collapse
|
19
|
Goselink RJ, Schreuder TH, Mul K, Voermans NC, Erasmus CE, van Engelen BG, van Alfen N. Muscle ultrasound is a responsive biomarker in facioscapulohumeral dystrophy. Neurology 2020; 94:e1488-e1494. [DOI: 10.1212/wnl.0000000000009211] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Accepted: 10/15/2019] [Indexed: 12/21/2022] Open
Abstract
ObjectiveWith drug trials starting soon, responsive, relevant, and patient-friendly biomarkers are highly needed in facioscapulohumeral dystrophy (FSHD). Our objective was to assess muscle ultrasound (MUS) as an imaging biomarker in patients with FSHD.MethodsOne-year observational, longitudinal study of both quantitative and qualitative MUS changes in FSHD.ResultsTwenty-two patients with symptomatic FSHD1 underwent a clinical examination and MUS at baseline and after 1-year follow-up. The qualitative MUS sum score increased from 18.59 to 20.32 (p = 0.005) and the quantitative MUS sum z scores increased from 19.96 to 24.72 (p = 0.003). The clinical scores did not change over 1 year. Muscle echogenicity correlated with the FSHD clinical score at baseline (r = 0.61, p = 0.002).ConclusionsMUS shows a significant increase in echogenicity in FSHD over 1 year. Both quantitative and qualitative MUS correlate cross-sectionally with clinical severity in FSHD and identify structural muscle changes in a clinically stable group of patients. MUS thus seems a potentially responsive biomarker that could be standardized between centers. We recommend its use in therapeutic trials.Classification of evidenceThis study provides Class I evidence that in patents with FSHD1, MUS findings correlate with baseline FSHD clinical scores.
Collapse
|
20
|
Rutkove SB. Electrical impedance myography: MRI-like data without the need for MRI. Muscle Nerve 2020; 61:554-556. [PMID: 32052459 DOI: 10.1002/mus.26832] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 02/03/2020] [Accepted: 02/09/2020] [Indexed: 11/11/2022]
Affiliation(s)
- Seward B Rutkove
- Department of Neurology, Beth Israel Deaconess Medical Center, Boston, Massachusetts
| |
Collapse
|
21
|
Monforte M, Laschena F, Ottaviani P, Bagnato MR, Pichiecchio A, Tasca G, Ricci E. Tracking muscle wasting and disease activity in facioscapulohumeral muscular dystrophy by qualitative longitudinal imaging. J Cachexia Sarcopenia Muscle 2019; 10:1258-1265. [PMID: 31668022 PMCID: PMC6903444 DOI: 10.1002/jcsm.12473] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 05/14/2019] [Accepted: 06/12/2019] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Facioscapulohumeral muscular dystrophy (FSHD) is one of the most frequent late-onset muscular dystrophies, characterized by progressive fatty replacement and degeneration involving single muscles in an asynchronous manner. With clinical trials at the horizon in this disease, the knowledge of its natural history is of paramount importance to understand the impact of new therapies. The aim of this study was to assess disease progression in FSHD using qualitative muscle magnetic resonance imaging, with a focus on the evolution of hyperintense lesions identified on short-tau inversion recovery (STIR+) sequences, hypothesized to be markers of active muscle injury. METHODS One hundred genetically confirmed consecutive FSHD patients underwent lower limb muscle magnetic resonance imaging at baseline and after 365 ± 60 days in this prospective longitudinal study. T1 weighted (T1w) and STIR sequences were used to assess fatty replacement using a semiquantitative visual score and muscle oedema. The baseline and follow-up scans of each patient were also evaluated by unblinded direct comparison to detect the changes not captured by the scoring system. RESULTS Forty-nine patients showed progression on T1w sequences after 1 year, and 30 patients showed at least one new STIR+ lesion. Increased fat deposition at follow-up was observed in 13.9% STIR+ and in only 0.21% STIR- muscles at baseline (P < 0.001). Overall, 89.9% of the muscles that showed increased fatty replacement were STIR+ at baseline and 7.8% were STIR+ at 12 months. A higher number of STIR+ muscles at baseline was associated with radiological worsening (odds ratio 1.17, 95% confidence interval 1.06-1.30, P = 0.003). CONCLUSIONS Our study confirms that STIR+ lesions represent prognostic biomarkers in FSHD and contributes to delineate its radiological natural history, providing useful information for clinical trial design. Given the peculiar muscle-by-muscle involvement in FSHD, MRI represents an invaluable tool to explore the modalities and rate of disease progression.
Collapse
Affiliation(s)
- Mauro Monforte
- Unità Operativa Complessa di Neurologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.,Istituto di Neurologia, Università Cattolica del Sacro Cuore, Rome, Italy
| | | | | | | | - Anna Pichiecchio
- Neuroradiology Department, IRCCS Mondino Foundation, Pavia, Italy.,Brain and Behavioral Department, University of Pavia, Pavia, Italy
| | - Giorgio Tasca
- Unità Operativa Complessa di Neurologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
| | - Enzo Ricci
- Unità Operativa Complessa di Neurologia, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy.,Istituto di Neurologia, Università Cattolica del Sacro Cuore, Rome, Italy
| |
Collapse
|
22
|
European muscle MRI study in limb girdle muscular dystrophy type R1/2A (LGMDR1/LGMD2A). J Neurol 2019; 267:45-56. [PMID: 31555977 DOI: 10.1007/s00415-019-09539-y] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Revised: 09/09/2019] [Accepted: 09/10/2019] [Indexed: 02/07/2023]
Abstract
BACKGROUND Limb girdle muscular dystrophy type R1/2A (LGMDR1/LGMD2A) is a progressive myopathy caused by deficiency of calpain 3, a calcium-dependent cysteine protease of skeletal muscle, and it represents the most frequent type of LGMD worldwide. In the last few years, muscle magnetic resonance imaging (MRI) has been proposed as a tool for identifying patterns of muscular involvement in genetic disorders and as a biomarker of disease progression in muscle diseases. In this study, 57 molecularly confirmed LGMDR1 patients from a European cohort (age range 7-78 years) underwent muscle MRI and a global evaluation of functional status (Gardner-Medwin and Walton score and ability to raise the arms). RESULTS We confirmed a specific pattern of fatty substitution involving predominantly the hip adductors and hamstrings in lower limbs. Spine extensors were more severely affected than spine rotators, in agreement with higher incidence of lordosis than scoliosis in LGMDR1. Hierarchical clustering of lower limb MRI scores showed that involvement of anterior thigh muscles discriminates between classes of disease progression. Severity of muscle fatty substitution was significantly correlated with CAPN3 mutations: in particular, patients with no or one "null" alleles showed a milder involvement, compared to patients with two null alleles (i.e., predicting absence of calpain-3 protein). Expectedly, fat infiltration scores strongly correlated with functional measures. The "pseudocollagen" sign (central areas of sparing in some muscle) was associated with longer and more severe disease course. CONCLUSIONS We conclude that skeletal muscle MRI represents a useful tool in the diagnostic workup and clinical management of LGMDR1.
Collapse
|
23
|
Essers JMN, Peters A, Meijer K, Peters K, Murgia A. Superficial Shoulder Muscle Synergy Analysis in Facioscapulohumeral Dystrophy During Humeral Elevation Tasks. IEEE Trans Neural Syst Rehabil Eng 2019; 27:1556-1565. [PMID: 31295115 DOI: 10.1109/tnsre.2019.2927765] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Facioscapulohumeral dystrophy (FSHD) is a progressive muscle-wasting disease which leads to a decline in upper extremity functionality. Although the scapulohumeral joint's stability and functionality are affected, evidence on the synergetic control of the shoulder muscles in FSHD individuals is still lacking. The aim of this paper is to understand the neuromuscular changes in shoulder muscle control in people with FSHD. Upper arm kinematics and electromyograms (EMG) of eight upper extremity muscles were recorded during shoulder abduction-adduction and flexion-extension tasks in eleven participants with FSHD and 11 healthy participants. Normalized muscle activities were extracted from EMG signals. Non-negative matrix factorization was used to compute muscle synergies. Maximum muscle activities were compared using non-parametric analysis of variance. Similarities between synergies were also calculated using correlation. The Biceps Brachii was significantly more active in the FSHD group (25±2%) while Trapezius Ascendens and Serratus Anterior were less active (32±7% and 39±4%, respectively). Muscle synergy weights were altered in FSHD individuals and showed greater diversity while controls mostly used one synergy for both tasks. The decreased activity by selected scapula rotator muscles and muscle synergy weight alterations show that neuromuscular control of the scapulohumeral joint is less consistent in people with FSHD compared to healthy participants. Assessments of muscle coordination strategies can be used to evaluate motor output variability and assist in management of the disease.
