1
|
Longo A, Hudler P, Strojan P, Plavc G, Umek L, Popovic KS. Predictive potential of dynamic contrast-enhanced MRI and plasma-derived angiogenic factors for response to concurrent chemoradiotherapy in human papillomavirus-negative oropharyngeal cancer. Radiol Oncol 2024; 58:366-375. [PMID: 39287165 PMCID: PMC11406927 DOI: 10.2478/raon-2024-0044] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 07/22/2024] [Indexed: 09/19/2024] Open
Abstract
BACKGROUND Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) can assess tumour vascularity, which depends on the process of angiogenesis and affects tumour response to treatment. Our study explored the associations between DCE-MRI parameters and the expression of plasma angiogenic factors in human papilloma virus (HPV)-negative oropharyngeal cancer, as well as their predictive value for response to concurrent chemoradiotherapy (cCRT). PATIENTS AND METHODS Twenty-five patients with locally advanced HPV-negative oropharyngeal carcinoma were prospectively enrolled in the study. DCE-MRI and blood plasma sampling were conducted before cCRT, after receiving a radiation dose of 20 Gy, and after the completion of cCRT. Perfusion parameters ktrans, kep, Ve, initial area under the curve (iAUC) and plasma expression levels of angiogenic factors (vascular endothelial growth factor [VEGF], connective tissue growth factor [CTGF], platelet-derived growth factor [PDGF]-AB, angiogenin [ANG], endostatin [END] and thrombospondin-1 [THBS1]) were measured at each time-point. Patients were stratified into responders and non-responders based on clinical evaluation. Differences and correlations between measures were used to generate prognostic models for response prediction. RESULTS Higher perfusion parameter ktrans and higher plasma VEGF levels successfully discriminated responders from non-responders across all measured time-points, whereas higher iAUC and higher plasma PDGF-AB levels were also discriminative at selected time points. Using early intra-treatment measurements of ktrans and VEGF, a predictive model was created with cut-off values of 0.259 min-1 for ktrans and 62.5 pg/mL for plasma VEGF. CONCLUSIONS Early intra-treatment DCE-MRI parameter ktrans and plasma VEGF levels may be valuable early predictors of response to cCRT in HPV-negative oropharyngeal cancer.
Collapse
Affiliation(s)
- Alja Longo
- Institute of Radiology, University Medical Centre Ljubljana, Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Petra Hudler
- Institute of Biochemistry and Molecular Genetics, Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| | - Primoz Strojan
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- Institute of Oncology, Ljubljana, Slovenia
| | - Gaber Plavc
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
- Institute of Oncology, Ljubljana, Slovenia
| | - Lan Umek
- Faculty of Public Administration, University of Ljubljana, Ljubljana, Slovenia
| | - Katarina Surlan Popovic
- Institute of Radiology, University Medical Centre Ljubljana, Ljubljana, Slovenia
- Faculty of Medicine, University of Ljubljana, Ljubljana, Slovenia
| |
Collapse
|
2
|
Campo F, Iocca O, Paolini F, Manciocco V, Moretto S, De Virgilio A, Moretti C, Vidiri A, Venuti A, Bossi P, Blandino G, Pellini R. The landscape of circulating tumor HPV DNA and TTMV-HPVDNA for surveillance of HPV-oropharyngeal carcinoma: systematic review and meta-analysis. J Exp Clin Cancer Res 2024; 43:215. [PMID: 39095868 PMCID: PMC11297591 DOI: 10.1186/s13046-024-03137-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Accepted: 07/24/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND Human papilloma virus (HPV) related cancers of the oropharynx are rapidly increasing in incidence and may soon represent the majority of all head and neck cancers. Improved monitoring and surveillance methods are thus an urgent need in public health. MAIN TEXT The goal is to highlight the current potential and limitations of liquid biopsy through a meta analytic study on ctHPVDNA and TTMV-HPVDNA. It was performed a Literature search on articles published until December 2023 using three different databases: MEDLINE, Embase, and Cochrane Library. Studies that evaluated post-treatment ctHPVDNA and TTMV-HPVDNA in patients with HPV + OPSCC, studies reporting complete data on the diagnostic accuracy in recurrence, or in which the number of true positives, false positives, true negatives, and false negatives was extractable, and methods of detection of viral DNA clearly defined. The meta-analysis was conducted following the Meta-analysis Of Observational Studies in Epidemiology (MOOSE) reporting guidelines. The aim of this meta-analysis was to evaluate the sensitivity, specificity, and accuracy of ctHPVDNA and TTMV by ddPCR to define its efficacy in clinical setting for the follow up of HPV-OPSCC. CONCLUSION The 12 studies included in the meta-analysis provided a total of 1311 patients for the analysis (398 valuated with ctHPVDNA and 913 with TTMV-HPVDNA). Pooled sensitivity and specificity were 86% (95% CI: 78%-91%) and 96% (95% CI: 91%-99%), respectively; negative and positive likelihood ratios were 0.072 (95% CI: 0.057-0.093) and 24.7 (95% CI: 6.5-93.2), respectively; pooled DOR was 371.66 (95% CI: 179.1-918). The area under the curve (AUC) was 0.81 (95% CI, 0.67-0.91). Liquid biopsy for the identification of cell free DNA might identify earlier recurrence in HPV + OPSCC patients. At the present time, liquid biopsy protocol needs to be standardized and liquid biopsy cannot yet be used in clinical setting. In the future, a multidimensional integrated approach which links multiple clinical, radiological, and laboratory data will contribute to obtain the best follow-up strategies for the follow-up of HPV-OPSCC.