Collapse
|
24
|
Krishnamurthy R, Wang DJJ, Cervantes B, McAllister A, Nelson E, Karampinos DC, Hu HH. Recent Advances in Pediatric Brain, Spine, and Neuromuscular Magnetic Resonance Imaging Techniques. Pediatr Neurol 2019; 96:7-23. [PMID: 31023603 DOI: 10.1016/j.pediatrneurol.2019.03.001] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/01/2018] [Revised: 02/25/2019] [Accepted: 03/03/2019] [Indexed: 12/21/2022]
Abstract
Magnetic resonance imaging (MRI) is a powerful radiologic tool with the ability to generate a variety of proton-based signal contrast from tissues. Owing to this immense flexibility in signal generation, new MRI techniques are constantly being developed, tested, and optimized for clinical utility. In addition, the safe and nonionizing nature of MRI makes it a suitable modality for imaging in children. In this review article, we summarize a few of the most popular advances in MRI techniques in recent years. In particular, we highlight how these new developments have affected brain, spine, and neuromuscular imaging and focus on their applications in pediatric patients. In the first part of the review, we discuss new approaches such as multiphase and multidelay arterial spin labeling for quantitative perfusion and angiography of the brain, amide proton transfer MRI of the brain, MRI of brachial plexus and lumbar plexus nerves (i.e., neurography), and T2 mapping and fat characterization in neuromuscular diseases. In the second part of the review, we focus on describing new data acquisition strategies in accelerated MRI aimed collectively at reducing the scan time, including simultaneous multislice imaging, compressed sensing, synthetic MRI, and magnetic resonance fingerprinting. In discussing the aforementioned, the review also summarizes the advantages and disadvantages of each method and their current state of commercial availability from MRI vendors.
Collapse
Affiliation(s)
| | - Danny J J Wang
- Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Barbara Cervantes
- Department of Diagnostic and Interventional Radiology, Technische Universität München, Munich, Germany
| | | | - Eric Nelson
- Center for Biobehavioral Health, Nationwide Children's Hospital, Columbus, Ohio
| | - Dimitrios C Karampinos
- Department of Diagnostic and Interventional Radiology, Technische Universität München, Munich, Germany
| | | |
Collapse
|
25
|
Fayssoil A, Stojkovic T, Ogna A, Laforet P, Prigent H, Lofaso F, Orlikowski D, Bassez G, Eymard B, Behin A. Assessment of diaphragm motion using ultrasonography in a patient with facio-scapulo-humeral dystrophy: A case report. Medicine (Baltimore) 2019; 98:e13887. [PMID: 30681553 PMCID: PMC6358327 DOI: 10.1097/md.0000000000013887] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
RATIONALE Diaphragm is the main inspiratory respiratory muscle and little is known about diaphragm ultrasound in facio-scapula-humeral muscular dystrophy, a neuromuscular disease characterized by an asymmetric skeletal muscle involvement. PATIENT CONCERNS Diaphragm function evaluation DIAGNOSIS:: Diaphragm muscle weakness attested by the drop of vital capacity (VC) value from sitting position (74%) to supine position (46%). INTERVENTIONS A diaphragm ultrasound was performed in supine position, from the anterior subcostal window OUTCOMES:: We found an opposite side to side hemi diaphragm displacement, either during sniff maneuver or during deep inspiration maneuver, showing a cranial abnormal reduced motion of the right hemi diaphragm whereas the left hemi diaphragm moved caudally. LESSONS Diaphragm weakness may be present with an asymmetric pattern and an opposite motion during inspiration or sniff manoeuver in facio-scapula-humeral muscular dystrophy. A future study with a systematic evaluation of a greater number of FSHD1 patients will be necessary to characterize this population.
Collapse
Affiliation(s)
- Abdallah Fayssoil
- Myology Institute, Pitié Salpetriere Hospital, APHP, Paris
- Raymond Poincaré Hospital, APHP, Garches, France
| | | | - Adam Ogna
- Lausanne University Hospital, Lausanne, Switzerland
| | - Pascal Laforet
- Myology Institute, Pitié Salpetriere Hospital, APHP, Paris
- Raymond Poincaré Hospital, APHP, Garches, France
| | | | | | | | | | - Bruno Eymard
- Myology Institute, Pitié Salpetriere Hospital, APHP, Paris
| | - Anthony Behin
- Myology Institute, Pitié Salpetriere Hospital, APHP, Paris
| |
Collapse
|
26
|
Goselink RJ, Schreuder TH, van Alfen N, de Groot IJ, Jansen M, Lemmers RJ, van der Vliet PJ, van der Stoep N, Theelen T, Voermans NC, van der Maarel SM, van Engelen BG, Erasmus CE. Facioscapulohumeral Dystrophy in Childhood: A Nationwide Natural History Study. Ann Neurol 2018; 84:627-637. [PMID: 30179273 PMCID: PMC6282793 DOI: 10.1002/ana.25326] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 08/29/2018] [Accepted: 08/29/2018] [Indexed: 12/21/2022]
Abstract
OBJECTIVE Facioscapulohumeral dystrophy (FSHD) is one of the most frequent heritable muscular dystrophies, with a large variety in age at onset and disease severity. The natural history and molecular characteristics of FSHD in childhood are incompletely understood. Our objective is to clinically and genetically characterize FSHD in childhood. METHODS We performed a nationwide, single-investigator, natural history study on FSHD in childhood. RESULTS Multiple-source recruitment resulted in 32 patients with FSHD (0-17 years), leading to an estimated prevalence of 1 in 100,000 children in The Netherlands. This series of 32 children with FSHD revealed a heterogeneous phenotype and genotype in childhood. The phenotypic hallmarks of FSHD in childhood are: facial weakness with normal or only mildly affected motor performance, decreased functional exercise capacity (6-minute walk test), lumbar hyperlordosis, and increased echo intensity on muscle ultrasonography. In addition, pain and fatigue were frequent and patients experienced a lower quality of life compared to healthy peers. In contrast to the literature on early-onset FSHD, systemic features such as hearing loss and retinal and cardiac abnormalities were infrequent and subclinical, and epilepsy and intellectual disability were absent. Genotypically, patients had a mean D4Z4 repeat array of 5 units (range, 2-9), and 14% of the mutations were de novo. INTERPRETATION FSHD in childhood is more prevalent than previously known and the genotype resembles classic FSHD. Importantly, FSHD mainly affects functional exercise capacity and quality of life in children. As such, these results are paramount for counseling, clinical management, and stratification in clinical research. Ann Neurol 2018;84:635-645.