Collapse
Affiliation(s)
- Flaminia Campo
- Department of Otolaryngology-Head and Neck Surgery, IRCCS Regina Elena National Cancer Institute, Istituti Fisioterapici Ospitalieri (IFO), Via Elio Chianesi 53, Rome, 00144, Italy.
| | - Oreste Iocca
- Division of Maxillofacial Surgery, Surgical Science Department, University of Torino, Torino, Italy
| | - Francesca Paolini
- HPV- Unit, UOSD Tumor Immunology and Immunotherapy IRCCS Regina Elena National Cancer Institute, Istituti Fisioterapici Ospitalieri (IFO), Rome, Italy
- Deparment of Biochemical Sciences A. Rossi Fanelli, Sapienza University of Rome, Rome, Italy
| | - Valentina Manciocco
- Department of Otolaryngology-Head and Neck Surgery, IRCCS Regina Elena National Cancer Institute, Istituti Fisioterapici Ospitalieri (IFO), Via Elio Chianesi 53, Rome, 00144, Italy
| | - Silvia Moretto
- Department of Otolaryngology-Head and Neck Surgery, IRCCS Regina Elena National Cancer Institute, Istituti Fisioterapici Ospitalieri (IFO), Via Elio Chianesi 53, Rome, 00144, Italy
| | - Armando De Virgilio
- Department of Biomedical Sciences, Humanitas University, Milan, Italy
- Otorhinolaryngology Unit, IRCCS Humanitas Research Hospital, Milan, Italy
| | - Claudio Moretti
- Department of Otolaryngology-Head and Neck Surgery, IRCCS Regina Elena National Cancer Institute, Istituti Fisioterapici Ospitalieri (IFO), Via Elio Chianesi 53, Rome, 00144, Italy
| | - Antonello Vidiri
- Department of Radiology and Diagnostic Imaging, IRCCS Regina Elena National Cancer Institute, Istituti Fisioterapici Ospitalieri (IFO), Rome, Italy
| | - Aldo Venuti
- HPV- Unit, UOSD Tumor Immunology and Immunotherapy IRCCS Regina Elena National Cancer Institute, Istituti Fisioterapici Ospitalieri (IFO), Rome, Italy
| | - Paolo Bossi
- IRCCS Humanitas Research Hospital, via Manzoni 56, Rozzano, Milan, 20089, Italy
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, Milan, 20072, Italy
| | - Giovanni Blandino
- Translational Oncology Research Unit, Department of Research, Diagnosis and Innovative Technologies, IRCCS Regina Elena National Cancer Institute, Rome, Italy
| | - Raul Pellini
- Department of Otolaryngology-Head and Neck Surgery, IRCCS Regina Elena National Cancer Institute, Istituti Fisioterapici Ospitalieri (IFO), Via Elio Chianesi 53, Rome, 00144, Italy
| |
Collapse
|
3
|
Parsaei M, Sanjari Moghaddam H, Mazaheri P. The clinical utility of diffusion-weighted imaging in diagnosing and predicting treatment response of laryngeal and hypopharyngeal carcinoma: A systematic review and meta-analysis. Eur J Radiol 2024; 177:111550. [PMID: 38878501 DOI: 10.1016/j.ejrad.2024.111550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2024] [Revised: 04/24/2024] [Accepted: 06/02/2024] [Indexed: 07/24/2024]
Abstract
PURPOSE Laryngeal and Hypopharyngeal Carcinomas (LC/HPC) constitute about 24 % of head and neck cancers, causing more than 90,000 annual deaths worldwide. Diffusion-Weighted Imaging (DWI), is currently widely studied in oncologic imaging and can aid in distinguishing cellular tumors from other tissues. Our objective was to review the effectiveness of DWI in three areas: diagnosing, predicting prognosis, and predicting treatment response in patients with LC/HPC. METHODS A systematic search was conducted in PubMed, Web of Science, and Embase. A meta-analysis by calculating Standardized Mean Difference (SMD) and 95 % Confidence Interval (CI) was conducted on diagnostic studies. RESULTS A total of 16 studies were included. All diagnostic studies (n = 9) were able to differentiate between the LC/HPC and other benign laryngeal/hypopharyngeal lesions. These studies found that LC/HPC had lower Apparent Diffusion Coefficient (ADC) values than non-cancerous lesions. Our meta-analysis of 7 diagnostic studies, that provided ADC values of malignant and non-malignant tissues, demonstrated significantly lower ADC values in LC/HPC compared to non-malignant lesions (SMD = -1.71, 95 %CI: [-2.00, -1.42], ADC cut-off = 1.2 × 103 mm2/s). Furthermore, among the studies predicting prognosis, 67 % (4/6) accurately predicted outcomes based on pretreatment ADC values. Similarly, among studies predicting treatment response, 50 % (2/4) successfully predicted outcomes based on pretreatment ADC values. Overall, the studies that looked at prognosis or treatment response in LC/HPC found a positive correlation between pretreatment ADC values in larynx/hypopharynx and favorable outcomes. CONCLUSION DWI aids significantly in the LC/HPC diagnosis. However, further research is needed to establish DWI's reliability in predicting prognosis and treatment response in patients with LC/HPC.
Collapse
Affiliation(s)
| | - Hossein Sanjari Moghaddam
- Psychiatry and Psychology Research Center, Roozbeh Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Parisa Mazaheri
- Mallinckrodt Institute of Radiology, Washington University School of Medicine, St. Louis, MO, USA.
| |
Collapse
|
4
|
Li Z, Wang R, Wang L, Tan C, Xu J, Fang J, Xian J. Machine Learning-Based MRI Radiogenomics for Evaluation of Response to Induction Chemotherapy in Head and Neck Squamous Cell Carcinoma. Acad Radiol 2024; 31:2464-2475. [PMID: 37985290 DOI: 10.1016/j.acra.2023.10.054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 10/16/2023] [Accepted: 10/28/2023] [Indexed: 11/22/2023]
Abstract
RATIONALE AND OBJECTIVES To develop and validate a radiogenomics model integrating clinical data, radiomics-based machine learning (RBML) classifiers, and transcriptomics data for predicting the response to induction chemotherapy (IC) in patients with head and neck squamous cell carcinoma (HNSCC). MATERIALS AND METHODS Radiomics features derived from T2-weighted, pre- and post-contrast-enhanced T1-weighted MRI sequences, clinical data, and RNA sequencing data of 150 patients with HNSCC were included in the study. Analysis of variance or recursive feature elimination was used to reduce radiomics features. Three RBML classifiers were developed to distinguish non-responders from responders. Weighted correlation network analysis (WGCNA) was performed to identify the correlation between clinical data or radiomics features and molecular features; subsequently, protein interaction and functional enrichment analyses were performed. The predictive performance of the radiogenomics model integrating significant clinical variables, RBML classifiers, and molecular features was evaluated using receiver operating characteristic curve analysis. RESULTS Five radiomics features and two conventional MRI findings significantly stratified HNSCC patients into responders and non-responders. On WGCNA analysis, 809 genes showed a significant correlation with two radiomics features. Functional enrichment analysis suggested that our proposed radiomics features could reflect the T cell-mediated immune response and immune infiltration of HNSCC. The radiogenomics model showed the highest area under the curve (0.88[95%CI 0.75-0.96]) for predicting IC response, which was better than MRI findings(p = 0.0407) or molecular features(p = 0.004) alone, but showed no significant difference with that of RBML model (p = 0.2254) in test cohort. CONCLUSION Merging imaging phenotypes with transcriptomic data improved the prediction of IC response in HNSCC.
Collapse
Affiliation(s)
- Zheng Li
- Department of Radiology, Beijing Tongren Hospital, Capital Medical University, Beijing, China (Z.L., J.X.).
| | - Ru Wang
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China (R.W., L.W., C.T., J.X., J.F.).
| | - Lingwa Wang
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China (R.W., L.W., C.T., J.X., J.F.).
| | - Chen Tan
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China (R.W., L.W., C.T., J.X., J.F.).
| | - Jiaqi Xu
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China (R.W., L.W., C.T., J.X., J.F.).
| | - Jugao Fang
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China (R.W., L.W., C.T., J.X., J.F.).
| | - Junfang Xian
- Department of Radiology, Beijing Tongren Hospital, Capital Medical University, Beijing, China (Z.L., J.X.).
| |
Collapse
|
5
|
Chao YK, Chang CB, Chang YC, Chan SC, Chiu CH, Ng SH, Hsieh JCH, Wang JH. Baseline and interim [18F]FDG-PET/MRI to assess treatment response and survival in patients with M0 esophageal squamous cell carcinoma treated by curative-intent therapy. Cancer Imaging 2023; 23:109. [PMID: 37932848 PMCID: PMC10629192 DOI: 10.1186/s40644-023-00630-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Accepted: 11/01/2023] [Indexed: 11/08/2023] Open
Abstract
BACKGROUND To investigate the value of [18F]FDG-PET/MRI in predicting treatment response and survival in patients with primary M0 esophageal squamous cell carcinoma. METHODS Patients with esophageal squamous cell carcinoma received [18F]FDG-PET/MRI at baseline and during neoadjuvant or definitive chemoradiotherapy. The treatment response was classified according to the Response Evaluation Criteria for Solid Tumors 1.1. We used Kaplan-Meier and Cox regression analyses to assess the association between PET/MRI parameters and overall survival (OS) or progression-free survival (PFS). RESULTS We included 40 M0 patients in the final analysis. The volume transfer constant (Ktrans) from baseline PET/MRI (area under the curve (AUC) = 0.688, P = 0.034) and total lesion glycolysis (TLG) from baseline PET/MRI (AUC = 0.723, P = 0.006) or interim PET/MRI (AUC = 0.853, P < 0.001) showed acceptable AUC for predicting treatment response. The TLG from interim PET/MRI (interim TLG, P < 0.001) and extracellular volume fraction (Ve) on interim PET/MRI (interim Ve, P = 0.001) were identified as independent prognostic factors for OS. Baseline Ve (P = 0.044) and interim TLG (P = 0.004) were significant predictors of PFS. The c-indices of the prognostic models combining interim TLG with Ve for predicting OS, and baseline Ve and interim TLG for predicting PFS were 0.784 and 0.699, respectively. These values were significantly higher than the corresponding c-indices of the TNM staging system (P = 0.002 and P = 0.047, respectively). CONCLUSIONS Combining the baseline and interim [18F]FDG-PET/MRI qualitative imaging parameters aids in predicting the prognosis of patients with M0 esophageal squamous cell carcinoma. TRIAL REGISTRATION The study was registered at Clinicaltrials.gov (identifier: NCT05855291 and NCT05855278).
Collapse
Affiliation(s)
- Yin-Kai Chao
- Division of Thoracic Surgery, Chang Gung Memorial Hospital-Linko, Chang Gung University, Taoyuan, 333423, Taiwan
| | - Chun-Bi Chang
- Department of Diagnostic Radiology, Linkou Chang Gung Memorial Hospital, Chang Gung University, Taoyuan, 333423, Taiwan
| | - Yu-Chuan Chang
- Department of Nuclear Medicine and Molecular Imaging Center, Chang Gung Memorial Hospital-Linko, Chang Gung University, Taoyuan, 333423, Taiwan
| | - Sheng-Chieh Chan
- Department of Nuclear Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, 970423, Taiwan.
- School of Medicine, Tzu Chi University, Hualien, 970423, Taiwan.
| | - Chien-Hung Chiu
- Division of Thoracic Surgery, Chang Gung Memorial Hospital-Linko, Chang Gung University, Taoyuan, 333423, Taiwan
| | - Shu-Hang Ng
- Department of Diagnostic Radiology, Linkou Chang Gung Memorial Hospital, Chang Gung University, Taoyuan, 333423, Taiwan
| | - Jason Chia-Hsun Hsieh
- Division of Hematology/Oncology, Department of Internal Medicine, Linkou Chang Gung Memorial Hospital, Chang Gung University, Taoyuan, 333423, Taiwan
| | - Jen-Hung Wang
- Department of Medical Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, 970423, Taiwan
| |
Collapse
|
6
|
Chang CB, Lin YC, Wong YC, Lin SN, Lin CY, Lin YH, Sheng TW, Yang LY, Wang LJ. Quantitative Dynamic Contrast-Enhanced Magnetic Resonance Parameters Could Predict International Society of Urological Pathology Risk Groups of Prostate Cancers on Radical Prostatectomy. Life (Basel) 2023; 13:1944. [PMID: 37763347 PMCID: PMC10532885 DOI: 10.3390/life13091944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2023] [Revised: 08/22/2023] [Accepted: 09/19/2023] [Indexed: 09/29/2023] Open
Abstract
BACKGROUND The International Society of Urological Pathology (ISUP) grade and positive surgical margins (PSMs) after radical prostatectomy (RP) may reflect the prognosis of prostate cancer (PCa) patients. This study aimed to investigate whether DCE-MRI parameters (i.e., Ktrans, kep, and IAUC) could predict ISUP grade and PSMs after RP. METHOD Forty-five PCa patients underwent preoperative DCE-MRI. The clinical characteristics and DCE-MRI parameters of the 45 patients were compared between the low- and high-risk (i.e., ISUP grades III-V) groups and between patients with or without PSMs after RP. Multivariate logistic regression analysis was used to identify the significant predictors of placement in the high-risk group and PSMs. RESULTS The DCE parameter Ktrans-max was significantly higher in the high-risk group than in the low-risk group (p = 0.028) and was also a significant predictor of placement in the high-risk group (odds ratio [OR] = 1.032, 95% confidence interval [CI] = 1.005-1.060, p = 0.021). Patients with PSMs had significantly higher prostate-specific antigen (PSA) titers, positive biopsy core percentages, Ktrans-max, kep-median, and kep-max than others (all p < 0.05). Of these, positive biopsy core percentage (OR = 1.035, 95% CI = 1.003-1.068, p = 0.032) and kep-max (OR = 1.078, 95% CI = 1.012-1.148, p = 0.020) were significant predictors of PSMs. CONCLUSION Preoperative DCE-MRI parameters, specifically Ktrans-max and kep-max, could potentially serve as preoperative imaging biomarkers for postoperative PCa prognosis based on their predictability of PCa risk group and PSM on RP, respectively.