Collapse
Affiliation(s)
- Rianne J.M. Goselink
- Department of Neurology, Donders Centre for NeuroscienceRadboud University Medical CentreNijmegenThe Netherlands
| | - Tim H.A. Schreuder
- Department of Neurology, Donders Centre for NeuroscienceRadboud University Medical CentreNijmegenThe Netherlands
| | - Nens van Alfen
- Department of Neurology, Donders Centre for NeuroscienceRadboud University Medical CentreNijmegenThe Netherlands
| | - Imelda J.M. de Groot
- Department of Rehabilitation, Donders Centre for NeuroscienceRadboud University Medical CentreNijmegenThe Netherlands
| | - Merel Jansen
- Department of Rehabilitation, Donders Centre for NeuroscienceRadboud University Medical CentreNijmegenThe Netherlands
| | | | | | - Nienke van der Stoep
- Department of Clinical GeneticsLeiden University Medical CentreLeidenThe Netherlands
| | - Thomas Theelen
- Department of OphthalmologyRadboud University Medical CentreNijmegenThe Netherlands
| | - Nicol C. Voermans
- Department of Neurology, Donders Centre for NeuroscienceRadboud University Medical CentreNijmegenThe Netherlands
| | | | - Baziel G.M. van Engelen
- Department of Neurology, Donders Centre for NeuroscienceRadboud University Medical CentreNijmegenThe Netherlands
| | - Corrie E. Erasmus
- Department of Neurology, Donders Centre for NeuroscienceRadboud University Medical CentreNijmegenThe Netherlands
| |
Collapse
|
27
|
Feng X, Luo S, Li J, Yue D, Xi J, Zhu W, Gao X, Guan X, Lu J, Liang Z, Zhao C. Fatty infiltration evaluation and selective pattern characterization of lower limbs in limb-girdle muscular dystrophy type 2A by muscle magnetic resonance imaging. Muscle Nerve 2018; 58:536-541. [PMID: 29797799 DOI: 10.1002/mus.26169] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Revised: 05/06/2018] [Accepted: 05/08/2018] [Indexed: 11/11/2022]
Affiliation(s)
- Xuelin Feng
- Department of Neurology; Huashan Hospital and Fudan University; Shanghai 200040 China
| | - Sushan Luo
- Department of Neurology; Huashan Hospital and Fudan University; Shanghai 200040 China
| | - Jing Li
- Department of Radiology; Jing'an District Center Hospital of Shanghai; Shanghai China
| | - Dongyue Yue
- Department of Neurology; Jing'an District Center Hospital of Shanghai; Shanghai China
| | - Jianying Xi
- Department of Neurology; Huashan Hospital and Fudan University; Shanghai 200040 China
| | - Wenhua Zhu
- Department of Neurology; Huashan Hospital and Fudan University; Shanghai 200040 China
| | - Xinfang Gao
- Department of Radiology; Jing'an District Center Hospital of Shanghai; Shanghai China
| | - Xueni Guan
- Department of Radiology; Jing'an District Center Hospital of Shanghai; Shanghai China
| | - Jiahong Lu
- Department of Neurology; Huashan Hospital and Fudan University; Shanghai 200040 China
| | - Zonghui Liang
- Department of Radiology; Jing'an District Center Hospital of Shanghai; Shanghai China
| | - Chongbo Zhao
- Department of Neurology; Huashan Hospital and Fudan University; Shanghai 200040 China
- Department of Neurology; Jing'an District Center Hospital of Shanghai; Shanghai China
| |
Collapse
|
28
|
Mah JK, Chen YW. A Pediatric Review of Facioscapulohumeral Muscular Dystrophy. JOURNAL OF PEDIATRIC NEUROLOGY 2018; 16:222-231. [PMID: 30923442 PMCID: PMC6435288 DOI: 10.1055/s-0037-1604197] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Facioscapulohumeral dystrophy is one of the most common forms of muscular dystrophies worldwide. It is a complex and heterogeneous disease secondary to insufficient epigenetic repression of D4Z4 repeats and aberrant expression of DUX4 in skeletal muscles. Type 1 facioscapulohumeral muscular dystrophy (FSHD) is caused by contraction of D4Z4 repeats on 4q35, whereas type 2 FSHD is associated with mutations of the SMCHD1 or DNMT3B gene in the presence of a disease-permissive 4qA haplotype. Classical FSHD is a slowly progressive disorder with gradual-onset of muscle atrophy and a descending pattern of muscle weakness. In contrast, early-onset FSHD is associated with a large deletion of D4Z4 repeats and a more severe disease phenotype, including early loss of independent ambulation as well as extramuscular manifestations, such as retinal vasculopathy, hearing loss, and central nervous system (CNS) involvement. However, the correlation between D4Z4 repeats and disease severity remains imprecise. The current standard of care guidelines offers comprehensive assessment and symptomatic management of secondary complications. Several clinical trials are currently underway for FSHD. New and emerging treatments focus on correcting the transcriptional misregulation of D4Z4 and reversing the cytotoxic effects of DUX4. Other potential therapeutic targets include reduction of inflammation, improving muscle mass, and activating compensatory molecular pathways. The utility of disease-modifying treatments will depend on selection of sensitive clinical endpoints as well as validation of muscle magnetic resonance imaging (MRI) and other biomarkers to detect meaningful changes in disease progression. Correction of the epigenetic defects using new gene editing as well as other DUX4 silencing technologies offers potential treatment options for many individuals with FSHD.
Collapse
Affiliation(s)
- Jean K. Mah
- Department of Pediatrics and Clinical Neurosciences, Cumming School of Medicine, University of Calgary, Calgary, Alberta, Canada
| | - Yi-Wen Chen
- Center for Genetic Medicine Research, Children’s National Health System, Washington, District of Columbia, United States
- Department of Integrative Systems Biology, George Washington University, Washington, District of Columbia, United States
| |
Collapse
|
29
|
Jungbluth H. Myopathology in times of modern imaging. Neuropathol Appl Neurobiol 2018; 43:24-43. [PMID: 28111795 DOI: 10.1111/nan.12385] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2016] [Revised: 01/17/2017] [Accepted: 01/23/2017] [Indexed: 12/14/2022]
Abstract
Over the last two decades, muscle (magnetic resonance) imaging has become an important complementary tool in the diagnosis and differential diagnosis of inherited neuromuscular disorders, particularly in conditions where the pattern of selective muscle involvement is often more predictive of the underlying genetic background than associated clinical and histopathological features. Following an overview of different imaging modalities, the present review will give a concise introduction to systematic image analysis and interpretation in genetic neuromuscular disorders. The pattern of selective muscle involvement will be presented in detail in conditions such as the congenital or myofibrillar myopathies where muscle imaging is particularly useful to inform the (differential) diagnosis, and in disorders such as Duchenne or fascioscapulohumeral muscular dystrophy where the diagnosis is usually made on clinical grounds but where detailed knowledge of disease progression on the muscle imaging level may inform better understanding of the natural history. Utilizing the group of the congenital myopathies as an example, selected case studies will illustrate how muscle MRI can be used to inform the diagnostic process in the clinico-pathological context. Future developments, in particular, concerning the increasing use of whole-body MRI protocols and novel quantitative fat assessments techniques potentially relevant as an outcome measure, will be briefly outlined.
Collapse
Affiliation(s)
- H Jungbluth
- Department of Paediatric Neurology, Neuromuscular Service, Evelina's Children Hospital, Guy's & St. Thomas' Hospital NHS Foundation Trust, London, UK.,Randall Division of Cell and Molecular Biophysics, Muscle Signalling Section, London, UK.,Department of Clinical and Basic Neuroscience, IoPPN, King's College, London, UK
| |
Collapse
|
30
|
Mah JK, Feng J, Jacobs MB, Duong T, Carroll K, de Valle K, Carty CL, Morgenroth LP, Guglieri M, Ryan MM, Clemens PR, Thangarajh M, Webster R, Smith E, Connolly AM, McDonald CM, Karachunski P, Tulinius M, Harper A, Cnaan A, Chen YW. A multinational study on motor function in early-onset FSHD. Neurology 2018. [PMID: 29540582 DOI: 10.1212/wnl.0000000000005297] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
OBJECTIVES To investigate motor function associations with age, sex, and D4Z4 repeats among participants with early-onset facioscapulohumeral muscular dystrophy (FSHD) type 1 as defined by weakness onset before 10 years of age. METHODS We collected standardized motor assessments, including manual muscle testing (MMT), quantitative muscle testing, functional motor evaluations, and clinical severity scores (CSSs), at 12 Cooperative International Neuromuscular Research Group centers. To measure associations, we used linear regression models adjusted for sex, evaluation age, age at onset of weakness, and D4Z4 repeats. RESULTS Among 52 participants (60% female, mean age 22.9 ± 14.7 years), weakness was most pronounced in the shoulder and abdominal musculature. Older enrollment age was associated with greater CSSs (p = 0.003). When adjusted for enrollment age, sex, and D4Z4 repeats, younger age at onset of facial weakness was associated with greater CSSs, slower velocities in timed function tests, and lower MMT scores (p < 0.05). CONCLUSION Significant clinical variability was observed in early-onset FSHD. Earlier age at onset of facial weakness was associated with greater disease severity. Longitudinal assessments are needed to determine the rate of disease progression in this population.
Collapse
Affiliation(s)
- Jean K Mah
- From the University of Calgary (J.K.M.), Alberta Children's Hospital, Canada; Children's National Medical Center (J.F., M.B.J., C.L.C., L.M., M.T., A.C., Y.-W.C.), Washington, DC; Stanford University (T.D.), CA; Royal Children's Hospital (K.C., K.d.V., M.M.R.), Melbourne, Australia; Newcastle Upon Tyne Hospitals (M.G.), UK; University of Pittsburgh (P.R.C.) and the Department of Veteran Affairs Medical Center, PA; Children's Hospital at Westmead (R.W.), Sydney, Australia; Duke Medical Center (E.S.), Durham, NC; Washington University (A.M.C.), St. Louis, MO; University of California at Davis Medical Center (C.M.M.), Sacramento; University of Minnesota (P.K.), Minneapolis; Gothenburg University (M.T.), Queen Silvia Children's Hospital, Sweden; Carolinas Medical Center (A.H.), Charlotte, NC; and Therapeutic Research in Neuromuscular Disorders Solutions (L.P.M.), LLC, Kensington, MD.
| | - Jia Feng
- From the University of Calgary (J.K.M.), Alberta Children's Hospital, Canada; Children's National Medical Center (J.F., M.B.J., C.L.C., L.M., M.T., A.C., Y.-W.C.), Washington, DC; Stanford University (T.D.), CA; Royal Children's Hospital (K.C., K.d.V., M.M.R.), Melbourne, Australia; Newcastle Upon Tyne Hospitals (M.G.), UK; University of Pittsburgh (P.R.C.) and the Department of Veteran Affairs Medical Center, PA; Children's Hospital at Westmead (R.W.), Sydney, Australia; Duke Medical Center (E.S.), Durham, NC; Washington University (A.M.C.), St. Louis, MO; University of California at Davis Medical Center (C.M.M.), Sacramento; University of Minnesota (P.K.), Minneapolis; Gothenburg University (M.T.), Queen Silvia Children's Hospital, Sweden; Carolinas Medical Center (A.H.), Charlotte, NC; and Therapeutic Research in Neuromuscular Disorders Solutions (L.P.M.), LLC, Kensington, MD
| | - Marni B Jacobs
- From the University of Calgary (J.K.M.), Alberta Children's Hospital, Canada; Children's National Medical Center (J.F., M.B.J., C.L.C., L.M., M.T., A.C., Y.-W.C.), Washington, DC; Stanford University (T.D.), CA; Royal Children's Hospital (K.C., K.d.V., M.M.R.), Melbourne, Australia; Newcastle Upon Tyne Hospitals (M.G.), UK; University of Pittsburgh (P.R.C.) and the Department of Veteran Affairs Medical Center, PA; Children's Hospital at Westmead (R.W.), Sydney, Australia; Duke Medical Center (E.S.), Durham, NC; Washington University (A.M.C.), St. Louis, MO; University of California at Davis Medical Center (C.M.M.), Sacramento; University of Minnesota (P.K.), Minneapolis; Gothenburg University (M.T.), Queen Silvia Children's Hospital, Sweden; Carolinas Medical Center (A.H.), Charlotte, NC; and Therapeutic Research in Neuromuscular Disorders Solutions (L.P.M.), LLC, Kensington, MD
| | - Tina Duong
- From the University of Calgary (J.K.M.), Alberta Children's Hospital, Canada; Children's National Medical Center (J.F., M.B.J., C.L.C., L.M., M.T., A.C., Y.-W.C.), Washington, DC; Stanford University (T.D.), CA; Royal Children's Hospital (K.C., K.d.V., M.M.R.), Melbourne, Australia; Newcastle Upon Tyne Hospitals (M.G.), UK; University of Pittsburgh (P.R.C.) and the Department of Veteran Affairs Medical Center, PA; Children's Hospital at Westmead (R.W.), Sydney, Australia; Duke Medical Center (E.S.), Durham, NC; Washington University (A.M.C.), St. Louis, MO; University of California at Davis Medical Center (C.M.M.), Sacramento; University of Minnesota (P.K.), Minneapolis; Gothenburg University (M.T.), Queen Silvia Children's Hospital, Sweden; Carolinas Medical Center (A.H.), Charlotte, NC; and Therapeutic Research in Neuromuscular Disorders Solutions (L.P.M.), LLC, Kensington, MD
| | - Kate Carroll
- From the University of Calgary (J.K.M.), Alberta Children's Hospital, Canada; Children's National Medical Center (J.F., M.B.J., C.L.C., L.M., M.T., A.C., Y.-W.C.), Washington, DC; Stanford University (T.D.), CA; Royal Children's Hospital (K.C., K.d.V., M.M.R.), Melbourne, Australia; Newcastle Upon Tyne Hospitals (M.G.), UK; University of Pittsburgh (P.R.C.) and the Department of Veteran Affairs Medical Center, PA; Children's Hospital at Westmead (R.W.), Sydney, Australia; Duke Medical Center (E.S.), Durham, NC; Washington University (A.M.C.), St. Louis, MO; University of California at Davis Medical Center (C.M.M.), Sacramento; University of Minnesota (P.K.), Minneapolis; Gothenburg University (M.T.), Queen Silvia Children's Hospital, Sweden; Carolinas Medical Center (A.H.), Charlotte, NC; and Therapeutic Research in Neuromuscular Disorders Solutions (L.P.M.), LLC, Kensington, MD
| | - Katy de Valle
- From the University of Calgary (J.K.M.), Alberta Children's Hospital, Canada; Children's National Medical Center (J.F., M.B.J., C.L.C., L.M., M.T., A.C., Y.-W.C.), Washington, DC; Stanford University (T.D.), CA; Royal Children's Hospital (K.C., K.d.V., M.M.R.), Melbourne, Australia; Newcastle Upon Tyne Hospitals (M.G.), UK; University of Pittsburgh (P.R.C.) and the Department of Veteran Affairs Medical Center, PA; Children's Hospital at Westmead (R.W.), Sydney, Australia; Duke Medical Center (E.S.), Durham, NC; Washington University (A.M.C.), St. Louis, MO; University of California at Davis Medical Center (C.M.M.), Sacramento; University of Minnesota (P.K.), Minneapolis; Gothenburg University (M.T.), Queen Silvia Children's Hospital, Sweden; Carolinas Medical Center (A.H.), Charlotte, NC; and Therapeutic Research in Neuromuscular Disorders Solutions (L.P.M.), LLC, Kensington, MD
| | - Cara L Carty
- From the University of Calgary (J.K.M.), Alberta Children's Hospital, Canada; Children's National Medical Center (J.F., M.B.J., C.L.C., L.M., M.T., A.C., Y.-W.C.), Washington, DC; Stanford University (T.D.), CA; Royal Children's Hospital (K.C., K.d.V., M.M.R.), Melbourne, Australia; Newcastle Upon Tyne Hospitals (M.G.), UK; University of Pittsburgh (P.R.C.) and the Department of Veteran Affairs Medical Center, PA; Children's Hospital at Westmead (R.W.), Sydney, Australia; Duke Medical Center (E.S.), Durham, NC; Washington University (A.M.C.), St. Louis, MO; University of California at Davis Medical Center (C.M.M.), Sacramento; University of Minnesota (P.K.), Minneapolis; Gothenburg University (M.T.), Queen Silvia Children's Hospital, Sweden; Carolinas Medical Center (A.H.), Charlotte, NC; and Therapeutic Research in Neuromuscular Disorders Solutions (L.P.M.), LLC, Kensington, MD
| | - Lauren P Morgenroth
- From the University of Calgary (J.K.M.), Alberta Children's Hospital, Canada; Children's National Medical Center (J.F., M.B.J., C.L.C., L.M., M.T., A.C., Y.-W.C.), Washington, DC; Stanford University (T.D.), CA; Royal Children's Hospital (K.C., K.d.V., M.M.R.), Melbourne, Australia; Newcastle Upon Tyne Hospitals (M.G.), UK; University of Pittsburgh (P.R.C.) and the Department of Veteran Affairs Medical Center, PA; Children's Hospital at Westmead (R.W.), Sydney, Australia; Duke Medical Center (E.S.), Durham, NC; Washington University (A.M.C.), St. Louis, MO; University of California at Davis Medical Center (C.M.M.), Sacramento; University of Minnesota (P.K.), Minneapolis; Gothenburg University (M.T.), Queen Silvia Children's Hospital, Sweden; Carolinas Medical Center (A.H.), Charlotte, NC; and Therapeutic Research in Neuromuscular Disorders Solutions (L.P.M.), LLC, Kensington, MD
| | - Michela Guglieri
- From the University of Calgary (J.K.M.), Alberta Children's Hospital, Canada; Children's National Medical Center (J.F., M.B.J., C.L.C., L.M., M.T., A.C., Y.-W.C.), Washington, DC; Stanford University (T.D.), CA; Royal Children's Hospital (K.C., K.d.V., M.M.R.), Melbourne, Australia; Newcastle Upon Tyne Hospitals (M.G.), UK; University of Pittsburgh (P.R.C.) and the Department of Veteran Affairs Medical Center, PA; Children's Hospital at Westmead (R.W.), Sydney, Australia; Duke Medical Center (E.S.), Durham, NC; Washington University (A.M.C.), St. Louis, MO; University of California at Davis Medical Center (C.M.M.), Sacramento; University of Minnesota (P.K.), Minneapolis; Gothenburg University (M.T.), Queen Silvia Children's Hospital, Sweden; Carolinas Medical Center (A.H.), Charlotte, NC; and Therapeutic Research in Neuromuscular Disorders Solutions (L.P.M.), LLC, Kensington, MD
| | - Monique M Ryan
- From the University of Calgary (J.K.M.), Alberta Children's Hospital, Canada; Children's National Medical Center (J.F., M.B.J., C.L.C., L.M., M.T., A.C., Y.-W.C.), Washington, DC; Stanford University (T.D.), CA; Royal Children's Hospital (K.C., K.d.V., M.M.R.), Melbourne, Australia; Newcastle Upon Tyne Hospitals (M.G.), UK; University of Pittsburgh (P.R.C.) and the Department of Veteran Affairs Medical Center, PA; Children's Hospital at Westmead (R.W.), Sydney, Australia; Duke Medical Center (E.S.), Durham, NC; Washington University (A.M.C.), St. Louis, MO; University of California at Davis Medical Center (C.M.M.), Sacramento; University of Minnesota (P.K.), Minneapolis; Gothenburg University (M.T.), Queen Silvia Children's Hospital, Sweden; Carolinas Medical Center (A.H.), Charlotte, NC; and Therapeutic Research in Neuromuscular Disorders Solutions (L.P.M.), LLC, Kensington, MD
| | - Paula R Clemens