Collapse
Affiliation(s)
- Chun-Bi Chang
- Department of Medical Imaging and Intervention, Linkou Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Gueishan, Taoyuan 33305, Taiwan; (C.-B.C.)
- Department of Medical Imaging and Radiological Sciences, Chang Gung University, Taoyuan 33302, Taiwan
| | - Yu-Chun Lin
- Department of Medical Imaging and Intervention, Linkou Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Gueishan, Taoyuan 33305, Taiwan; (C.-B.C.)
- Department of Medical Imaging and Radiological Sciences, Chang Gung University, Taoyuan 33302, Taiwan
| | - Yon-Cheong Wong
- Department of Medical Imaging and Intervention, Linkou Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Gueishan, Taoyuan 33305, Taiwan; (C.-B.C.)
- Department of Medical Imaging and Radiological Sciences, Chang Gung University, Taoyuan 33302, Taiwan
- Department of Medical Imaging and Intervention, New Taipei Municipal TuCheng Hospital, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan 33305, Taiwan
| | - Shin-Nan Lin
- Department of Medical Imaging and Intervention, Linkou Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Gueishan, Taoyuan 33305, Taiwan; (C.-B.C.)
| | | | - Yu-Han Lin
- Department of Medical Imaging and Intervention, Linkou Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Gueishan, Taoyuan 33305, Taiwan; (C.-B.C.)
| | - Ting-Wen Sheng
- Department of Medical Imaging and Radiological Sciences, Chang Gung University, Taoyuan 33302, Taiwan
- Department of Medical Imaging and Intervention, New Taipei Municipal TuCheng Hospital, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan 33305, Taiwan
| | - Lan-Yan Yang
- Biostatistics Unit of Clinical Trial Center, Chang Gung Memorial Hospital, Gueishan, Taoyuan 33305, Taiwan
| | - Li-Jen Wang
- Department of Medical Imaging and Intervention, Linkou Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Gueishan, Taoyuan 33305, Taiwan; (C.-B.C.)
- Department of Medical Imaging and Radiological Sciences, Chang Gung University, Taoyuan 33302, Taiwan
- Department of Medical Imaging and Intervention, New Taipei Municipal TuCheng Hospital, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan 33305, Taiwan
| |
Collapse
|
7
|
Vijayalakshmi KR, Jain V. Accuracy of magnetic resonance imaging in the assessment of depth of invasion in tongue carcinoma: A systematic review and meta-analysis. Natl J Maxillofac Surg 2023; 14:341-353. [PMID: 38273911 PMCID: PMC10806321 DOI: 10.4103/njms.njms_174_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 03/19/2023] [Accepted: 03/27/2023] [Indexed: 01/27/2024] Open
Abstract
Tongue carcinoma constitutes 10.4-46.9% of all oral squamous cell carcinomas (OSCCs) and is notoriously known for invading tissues deeper than the evident gross margins. The deeper the tumor invades, the higher are its chances of future morbidity and mortality due to extensive neck dissection and risk of recurrence. Magnetic resonance imaging (MRI) is a noninvasive diagnostic aid used for measuring a preoperative tumor's depth of invasion (DOI) as it can efficiently outline soft tissue tumors from adjacent normal tissue. To assess various MRI modalities used in measuring DOI in tongue carcinoma and their reliability compared with other DOI measuring modalities. The protocol was registered in the International Prospective Register of Systematic Reviews (PROSPERO) database (CRD42022330866), and the following Preferred Reporting Items for a Systematic Review and Meta-Analysis (PRISMA) Diagnostic Test Accuracy guidelines were performed. PubMed electronic database was searched using a combination of keywords for relevant articles in the English language since 2016. Critical appraisal was carried out using the Quality Assessment of Diagnostic Accuracy Studies-Comparative (QUADAS-C) risk-of-bias (RoB) assessment tool. A weighted mean difference (WMD) was calculated between MRI and histopathological DOI along with pooled correlation and subgroup analysis, where possible. A total of 795 records were retrieved of which 17 were included in the final review with 13 included for meta-analysis. A high RoB was found for most studies for all parameters except flow and timing. WMD showed a statistically significant MRI overestimation of 1.90 mm compared with histopathology. Subgroup analysis showed the 1.5 Tesla machine to be superior to the 3.0 Tesla machine, while imaging sequence subgroup analysis could not be performed. MRI is a viable preoperative DOI measurement modality that can help in efficient treatment planning to decrease surgical morbidity and mortality.
Collapse
Affiliation(s)
| | - Vanshika Jain
- Department of Oral Medicine and Radiology, Government Dental College and Research Institute, Bangalore, Karnataka, India
| |
Collapse
|
8
|
Lin YC, Lin G, Pandey S, Yeh CH, Wang JJ, Lin CY, Ho TY, Ko SF, Ng SH. Fully automated segmentation and radiomics feature extraction of hypopharyngeal cancer on MRI using deep learning. Eur Radiol 2023; 33:6548-6556. [PMID: 37338554 PMCID: PMC10415433 DOI: 10.1007/s00330-023-09827-2] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 03/29/2023] [Accepted: 04/14/2023] [Indexed: 06/21/2023]
Abstract
OBJECTIVES To use convolutional neural network for fully automated segmentation and radiomics features extraction of hypopharyngeal cancer (HPC) tumor in MRI. METHODS MR images were collected from 222 HPC patients, among them 178 patients were used for training, and another 44 patients were recruited for testing. U-Net and DeepLab V3 + architectures were used for training the models. The model performance was evaluated using the dice similarity coefficient (DSC), Jaccard index, and average surface distance. The reliability of radiomics parameters of the tumor extracted by the models was assessed using intraclass correlation coefficient (ICC). RESULTS The predicted tumor volumes by DeepLab V3 + model and U-Net model were highly correlated with those delineated manually (p < 0.001). The DSC of DeepLab V3 + model was significantly higher than that of U-Net model (0.77 vs 0.75, p < 0.05), particularly in those small tumor volumes of < 10 cm3 (0.74 vs 0.70, p < 0.001). For radiomics extraction of the first-order features, both models exhibited high agreement (ICC: 0.71-0.91) with manual delineation. The radiomics extracted by DeepLab V3 + model had significantly higher ICCs than those extracted by U-Net model for 7 of 19 first-order features and for 8 of 17 shape-based features (p < 0.05). CONCLUSION Both DeepLab V3 + and U-Net models produced reasonable results in automated segmentation and radiomic features extraction of HPC on MR images, whereas DeepLab V3 + had a better performance than U-Net. CLINICAL RELEVANCE STATEMENT The deep learning model, DeepLab V3 + , exhibited promising performance in automated tumor segmentation and radiomics extraction for hypopharyngeal cancer on MRI. This approach holds great potential for enhancing the radiotherapy workflow and facilitating prediction of treatment outcomes. KEY POINTS • DeepLab V3 + and U-Net models produced reasonable results in automated segmentation and radiomic features extraction of HPC on MR images. • DeepLab V3 + model was more accurate than U-Net in automated segmentation, especially on small tumors. • DeepLab V3 + exhibited higher agreement for about half of the first-order and shape-based radiomics features than U-Net.
Collapse
Affiliation(s)
- Yu-Chun Lin
- Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital at Linkou, 5 Fuhsing St., Guishan, Taoyuan, 33382, Taiwan
- Department of Medical Imaging and Radiological Sciences, Chang Gung University, Taoyuan, Taiwan
- Clinical Metabolomics Core Laboratory, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Gigin Lin
- Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital at Linkou, 5 Fuhsing St., Guishan, Taoyuan, 33382, Taiwan
- Clinical Metabolomics Core Laboratory, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan
| | - Sumit Pandey
- Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital at Linkou, 5 Fuhsing St., Guishan, Taoyuan, 33382, Taiwan
| | - Chih-Hua Yeh
- Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital at Linkou, 5 Fuhsing St., Guishan, Taoyuan, 33382, Taiwan
| | - Jiun-Jie Wang
- Department of Medical Imaging and Radiological Sciences, Chang Gung University, Taoyuan, Taiwan
| | - Chien-Yu Lin
- Department of Radiation Oncology, Chang Gung Memorial Hospital at Linkou and Chang Gung University, Taoyuan, Taiwan
| | - Tsung-Ying Ho
- Department of Nuclear Medicine and Molecular Imaging Center, Chang Gung Memorial Hospital and Chang Gung University, Taoyuan, Taiwan
| | - Sheung-Fat Ko
- Department of Radiology, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Shu-Hang Ng
- Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital at Linkou, 5 Fuhsing St., Guishan, Taoyuan, 33382, Taiwan.
| |
Collapse
|
9
|
Holgado A, León X, Quer M, Camacho V, Fernández A. Association between maximum standarised uptake value (SUV) and local control in patients with oropharyngeal carcinoma treated with radiotherapy. ACTA OTORRINOLARINGOLOGICA ESPANOLA 2023; 74:211-218. [PMID: 37149130 DOI: 10.1016/j.otoeng.2022.05.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 05/19/2022] [Indexed: 05/08/2023]
Abstract
OBJECTIVE To analyse the prognostic ability of the maximum standardised uptake value (SUVmax) on local disease control in patients with oropharyngeal carcinoma treated with radiotherapy. MATERIAL AND METHODS Retrospective study of 105 patients with oropharyngeal carcinomas treated with radiotherapy, including chemo- and bio-radiotherapy, and who had a PET-CT scan prior to the start of treatment. RESULT Patients with a SUVmax value higher than 17.2 at the primary tumour site had a significantly higher risk of local recurrence. The 5-year local recurrence-free survival for patients with SUVmax less than or equal to 17.2 (n = 71) was 86.5% (95% CI 78.2-94.7 %), and for patients with SUVmax greater than 17.2 (n = 34) it was 55.8% (95% CI 36.0-75.6 %) (P = 0.0001). This difference in local control was maintained regardless of patients' HPV status. Specific survival was similarly lower for patients with a SUV greater than 17.2. The 5-year specific survival for patients with SUVmax greater than 17.2 was 39.5% (95% CI: 20.6-58.3 %), significantly shorter than that of patients with SUVmax equal to or less than 17.2, which was 77.3% (95% CI: 66.9-87.6 %) (P = 0.0001). CONCLUSIONS Patients with oropharyngeal carcinomas treated with radiotherapy with a SUVmax greater than 17.2 at the level of the primary tumour site had a significantly higher risk of local recurrence.
Collapse
Affiliation(s)
- Anna Holgado
- Servicio de Otorrinolaringología-->, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Xavier León
- Servicio de Otorrinolaringología-->, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain; UVIC-->, Universitat Central de Catalunya, Vic, Spain.
| | - Miquel Quer
- Servicio de Otorrinolaringología-->, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain; Centro de Investigación Biomédica en Red de Bioingeniería, Biomateriales y Nanomedicina (CIBER-BBN), Madrid, Spain
| | - Valle Camacho
- Servicio de Medicina Nuclear-->, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Alejando Fernández
- Servicio de Medicina Nuclear-->, Hospital de la Santa Creu i Sant Pau, Universitat Autònoma de Barcelona, Barcelona, Spain
| |
Collapse
|
10
|
Yu J, Xu W, Wang L, Jiang N, Dou W, Li C, Sun L. The clinical value of DCE-MRI for differentiating secondary laryngeal cartilage lesions. Medicine (Baltimore) 2023; 102:e33352. [PMID: 37000106 PMCID: PMC10063300 DOI: 10.1097/md.0000000000033352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 03/02/2023] [Accepted: 03/03/2023] [Indexed: 04/01/2023] Open
Abstract
To explore the value of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) in the assessment of laryngeal cartilage lesions. In this study, 3 groups of cases were selected, including 16 cases benign lesions of the laryngopharynx as the benign group, 17 cases malignant lesions of laryngopharynx as the malignant group and 23 healthy adults as the control group. Conventional magnetic resonance imaging and DCE-MRI were performed with a 3.0 T MR scanner. cutoff, sensitivity, specificity and area under the curve values were calculated via receiver operating characteristic curve analysis based on the pathologic findings of surgically resected specimens. There were significant differences in the values of the volume transfer constant (Ktrans), the rate constant between the extravascular extracellular space and blood plasma (Kep) and The extravascular extracellular space fractional volume (Ve) between the control, benign and malignant groups (P < .005). Among the 3 groups, the malignant group had the highest Ktrans and Ve values (0.8681 ± 0.3034 and 0.6186 ± 0.2405, respectively), and the benign group had the highest Kep value (2.445 ± 0.7346). The cutoff points of the Ktrans, Kep, and Ve values of the control, benign and malignant groups were 0.39, 1.261, and 0.195; 0.471, 0.964, and 0.235; and 0.706, 2.005, and 0.659, respectively. The Ktrans, Kep, and Ve values obtained via DCE-MRI may enable differentiating laryngeal cartilage lesions. DCE-MRI can be used to evaluate laryngeal cartilage lesions accurately and quantitatively.