- From the University of Calgary (J.K.M.), Alberta Children's Hospital, Canada; Children's National Medical Center (J.F., M.B.J., C.L.C., L.M., M.T., A.C., Y.-W.C.), Washington, DC; Stanford University (T.D.), CA; Royal Children's Hospital (K.C., K.d.V., M.M.R.), Melbourne, Australia; Newcastle Upon Tyne Hospitals (M.G.), UK; University of Pittsburgh (P.R.C.) and the Department of Veteran Affairs Medical Center, PA; Children's Hospital at Westmead (R.W.), Sydney, Australia; Duke Medical Center (E.S.), Durham, NC; Washington University (A.M.C.), St. Louis, MO; University of California at Davis Medical Center (C.M.M.), Sacramento; University of Minnesota (P.K.), Minneapolis; Gothenburg University (M.T.), Queen Silvia Children's Hospital, Sweden; Carolinas Medical Center (A.H.), Charlotte, NC; and Therapeutic Research in Neuromuscular Disorders Solutions (L.P.M.), LLC, Kensington, MD
| | - Mathula Thangarajh
- From the University of Calgary (J.K.M.), Alberta Children's Hospital, Canada; Children's National Medical Center (J.F., M.B.J., C.L.C., L.M., M.T., A.C., Y.-W.C.), Washington, DC; Stanford University (T.D.), CA; Royal Children's Hospital (K.C., K.d.V., M.M.R.), Melbourne, Australia; Newcastle Upon Tyne Hospitals (M.G.), UK; University of Pittsburgh (P.R.C.) and the Department of Veteran Affairs Medical Center, PA; Children's Hospital at Westmead (R.W.), Sydney, Australia; Duke Medical Center (E.S.), Durham, NC; Washington University (A.M.C.), St. Louis, MO; University of California at Davis Medical Center (C.M.M.), Sacramento; University of Minnesota (P.K.), Minneapolis; Gothenburg University (M.T.), Queen Silvia Children's Hospital, Sweden; Carolinas Medical Center (A.H.), Charlotte, NC; and Therapeutic Research in Neuromuscular Disorders Solutions (L.P.M.), LLC, Kensington, MD
| | - Richard Webster
- From the University of Calgary (J.K.M.), Alberta Children's Hospital, Canada; Children's National Medical Center (J.F., M.B.J., C.L.C., L.M., M.T., A.C., Y.-W.C.), Washington, DC; Stanford University (T.D.), CA; Royal Children's Hospital (K.C., K.d.V., M.M.R.), Melbourne, Australia; Newcastle Upon Tyne Hospitals (M.G.), UK; University of Pittsburgh (P.R.C.) and the Department of Veteran Affairs Medical Center, PA; Children's Hospital at Westmead (R.W.), Sydney, Australia; Duke Medical Center (E.S.), Durham, NC; Washington University (A.M.C.), St. Louis, MO; University of California at Davis Medical Center (C.M.M.), Sacramento; University of Minnesota (P.K.), Minneapolis; Gothenburg University (M.T.), Queen Silvia Children's Hospital, Sweden; Carolinas Medical Center (A.H.), Charlotte, NC; and Therapeutic Research in Neuromuscular Disorders Solutions (L.P.M.), LLC, Kensington, MD
| | - Edward Smith
- From the University of Calgary (J.K.M.), Alberta Children's Hospital, Canada; Children's National Medical Center (J.F., M.B.J., C.L.C., L.M., M.T., A.C., Y.-W.C.), Washington, DC; Stanford University (T.D.), CA; Royal Children's Hospital (K.C., K.d.V., M.M.R.), Melbourne, Australia; Newcastle Upon Tyne Hospitals (M.G.), UK; University of Pittsburgh (P.R.C.) and the Department of Veteran Affairs Medical Center, PA; Children's Hospital at Westmead (R.W.), Sydney, Australia; Duke Medical Center (E.S.), Durham, NC; Washington University (A.M.C.), St. Louis, MO; University of California at Davis Medical Center (C.M.M.), Sacramento; University of Minnesota (P.K.), Minneapolis; Gothenburg University (M.T.), Queen Silvia Children's Hospital, Sweden; Carolinas Medical Center (A.H.), Charlotte, NC; and Therapeutic Research in Neuromuscular Disorders Solutions (L.P.M.), LLC, Kensington, MD
| | - Anne M Connolly
- From the University of Calgary (J.K.M.), Alberta Children's Hospital, Canada; Children's National Medical Center (J.F., M.B.J., C.L.C., L.M., M.T., A.C., Y.-W.C.), Washington, DC; Stanford University (T.D.), CA; Royal Children's Hospital (K.C., K.d.V., M.M.R.), Melbourne, Australia; Newcastle Upon Tyne Hospitals (M.G.), UK; University of Pittsburgh (P.R.C.) and the Department of Veteran Affairs Medical Center, PA; Children's Hospital at Westmead (R.W.), Sydney, Australia; Duke Medical Center (E.S.), Durham, NC; Washington University (A.M.C.), St. Louis, MO; University of California at Davis Medical Center (C.M.M.), Sacramento; University of Minnesota (P.K.), Minneapolis; Gothenburg University (M.T.), Queen Silvia Children's Hospital, Sweden; Carolinas Medical Center (A.H.), Charlotte, NC; and Therapeutic Research in Neuromuscular Disorders Solutions (L.P.M.), LLC, Kensington, MD
| | - Craig M McDonald
- From the University of Calgary (J.K.M.), Alberta Children's Hospital, Canada; Children's National Medical Center (J.F., M.B.J., C.L.C., L.M., M.T., A.C., Y.-W.C.), Washington, DC; Stanford University (T.D.), CA; Royal Children's Hospital (K.C., K.d.V., M.M.R.), Melbourne, Australia; Newcastle Upon Tyne Hospitals (M.G.), UK; University of Pittsburgh (P.R.C.) and the Department of Veteran Affairs Medical Center, PA; Children's Hospital at Westmead (R.W.), Sydney, Australia; Duke Medical Center (E.S.), Durham, NC; Washington University (A.M.C.), St. Louis, MO; University of California at Davis Medical Center (C.M.M.), Sacramento; University of Minnesota (P.K.), Minneapolis; Gothenburg University (M.T.), Queen Silvia Children's Hospital, Sweden; Carolinas Medical Center (A.H.), Charlotte, NC; and Therapeutic Research in Neuromuscular Disorders Solutions (L.P.M.), LLC, Kensington, MD
| | - Peter Karachunski
- From the University of Calgary (J.K.M.), Alberta Children's Hospital, Canada; Children's National Medical Center (J.F., M.B.J., C.L.C., L.M., M.T., A.C., Y.-W.C.), Washington, DC; Stanford University (T.D.), CA; Royal Children's Hospital (K.C., K.d.V., M.M.R.), Melbourne, Australia; Newcastle Upon Tyne Hospitals (M.G.), UK; University of Pittsburgh (P.R.C.) and the Department of Veteran Affairs Medical Center, PA; Children's Hospital at Westmead (R.W.), Sydney, Australia; Duke Medical Center (E.S.), Durham, NC; Washington University (A.M.C.), St. Louis, MO; University of California at Davis Medical Center (C.M.M.), Sacramento; University of Minnesota (P.K.), Minneapolis; Gothenburg University (M.T.), Queen Silvia Children's Hospital, Sweden; Carolinas Medical Center (A.H.), Charlotte, NC; and Therapeutic Research in Neuromuscular Disorders Solutions (L.P.M.), LLC, Kensington, MD
| | - Mar Tulinius
- From the University of Calgary (J.K.M.), Alberta Children's Hospital, Canada; Children's National Medical Center (J.F., M.B.J., C.L.C., L.M., M.T., A.C., Y.-W.C.), Washington, DC; Stanford University (T.D.), CA; Royal Children's Hospital (K.C., K.d.V., M.M.R.), Melbourne, Australia; Newcastle Upon Tyne Hospitals (M.G.), UK; University of Pittsburgh (P.R.C.) and the Department of Veteran Affairs Medical Center, PA; Children's Hospital at Westmead (R.W.), Sydney, Australia; Duke Medical Center (E.S.), Durham, NC; Washington University (A.M.C.), St. Louis, MO; University of California at Davis Medical Center (C.M.M.), Sacramento; University of Minnesota (P.K.), Minneapolis; Gothenburg University (M.T.), Queen Silvia Children's Hospital, Sweden; Carolinas Medical Center (A.H.), Charlotte, NC; and Therapeutic Research in Neuromuscular Disorders Solutions (L.P.M.), LLC, Kensington, MD
| | - Amy Harper
- From the University of Calgary (J.K.M.), Alberta Children's Hospital, Canada; Children's National Medical Center (J.F., M.B.J., C.L.C., L.M., M.T., A.C., Y.-W.C.), Washington, DC; Stanford University (T.D.), CA; Royal Children's Hospital (K.C., K.d.V., M.M.R.), Melbourne, Australia; Newcastle Upon Tyne Hospitals (M.G.), UK; University of Pittsburgh (P.R.C.) and the Department of Veteran Affairs Medical Center, PA; Children's Hospital at Westmead (R.W.), Sydney, Australia; Duke Medical Center (E.S.), Durham, NC; Washington University (A.M.C.), St. Louis, MO; University of California at Davis Medical Center (C.M.M.), Sacramento; University of Minnesota (P.K.), Minneapolis; Gothenburg University (M.T.), Queen Silvia Children's Hospital, Sweden; Carolinas Medical Center (A.H.), Charlotte, NC; and Therapeutic Research in Neuromuscular Disorders Solutions (L.P.M.), LLC, Kensington, MD
| | - Avital Cnaan