Collapse
Affiliation(s)
- Jinfen Yu
- Department of Medical Imaging Center, Shandong Second Provincial General Hospital, Jinan, Shandong, P. R. China
| | - Wei Xu
- Department of Medical Imaging Center, Shandong Second Provincial General Hospital, Jinan, Shandong, P. R. China
| | - Linsheng Wang
- Department of Medical Imaging Center, Shandong Second Provincial General Hospital, Jinan, Shandong, P. R. China
| | - Nan Jiang
- Department of Medical Imaging Center, Shandong Second Provincial General Hospital, Jinan, Shandong, P. R. China
| | - Weiqiang Dou
- GE Healthcare, MR Research China, Beijing, P. R. China
| | - Chuanting Li
- Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, P. R. China
| | - Lixin Sun
- Department of Medical Imaging Center, Shandong Second Provincial General Hospital, Jinan, Shandong, P. R. China
| |
Collapse
|
11
|
Chiesa-Estomba CM, Mayo-Yanez M, Guntinas-Lichius O, Vander-Poorten V, Takes RP, de Bree R, Halmos GB, Saba NF, Nuyts S, Ferlito A. Radiomics in Hypopharyngeal Cancer Management: A State-of-the-Art Review. Biomedicines 2023; 11:805. [PMID: 36979783 PMCID: PMC10045560 DOI: 10.3390/biomedicines11030805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 02/25/2023] [Accepted: 03/04/2023] [Indexed: 03/09/2023] Open
Abstract
(1) Background: Hypopharyngeal squamous cell carcinomas usually present with locally advanced disease and a correspondingly poor prognosis. Currently, efforts are being made to improve tumor characterization and provide insightful information for outcome prediction. Radiomics is an emerging area of study that involves the conversion of medical images into mineable data; these data are then used to extract quantitative features based on shape, intensity, texture, and other parameters; (2) Methods: A systematic review of the peer-reviewed literature was conducted; (3) Results: A total of 437 manuscripts were identified. Fifteen manuscripts met the inclusion criteria. The main targets described were the evaluation of textural features to determine tumor-programmed death-ligand 1 expression; a surrogate for microvessel density and heterogeneity of perfusion; patient stratification into groups at high and low risk of progression; prediction of early recurrence, 1-year locoregional failure and survival outcome, including progression-free survival and overall survival, in patients with locally advanced HPSCC; thyroid cartilage invasion, early disease progression, recurrence, induction chemotherapy response, treatment response, and prognosis; and (4) Conclusions: our findings suggest that radiomics represents a potentially useful tool in the diagnostic workup as well as during the treatment and follow-up of patients with HPSCC. Large prospective studies are essential to validate this technology in these patients.
Collapse
Affiliation(s)
- Carlos M. Chiesa-Estomba
- Otorhinolaryngology-Head & Neck Surgery Department, Hospital Universitario Donostia, Biodonostia Research Institute, Faculty of Medicine, Deusto University, 20014 San Sebastian, Spain
| | - Miguel Mayo-Yanez
- Otorhinolaryngology-Head and Neck Surgery Department, Complexo Hospitalario Universitario A Coruña (CHUAC), 15006 A Coruña, Spain
| | | | - Vincent Vander-Poorten
- Section Head and Neck Oncology, Department of Oncology, KU Leuven—University of Leuven, 3000 Leuven, Belgium
| | - Robert P. Takes
- Department of Otolaryngology/Head and Neck Surgery, Radboud University Medical Center, 6525 GA Nijmegen, The Netherlands
| | - Remco de Bree
- Department of Head and Neck Surgical Oncology, University Medical Center Utrecht, 3584 CX Utrecht, The Netherlands
| | - Gyorgy B. Halmos
- Department of Otorhinolaryngology/Head and Neck Surgery, University Medical Center Groningen, University of Groningen, 9712 CP Groningen, The Netherlands
| | - Nabil F. Saba
- Department of Hematology and Medical Oncology, The Winship Cancer Institute, Emory University, Atlanta, GA 30322, USA
| | - Sandra Nuyts
- Department of Radiation Oncology, University Hospitals Leuven, KU Leuven—University of Leuven, 3000 Leuven, Belgium
| | - Alfio Ferlito
- Coordinator of the International Head and Neck Scientific Group, 35125 Padua, Italy
| |
Collapse
|
12
|
Hou FJ, Zhao D, Yan XY, Li XT, Sun Y, Sun YS, Gao SY. Efficacy evaluation of different measurement methods for target lesions after neoadjuvant chemotherapy and radical radiotherapy in locally advanced hypopharyngeal carcinoma. Asia Pac J Clin Oncol 2023; 19:187-195. [PMID: 35692104 DOI: 10.1111/ajco.13796] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 05/02/2022] [Accepted: 05/07/2022] [Indexed: 01/22/2023]
Abstract
AIM To assess the diagnostic efficacy in response evaluation of hypopharyngeal carcinoma (HPC) using different CT measurement methods. METHODS AND MATERIALS One hundred and three patients with locally advanced HPC receiving neoadjuvant chemotherapy (NACT) and radical radiotherapy (RT) were retrospectively enrolled. The long diameter, short diameter and largest axial area of the tumors and the largest metastatic cervical lymph node (LN) were measured before and after NACT, at the end of RT and 1 month after RT. Tumor regression ratios of the sum of the tumor's long diameter and LN's short diameter (LDTSDL), the sum of tumor and LN's short diameter (TTSDL), the sum of tumor and LN's largest axial area (AATML) were calculated. Analysis was conducted for overall survival (OS), metastasis-free survival, regional recurrence-free survival (RRFS), and local recurrence-free survival (LRFS). RESULTS Note that 35, 28, 23, and 16 patients suffered death, local recurrence, regional recurrence and distant metastasis, respectively. TTSDL-defined effective group demonstrated better LRFS (p = .039) and RRFS (p = .047) after NACT and better OS since the end of RT (p = .037); AATML-defined effective groups demonstrated better OS, LRFS, and RRFS since the end of RT (p = .015, .008, and .005). While LDTSDL-defined groups showed differences in OS and LRFS until 1 month after RT (p = .013 and .014). CONCLUSIONS The regression rate of TTSDL and AATML can distinguish prognosis at an earlier time and demonstrated better reliability compared with LDTSDL. They were recommended for response evaluation in HPC.