- From the University of Calgary (J.K.M.), Alberta Children's Hospital, Canada; Children's National Medical Center (J.F., M.B.J., C.L.C., L.M., M.T., A.C., Y.-W.C.), Washington, DC; Stanford University (T.D.), CA; Royal Children's Hospital (K.C., K.d.V., M.M.R.), Melbourne, Australia; Newcastle Upon Tyne Hospitals (M.G.), UK; University of Pittsburgh (P.R.C.) and the Department of Veteran Affairs Medical Center, PA; Children's Hospital at Westmead (R.W.), Sydney, Australia; Duke Medical Center (E.S.), Durham, NC; Washington University (A.M.C.), St. Louis, MO; University of California at Davis Medical Center (C.M.M.), Sacramento; University of Minnesota (P.K.), Minneapolis; Gothenburg University (M.T.), Queen Silvia Children's Hospital, Sweden; Carolinas Medical Center (A.H.), Charlotte, NC; and Therapeutic Research in Neuromuscular Disorders Solutions (L.P.M.), LLC, Kensington, MD
| | - Yi-Wen Chen
- From the University of Calgary (J.K.M.), Alberta Children's Hospital, Canada; Children's National Medical Center (J.F., M.B.J., C.L.C., L.M., M.T., A.C., Y.-W.C.), Washington, DC; Stanford University (T.D.), CA; Royal Children's Hospital (K.C., K.d.V., M.M.R.), Melbourne, Australia; Newcastle Upon Tyne Hospitals (M.G.), UK; University of Pittsburgh (P.R.C.) and the Department of Veteran Affairs Medical Center, PA; Children's Hospital at Westmead (R.W.), Sydney, Australia; Duke Medical Center (E.S.), Durham, NC; Washington University (A.M.C.), St. Louis, MO; University of California at Davis Medical Center (C.M.M.), Sacramento; University of Minnesota (P.K.), Minneapolis; Gothenburg University (M.T.), Queen Silvia Children's Hospital, Sweden; Carolinas Medical Center (A.H.), Charlotte, NC; and Therapeutic Research in Neuromuscular Disorders Solutions (L.P.M.), LLC, Kensington, MD
| | | |
Collapse
|
31
|
Ferguson MR, Poliachik SL, Budech CB, Gove NE, Carter GT, Wang LH, Miller DG, Shaw DW, Friedman SD. MRI change metrics of facioscapulohumeral muscular dystrophy: Stir and T1. Muscle Nerve 2018; 57:905-912. [DOI: 10.1002/mus.26038] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2017] [Revised: 12/04/2017] [Accepted: 12/09/2017] [Indexed: 01/07/2023]
Affiliation(s)
- Mark R. Ferguson
- Department of Radiology; Seattle Children's Hospital, 4800 Sandpoint Way, Room: L-MA.6.226; Seattle Washington 98105 USA
- Department of Radiology; University of Washington; Seattle Washington USA
| | - Sandra L. Poliachik
- Department of Radiology; Seattle Children's Hospital, 4800 Sandpoint Way, Room: L-MA.6.226; Seattle Washington 98105 USA
| | - Christopher B. Budech
- Department of Radiology; Seattle Children's Hospital, 4800 Sandpoint Way, Room: L-MA.6.226; Seattle Washington 98105 USA
| | - Nancy E. Gove
- Center for Clinical and Translational Research, Seattle Children's Research Institute; Seattle Washington USA
| | | | - Leo H. Wang
- Department of Neurology; University of Washington; Seattle Washington USA
| | - Daniel G. Miller
- Genome Sciences, University of Washington; Seattle Washington USA
| | - Dennis W.W. Shaw
- Department of Radiology; Seattle Children's Hospital, 4800 Sandpoint Way, Room: L-MA.6.226; Seattle Washington 98105 USA
- Department of Radiology; University of Washington; Seattle Washington USA
| | - Seth D. Friedman
- Department of Radiology; Seattle Children's Hospital, 4800 Sandpoint Way, Room: L-MA.6.226; Seattle Washington 98105 USA
| |
Collapse
|
32
|
Smitaman E, Flores DV, Mejía Gómez C, Pathria MN. MR Imaging of Atraumatic Muscle Disorders. Radiographics 2018; 38:500-522. [PMID: 29451848 DOI: 10.1148/rg.2017170112] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Atraumatic disorders of skeletal muscles include congenital variants; inherited myopathies; acquired inflammatory, infectious, or ischemic disorders; neoplastic diseases; and conditions leading to muscle atrophy. These have overlapping appearances at magnetic resonance (MR) imaging and are challenging for the radiologist to differentiate. The authors organize muscle disorders into four MR imaging patterns: (a) abnormal anatomy with normal signal intensity, (b) edema/inflammation, (c) mass, and (d) atrophy, highlighting each of their key clinical and imaging findings. Anatomic muscle variants, while common, do not produce signal intensity alterations and therefore are easily overlooked. Muscle edema is the most common pattern but is nonspecific, with a broad differential diagnosis. Autoimmune, paraneoplastic, and drug-induced myositis tend to be symmetric, whereas infection, radiation-induced injury, and myonecrosis are focal asymmetric processes. Architectural distortion in the setting of muscle edema suggests one of these latter processes. Intramuscular masses include primary neoplasms, metastases, and several benign masslike lesions that simulate malignancy. Some lesions, such as lipomas, low-flow vascular malformations, fibromatoses, and subacute hematomas, are distinctive, but many intramuscular masses ultimately require a biopsy for definitive diagnosis. Atrophy is the irreversible end result of any muscle disease of sufficient severity and is the dominant finding in disorders such as the muscular dystrophies, denervation myopathy, and sarcopenia. This imaging-based classification, in correlation with clinical and laboratory data, will aid the radiologist in interpreting MR imaging findings in patients with atraumatic muscle disorders. ©RSNA, 2018.
Collapse
Affiliation(s)
- Edward Smitaman
- From the Department of Radiology, UCSD Medical Center, San Diego, Calif (E.S., M.N.P.); Department of Radiology, Philippine Orthopedic Center, Quezon City, Maria Clara Street, Santa Mesa Heights, Quezon City, Metro Manila, Philippines 1100 (D.V.F.); and Department of Radiology, Hospital Pablo Tobón Uribe, Medellín, Colombia (C.M.G.)
| | - Dyan V Flores
- From the Department of Radiology, UCSD Medical Center, San Diego, Calif (E.S., M.N.P.); Department of Radiology, Philippine Orthopedic Center, Quezon City, Maria Clara Street, Santa Mesa Heights, Quezon City, Metro Manila, Philippines 1100 (D.V.F.); and Department of Radiology, Hospital Pablo Tobón Uribe, Medellín, Colombia (C.M.G.)
| | - Catalina Mejía Gómez
- From the Department of Radiology, UCSD Medical Center, San Diego, Calif (E.S., M.N.P.); Department of Radiology, Philippine Orthopedic Center, Quezon City, Maria Clara Street, Santa Mesa Heights, Quezon City, Metro Manila, Philippines 1100 (D.V.F.); and Department of Radiology, Hospital Pablo Tobón Uribe, Medellín, Colombia (C.M.G.)
| | - Mini N Pathria
- From the Department of Radiology, UCSD Medical Center, San Diego, Calif (E.S., M.N.P.); Department of Radiology, Philippine Orthopedic Center, Quezon City, Maria Clara Street, Santa Mesa Heights, Quezon City, Metro Manila, Philippines 1100 (D.V.F.); and Department of Radiology, Hospital Pablo Tobón Uribe, Medellín, Colombia (C.M.G.)
| |
Collapse
|
33
|
Weidlich D, Schlaeger S, Kooijman H, Börnert P, Kirschke JS, Rummeny EJ, Haase A, Karampinos DC. T 2 mapping with magnetization-prepared 3D TSE based on a modified BIR-4 T 2 preparation. NMR IN BIOMEDICINE 2017; 30:e3773. [PMID: 28777496 DOI: 10.1002/nbm.3773] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2016] [Revised: 06/14/2017] [Accepted: 06/14/2017] [Indexed: 06/07/2023]
Abstract
The purpose of this work was to investigate the performance of the modified BIR-4 T2 preparation for T2 mapping and propose a method to remove T2 quantification errors in the presence of large B1 and B0 offsets. The theoretical investigation of the magnetization evolution during the T2 preparation in the presence of B1 and B0 offsets showed deviations from a mono-exponential T2 decay (two parameter fit). A three parameter fit was used to improve T2 accuracy. Furthermore, a two parameter fit with an additional saturation preparation scan was proposed to improve T2 accuracy and precision. These three fitting methods were compared based on simulations, phantom measurements and an in vivo healthy volunteer study of the neck musculature using a 3D TSE readout. The results based upon the pure two parameter fit overestimated T2 in regions with high B0 offsets (up to 40% in phantoms). The three parameter fit T2 values were robust to B0 offsets but with higher standard deviation (up to 40% in simulations). The two parameter fit with the saturation preparation yielded high robustness towards B0 offsets with a noise performance comparable to that of the two parameter fit. In the volunteer study the T2 values obtained by the pure two parameter fit showed a dependence on the field inhomogeneities, whereas the T2 values from the proposed fitting approach were shown to be insensitive to B0 offsets. The proposed method enabled accurate and precise T2 mapping in the presence of large B1 and B0 offsets.
Collapse
Affiliation(s)
- Dominik Weidlich
- Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technical University Munich, Munich, Germany
| | - Sarah Schlaeger
- Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technical University Munich, Munich, Germany
- Section for Neuroradiology, Klinikum rechts der Isar, Technical University Munich, Munich, Germany
| | | | | | - Jan S Kirschke
- Section for Neuroradiology, Klinikum rechts der Isar, Technical University Munich, Munich, Germany
| | - Ernst J Rummeny
- Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technical University Munich, Munich, Germany
| | - Axel Haase
- Institute of Medical Engineering, Technical University Munich, Garching, Germany
| | - Dimitrios C Karampinos
- Department of Diagnostic and Interventional Radiology, Klinikum rechts der Isar, Technical University Munich, Munich, Germany
| |
Collapse
|
34
|
Mul K, Vincenten SCC, Voermans NC, Lemmers RJLF, van der Vliet PJ, van der Maarel SM, Padberg GW, Horlings CGC, van Engelen BGM. Adding quantitative muscle MRI to the FSHD clinical trial toolbox. Neurology 2017; 89:2057-2065. [PMID: 29030457 DOI: 10.1212/wnl.0000000000004647] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2017] [Accepted: 08/28/2017] [Indexed: 11/15/2022] Open
Abstract
OBJECTIVE To add quantitative muscle MRI to the clinical trial toolbox for facioscapulohumeral muscular dystrophy (FSHD) by correlating it to clinical outcome measures in a large cohort of genetically and clinically well-characterized patients with FSHD comprising the entire clinical spectrum. METHODS Quantitative MRI scans of leg muscles of 140 patients with FSHD1 and FSHD2 were assessed for fatty infiltration and TIRM hyperintensities and were correlated to multiple clinical outcome measures. RESULTS The mean fat fraction of the total leg musculature correlated highly with the motor function measure, FSHD clinical score, Ricci score, and 6-minute walking test (correlation coefficients -0.845, 0.835, 0.791, -0.701, respectively). Fat fraction per muscle group correlated well with corresponding muscle strength (correlation coefficients up to -0.82). The hamstring muscles, adductor muscles, rectus femoris, and gastrocnemius medialis were affected most frequently, also in early stage disease and in patients without leg muscle weakness. Muscle involvement was asymmetric in 20% of all muscle pairs and fatty infiltration within muscles showed a decrease from distal to proximal of 3.9%. TIRM hyperintense areas, suggesting inflammation, were found in 3.5% of all muscles, with and without fatty infiltration. CONCLUSIONS We show a strong correlation between quantitative muscle MRI and clinical outcome measures. Muscle MRI is able to detect muscle pathology before clinical involvement of the leg muscles. This indicates that quantitative leg muscle MRI is a promising biomarker that captures disease severity and motor functioning and can thus be included in the FSHD trial toolbox.
Collapse
Affiliation(s)
- Karlien Mul
- From the Department of Neurology (K.M., S.C.C.V., N.C.V., G.W.P., C.G.C.H., B.G.M.v.E.), Radboud University Medical Center, Nijmegen; and Department of Human Genetics (R.J.L.F.L., P.J.v.d.V., S.M.v.d.M.), Leiden University Medical Center, the Netherlands.
| | - Sanne C C Vincenten
- From the Department of Neurology (K.M., S.C.C.V., N.C.V., G.W.P., C.G.C.H., B.G.M.v.E.), Radboud University Medical Center, Nijmegen; and Department of Human Genetics (R.J.L.F.L., P.J.v.d.V., S.M.v.d.M.), Leiden University Medical Center, the Netherlands
| | - Nicol C Voermans
- From the Department of Neurology (K.M., S.C.C.V., N.C.V., G.W.P., C.G.C.H., B.G.M.v.E.), Radboud University Medical Center, Nijmegen; and Department of Human Genetics (R.J.L.F.L., P.J.v.d.V., S.M.v.d.M.), Leiden University Medical Center, the Netherlands
| | - Richard J L F Lemmers
- From the Department of Neurology (K.M., S.C.C.V., N.C.V., G.W.P., C.G.C.H., B.G.M.v.E.), Radboud University Medical Center, Nijmegen; and Department of Human Genetics (R.J.L.F.L., P.J.v.d.V., S.M.v.d.M.), Leiden University Medical Center, the Netherlands
| | - Patrick J van der Vliet
- From the Department of Neurology (K.M., S.C.C.V., N.C.V., G.W.P., C.G.C.H., B.G.M.v.E.), Radboud University Medical Center, Nijmegen; and Department of Human Genetics (R.J.L.F.L., P.J.v.d.V., S.M.v.d.M.), Leiden University Medical Center, the Netherlands
| | - Silvère M van der Maarel
- From the Department of Neurology (K.M., S.C.C.V., N.C.V., G.W.P., C.G.C.H., B.G.M.v.E.), Radboud University Medical Center, Nijmegen; and Department of Human Genetics (R.J.L.F.L., P.J.v.d.V., S.M.v.d.M.), Leiden University Medical Center, the Netherlands
| | - George W Padberg
- From the Department of Neurology (K.M., S.C.C.V., N.C.V., G.W.P., C.G.C.H., B.G.M.v.E.), Radboud University Medical Center, Nijmegen; and Department of Human Genetics (R.J.L.F.L., P.J.v.d.V., S.M.v.d.M.), Leiden University Medical Center, the Netherlands
| | - Corinne G C Horlings
- From the Department of Neurology (K.M., S.C.C.V., N.C.V., G.W.P., C.G.C.H., B.G.M.v.E.), Radboud University Medical Center, Nijmegen; and Department of Human Genetics (R.J.L.F.L., P.J.v.d.V., S.M.v.d.M.), Leiden University Medical Center, the Netherlands
| | - Baziel G M van Engelen
- From the Department of Neurology (K.M., S.C.C.V., N.C.V., G.W.P., C.G.C.H., B.G.M.v.E.), Radboud University Medical Center, Nijmegen; and Department of Human Genetics (R.J.L.F.L., P.J.v.d.V., S.M.v.d.M.), Leiden University Medical Center, the Netherlands
| |
Collapse
|
35
|
DeSimone AM, Pakula A, Lek A, Emerson CP. Facioscapulohumeral Muscular Dystrophy. Compr Physiol 2017; 7:1229-1279. [PMID: 28915324 DOI: 10.1002/cphy.c160039] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Facioscapulohumeral Muscular Dystrophy is a common form of muscular dystrophy that presents clinically with progressive weakness of the facial, scapular, and humeral muscles, with later involvement of the trunk and lower extremities. While typically inherited as autosomal dominant, facioscapulohumeral muscular dystrophy (FSHD) has a complex genetic and epigenetic etiology that has only recently been well described. The most prevalent form of the disease, FSHD1, is associated with the contraction of the D4Z4 microsatellite repeat array located on a permissive 4qA chromosome. D4Z4 contraction allows epigenetic derepression of the array, and possibly the surrounding 4q35 region, allowing misexpression of the toxic DUX4 transcription factor encoded within the terminal D4Z4 repeat in skeletal muscles. The less common form of the disease, FSHD2, results from haploinsufficiency of the SMCHD1 gene in individuals carrying a permissive 4qA allele, also leading to the derepression of DUX4, further supporting a central role for DUX4. How DUX4 misexpression contributes to FSHD muscle pathology is a major focus of current investigation. Misexpression of other genes at the 4q35 locus, including FRG1 and FAT1, and unlinked genes, such as SMCHD1, has also been implicated as disease modifiers, leading to several competing disease models. In this review, we describe recent advances in understanding the pathophysiology of FSHD, including the application of MRI as a research and diagnostic tool, the genetic and epigenetic disruptions associated with the disease, and the molecular basis of FSHD. We discuss how these advances are leading to the emergence of new approaches to enable development of FSHD therapeutics. © 2017 American Physiological Society. Compr Physiol 7:1229-1279, 2017.