Collapse
Affiliation(s)
- Fang-Jing Hou
- Department of Radiology, Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Peking University, Beijing, P.R. China
| | - Dan Zhao
- Department of Radiation Oncology, Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Peking University, Beijing, P.R. China
| | - Xin-Yue Yan
- Department of Radiology, Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Peking University, Beijing, P.R. China
| | - Xiao-Ting Li
- Department of Radiology, Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Peking University, Beijing, P.R. China
| | - Yan Sun
- Department of Radiation Oncology, Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Peking University, Beijing, P.R. China
| | - Ying-Shi Sun
- Department of Radiology, Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Peking University, Beijing, P.R. China
| | - Shun-Yu Gao
- Department of Radiology, Key laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Peking University Cancer Hospital and Institute, Peking University, Beijing, P.R. China
| |
Collapse
|
13
|
Prospective Investigation of 18FDG-PET/MRI with Intravoxel Incoherent Motion Diffusion-Weighted Imaging to Assess Survival in Patients with Oropharyngeal or Hypopharyngeal Carcinoma. Cancers (Basel) 2022; 14:cancers14246104. [PMID: 36551590 PMCID: PMC9775681 DOI: 10.3390/cancers14246104] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2022] [Revised: 12/04/2022] [Accepted: 12/09/2022] [Indexed: 12/14/2022] Open
Abstract
To prospectively investigate the prognostic value of 18F-FDG PET/MRI in patients with oropharyngeal or hypopharyngeal squamous cell carcinomas (OHSCC) treated by chemoradiotherapy. The study cohort consisted of patients with OHSCC who had undergone integrated PET/MRI prior to chemoradiotherapy or radiotherapy. Imaging parameters derived from intravoxel incoherent motion (IVIM), dynamic contrast-enhanced MRI (DCE-MRI), and 18F-FDG PET were analyzed in relation to overall survival (OS) and recurrence-free survival (RFS). In multivariable analysis, T classification (p < 0.001), metabolic tumor volume (p = 0.013), and pseudo-diffusion coefficient (p = 0.008) were identified as independent risk factors for OS. The volume transfer rate constant (p = 0.015), initial area under the curve (p = 0.043), T classification (p = 0.018), and N classification (p = 0.018) were significant predictors for RFS. The Harrell’s c-indices of OS and RFS obtained from prognostic models incorporating clinical and PET/MRI predictors were significantly higher than those derived from the traditional TNM staging system (p = 0.001). The combination of clinical risk factors with functional parameters derived from IVIM and DCE-MRI plus metabolic PET parameters derived from 18F-FDG PET in integrated PET/MRI outperformed the information provided by traditional TNM staging in predicting the survival of patients with OHSCC.
Collapse
|
14
|
Rheinheimer S, Christopoulos P, Erdmann S, Saupe J, Golpon H, Vogel-Claussen J, Dinkel J, Thomas M, Heussel CP, Kauczor HU, Heussel G. Dynamic contrast enhanced MRI of pulmonary adenocarcinomas for early risk stratification: higher contrast uptake associated with response and better prognosis. BMC Med Imaging 2022; 22:215. [PMID: 36471318 PMCID: PMC9724354 DOI: 10.1186/s12880-022-00943-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2022] [Accepted: 11/28/2022] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND To explore the prognostic value of serial dynamic contrast-enhanced (DCE) MRI in patients with advanced pulmonary adenocarcinoma undergoing first-line therapy with either tyrosine-kinase inhibitors (TKI) or platinum-based chemotherapy (PBC). METHODS Patients underwent baseline (day 0, n = 98), and post-therapeutic DCE MRI (PBC: day + 1, n = 52); TKI: day + 7, n = 46) at 1.5T. Perfusion curves were acquired at 10, 40, and 70 s after contrast application and analysed semiquantitatively. Treatment response was evaluated at 6 weeks by CT (RECIST 1.1); progression-free survival (PFS) and overall survival were analysed with respect to clinical and perfusion parameters. Relative uptake was defined as signal difference between contrast and non-contrast images, divided by the non-contrast signal. Predictors of survival were selected using Cox regression analysis. Median follow-up was 825 days. RESULTS In pre-therapeutic and early post-therapeutic MRI, treatment responders (n = 27) showed significantly higher relative contrast uptake within the tumor at 70 s after application as compared to non-responders (n = 71, p ≤ 0.02), response defined as PR by RECIST 1.1 at 6 weeks. There was no significant change of perfusion at early MRI after treatment. In multivariate regression analysis of selected parameters, the strongest association with PFS were relative uptake at 40 s in the early post-treatment MRI and pre-treatment clinical data (presence of liver metastases, ECOG performance status). CONCLUSION Higher contrast uptake within the tumor at pre-treatment and early post-treatment MRI was associated with treatment response and better prognosis. DCE MRI of pulmonary adenocarcinoma may provide important prognostic information.