Collapse
Affiliation(s)
- Alec M DeSimone
- Wellstone Muscular Dystrophy Program, Department of Neurology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| | - Anna Pakula
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, Massachusetts, USA.,Department of Pediatrics and Genetics at Harvard Medical School, Boston, Massachusetts, USA
| | - Angela Lek
- Division of Genetics and Genomics, Boston Children's Hospital, Boston, Massachusetts, USA.,Department of Pediatrics and Genetics at Harvard Medical School, Boston, Massachusetts, USA.,Australian Regenerative Medicine Institute, Monash University, Clayton, Victoria, Australia
| | - Charles P Emerson
- Wellstone Muscular Dystrophy Program, Department of Neurology, University of Massachusetts Medical School, Worcester, Massachusetts, USA
| |
Collapse
|
36
|
Long-term follow-up of MRI changes in thigh muscles of patients with Facioscapulohumeral dystrophy: A quantitative study. PLoS One 2017; 12:e0183825. [PMID: 28841698 PMCID: PMC5571945 DOI: 10.1371/journal.pone.0183825] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 08/11/2017] [Indexed: 11/24/2022] Open
Abstract
Facioscapulohumeral muscular dystrophy (FSHD) is one of the most common hereditary muscular disorders. Currently FSHD has no known effective treatment and detailed data on the natural history are lacking. Determination of the efficacy of a given therapeutic approach might be difficult in FSHD given the slow and highly variable disease progression. Magnetic resonance imaging (MRI) has been widely used to qualitatively and quantitatively evaluate in vivo the muscle alterations in various neuromuscular disorders. The main aim of the present study was to investigate longitudinally the time-dependent changes occurring in thigh muscles of FSHD patients using quantitative MRI and to assess the potential relationships with the clinical findings. Thirty-five FSHD1 patients (17 females) were enrolled. Clinical assessment tools including manual muscle testing using medical research council score (MRC), and motor function measure (MFM) were recorded each year for a period ranging from 1 to 2 years. For the MRI measurements, we used a new quantitative index, i.e., the mean pixel intensity (MPI) calculated from the pixel-intensity distribution in T1 weighted images. The corresponding MPI scores were calculated for each thigh, for each compartment and for both thighs totally (MPItotal). The total mean pixel intensity (MPItotal) refers to the sum of each pixel signal intensity divided by the corresponding number of pixels. An increased MPItotal indicates both a raised fat infiltration together with a reduced muscle volume thereby illustrating disease progression. Clinical scores did not change significantly over time whereas MPItotal increased significantly from an initial averaged value of 39.6 to 41.1 with a corresponding rate of 0.62/year. While clinical scores and MPItotal measured at the start of the study were significantly related, no correlation was found between the rate of MPItotal and MRC sum score changes, MFMtotal and MFM subscores. The relative rate of MPItotal change was 2.3% (0.5–4.3)/year and was significantly higher than the corresponding rates measured for MRCS 0% (0–1.7) /year and MFMtotal 0% (0–2.0) /year (p = 0.000). On the basis of these results, we suggested that muscle MRI and more particularly the MPItotal index could be used as a reliable biomarker and outcome measure of disease progression. In slowly progressive myopathies such as FSHD, the MPItotal index might reveal subclinical changes, which could not be evidenced using clinical scales over a short period of time.
Collapse
|
37
|
Rosow LK, Amato AA. The Role of Electrodiagnostic Testing, Imaging, and Muscle Biopsy in the Investigation of Muscle Disease. Continuum (Minneap Minn) 2016; 22:1787-1802. [PMID: 27922493 DOI: 10.1212/01.con.0000511068.61017.55] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PURPOSE OF REVIEW This article reviews the roles of electrodiagnostic testing, imaging studies (MRI and ultrasound), and muscle biopsy in evaluating patients for possible muscle diseases. RECENT FINDINGS In addition to electrodiagnostic testing and muscle biopsy, muscle imaging is increasingly being used in the evaluation of patients with suspected muscle disease. MRI and ultrasound can help identify patterns of muscle involvement that may narrow the differential diagnosis and guide further testing. In addition, imaging can identify potential targets for muscle biopsy and can help evaluate for and exclude certain conditions that may mimic muscle disease. SUMMARY This article provides a comprehensive overview of various testing modalities used in the evaluation of patients with suspected muscle disease, including electrodiagnostic studies, muscle imaging, and biopsy. In combination with a thorough history and clinical examination, these modalities can help narrow the differential diagnosis or, in certain cases, can confirm a specific etiology of muscle disease.
Collapse
|
38
|
Magnetic resonance imaging patterns of muscle involvement in genetic muscle diseases: a systematic review. J Neurol 2016; 264:1320-1333. [PMID: 27888415 DOI: 10.1007/s00415-016-8350-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 11/16/2016] [Accepted: 11/17/2016] [Indexed: 12/25/2022]
Abstract
A growing body of the literature supports the use of magnetic resonance imaging as a potential biomarker for disease severity in the hereditary myopathies. We performed a systematic review of the medical literature to evaluate patterns of fat infiltration observed in magnetic resonance imaging studies of muscular dystrophy and congenital myopathy. Searches were performed using MEDLINE, EMBASE, and grey literature databases. Studies that described fat infiltration of muscles in patients with muscular dystrophy or congenital myopathy were selected for full-length review. Data on preferentially involved or spared muscles were extracted for analysis. A total of 2172 titles and abstracts were screened, and 70 publications met our criteria for inclusion in the systematic review. There were 23 distinct genetic disorders represented in this analysis. In most studies, preferential involvement and sparing of specific muscles were reported. We conclude that magnetic resonance imaging studies can be used to identify distinct patterns of muscle involvement in the hereditary myopathies. However, larger studies and standardized methods of reporting are needed to develop imaging as a diagnostic tool in these diseases.
Collapse
|
39
|
|
40
|
Fatehi F, Salort-Campana E, Le Troter A, Bendahan D, Attarian S. Muscle MRI of facioscapulohumeral dystrophy (FSHD): A growing demand and a promising approach. Rev Neurol (Paris) 2016; 172:566-571. [PMID: 27663058 DOI: 10.1016/j.neurol.2016.08.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 07/28/2016] [Accepted: 08/26/2016] [Indexed: 01/10/2023]
Abstract
Facioscapulohumeral muscular dystrophy (FSHD), an inherited and progressive muscle disorder, is among the most common hereditary muscle disorders. From a clinical vantage point, FSHD is characterized by weakness of the facial, shoulder (often with scapular winging), arm (including biceps and triceps) and abdominal muscles. Forearm muscles are usually spared and weakness is usually asymmetrical. Over the past few decades, muscle magnetic resonance imaging (MRI) has become established as a reliable and accurate noninvasive tool for the diagnosis and assessment of progression in neuromuscular diseases, showing specific patterns of muscle involvement for a number of myopathies. More recently, MRI has been used to noninvasively identify quantitative biomarkers, allowing evaluation of the natural progression of disease and assessment of therapeutic interventions. In the present review, the intention was to present the most significant MRI developments related to diagnosis and pattern recognition in FSHD and to discuss its capacity to provide outcome measures.
Collapse
Affiliation(s)
- F Fatehi
- Reference center for Neuromuscular disorders and ALS, Timone University Hospital, Aix-Marseille University, 264, rue Saint-Pierre, 13385 Marseille cedex 05, France; Iranian Center of Neurological research and Shariati hospital, Neurology Department, Tehran University of Medical Sciences, Tehran, Iran
| | - E Salort-Campana
- Reference center for Neuromuscular disorders and ALS, Timone University Hospital, Aix-Marseille University, 264, rue Saint-Pierre, 13385 Marseille cedex 05, France; Aix-Marseille université, Inserm UMR S 910 Medical Genetics and Functional Genomics, 13385 Marseille, France
| | - A Le Troter
- Aix-Marseille université, centre de résonance magnétique biologique et médicale, UMR CNRS 7339, 13385 Marseille, France
| | - D Bendahan
- Aix-Marseille université, centre de résonance magnétique biologique et médicale, UMR CNRS 7339, 13385 Marseille, France
| | - S Attarian
- Reference center for Neuromuscular disorders and ALS, Timone University Hospital, Aix-Marseille University, 264, rue Saint-Pierre, 13385 Marseille cedex 05, France; Aix-Marseille université, Inserm UMR S 910 Medical Genetics and Functional Genomics, 13385 Marseille, France.
| |
Collapse
|
41
|
Tasca G, Monforte M, Ottaviani P, Pelliccioni M, Frusciante R, Laschena F, Ricci E. Magnetic resonance imaging in a large cohort of facioscapulohumeral muscular dystrophy patients: Pattern refinement and implications for clinical trials. Ann Neurol 2016; 79:854-864. [DOI: 10.1002/ana.24640] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Revised: 01/31/2016] [Accepted: 03/14/2016] [Indexed: 01/11/2023]
Affiliation(s)
| | - Mauro Monforte
- Institute of Neurology; Catholic University School of Medicine; Rome
| | | | - Marco Pelliccioni
- Italian Union against Muscular Dystrophy (UILDM), Rome Section; Rome Italy
| | | | | | - Enzo Ricci
- Institute of Neurology; Catholic University School of Medicine; Rome
| |
Collapse
|