Collapse
Affiliation(s)
- Stephan Rheinheimer
- grid.7700.00000 0001 2190 4373Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik at University of Heidelberg, Röntgenstrasse 1, 69126 Heidelberg, Germany ,grid.5253.10000 0001 0328 4908Diagnostic and Interventional Radiology, University Hospital Heidelberg, Im Neuenheimer Feld 420, 69120 Heidelberg, Germany ,grid.7700.00000 0001 2190 4373Translational Lung Research Center Heidelberg (TLRC), University of Heidelberg, Im Neuenheimer Feld 420, 69120 Heidelberg, Germany ,Radiology, Asklepios Hospital Munich, Robert-Koch-Allee 2, 82131 Gauting, Germany
| | - Petros Christopoulos
- grid.7700.00000 0001 2190 4373Translational Lung Research Center Heidelberg (TLRC), University of Heidelberg, Im Neuenheimer Feld 420, 69120 Heidelberg, Germany ,grid.7700.00000 0001 2190 4373Thoracic Oncology, Thoraxklinik at University of Heidelberg, Röntgenstrasse 1, 69126 Heidelberg, Germany ,grid.452624.3German Center for Lung Research (DZL), Giessen, Germany
| | - Stella Erdmann
- Medical Biometry, Institute of Medical Biometry, Im Neuenheimer Feld 130.3, 69120 Heidelberg, Germany ,grid.452624.3German Center for Lung Research (DZL), Giessen, Germany
| | - Julia Saupe
- grid.7700.00000 0001 2190 4373Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik at University of Heidelberg, Röntgenstrasse 1, 69126 Heidelberg, Germany ,grid.5253.10000 0001 0328 4908Diagnostic and Interventional Radiology, University Hospital Heidelberg, Im Neuenheimer Feld 420, 69120 Heidelberg, Germany ,grid.7700.00000 0001 2190 4373Translational Lung Research Center Heidelberg (TLRC), University of Heidelberg, Im Neuenheimer Feld 420, 69120 Heidelberg, Germany ,grid.452624.3German Center for Lung Research (DZL), Giessen, Germany
| | - Heiko Golpon
- grid.7700.00000 0001 2190 4373Translational Lung Research Center Heidelberg (TLRC), University of Heidelberg, Im Neuenheimer Feld 420, 69120 Heidelberg, Germany ,grid.10423.340000 0000 9529 9877Department of Respiratory Medicine, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany ,grid.452624.3German Center for Lung Research (DZL), Giessen, Germany
| | - Jens Vogel-Claussen
- grid.7700.00000 0001 2190 4373Translational Lung Research Center Heidelberg (TLRC), University of Heidelberg, Im Neuenheimer Feld 420, 69120 Heidelberg, Germany ,Diagnostic and Interventional Radiology and Biomedical Research in Endstage and Obstructive Lung Disease Hannover (BREATH), Carl-Neuberg-Str. 1, 30625 Hannover, Germany ,grid.10423.340000 0000 9529 9877Institute of Diagnostic and Interventional Radiology, Hannover Medical School, Carl-Neuberg-Str. 1, 30625 Hannover, Germany ,grid.452624.3German Center for Lung Research (DZL), Giessen, Germany
| | - Julien Dinkel
- grid.7700.00000 0001 2190 4373Translational Lung Research Center Heidelberg (TLRC), University of Heidelberg, Im Neuenheimer Feld 420, 69120 Heidelberg, Germany ,Radiology, Asklepios Hospital Munich, Robert-Koch-Allee 2, 82131 Gauting, Germany ,grid.452624.3German Center for Lung Research (DZL), Giessen, Germany
| | - Michael Thomas
- grid.7700.00000 0001 2190 4373Translational Lung Research Center Heidelberg (TLRC), University of Heidelberg, Im Neuenheimer Feld 420, 69120 Heidelberg, Germany ,grid.7700.00000 0001 2190 4373Thoracic Oncology, Thoraxklinik at University of Heidelberg, Röntgenstrasse 1, 69126 Heidelberg, Germany ,grid.452624.3German Center for Lung Research (DZL), Giessen, Germany
| | - Claus Peter Heussel
- grid.7700.00000 0001 2190 4373Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik at University of Heidelberg, Röntgenstrasse 1, 69126 Heidelberg, Germany ,grid.5253.10000 0001 0328 4908Diagnostic and Interventional Radiology, University Hospital Heidelberg, Im Neuenheimer Feld 420, 69120 Heidelberg, Germany ,grid.7700.00000 0001 2190 4373Translational Lung Research Center Heidelberg (TLRC), University of Heidelberg, Im Neuenheimer Feld 420, 69120 Heidelberg, Germany ,grid.452624.3German Center for Lung Research (DZL), Giessen, Germany
| | - Hans-Ulrich Kauczor
- grid.5253.10000 0001 0328 4908Diagnostic and Interventional Radiology, University Hospital Heidelberg, Im Neuenheimer Feld 420, 69120 Heidelberg, Germany ,grid.7700.00000 0001 2190 4373Translational Lung Research Center Heidelberg (TLRC), University of Heidelberg, Im Neuenheimer Feld 420, 69120 Heidelberg, Germany ,grid.452624.3German Center for Lung Research (DZL), Giessen, Germany
| | - Gudula Heussel
- grid.7700.00000 0001 2190 4373Diagnostic and Interventional Radiology with Nuclear Medicine, Thoraxklinik at University of Heidelberg, Röntgenstrasse 1, 69126 Heidelberg, Germany ,grid.7700.00000 0001 2190 4373Thoracic Oncology, Thoraxklinik at University of Heidelberg, Röntgenstrasse 1, 69126 Heidelberg, Germany ,grid.452624.3German Center for Lung Research (DZL), Giessen, Germany
| |
Collapse
|
15
|
Prognostic Value of 18F-Fluorodeoxyglucose–Positron Emission Tomography/Magnetic Resonance Imaging in Patients With Hypopharyngeal Squamous Cell Carcinoma. J Comput Assist Tomogr 2022; 46:968-977. [DOI: 10.1097/rct.0000000000001365] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
16
|
Liu X, Long M, Sun C, Yang Y, Lin P, Shen Z, Xia S, Shen W. CT-based radiomics signature analysis for evaluation of response to induction chemotherapy and progression-free survival in locally advanced hypopharyngeal carcinoma. Eur Radiol 2022; 32:7755-7766. [PMID: 35608663 DOI: 10.1007/s00330-022-08859-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2021] [Revised: 03/28/2022] [Accepted: 05/01/2022] [Indexed: 01/03/2023]
Abstract
OBJECTIVES To establish and validate a CT radiomics model for prediction of induction chemotherapy (IC) response and progression-free survival (PFS) among patients with locally advanced hypopharyngeal carcinoma (LAHC). METHODS One hundred twelve patients with LAHC (78 in training cohort and 34 in validation cohort) who underwent contrast-enhanced CT (CECT) scans prior to IC were enrolled. Least absolute shrinkage and selection operator (LASSO) was used to select the crucial radiomic features in the training cohort. Radiomics signature and clinical data were used to build a radiomics nomogram to predict individual response to IC. Kaplan-Meier analysis and log-rank test were used to evaluate ability of radiomics signature in progression-free survival risk stratification. RESULTS The radiomics signature consisted of 6 selected features from the arterial and venous phases of CECT images and demonstrated good performance in predicting the IC response in both two cohorts. The radiomics nomogram showed good discriminative performance, and the C-index of nomogram was 0.899 (95% confidence interval (CI), 0.831-0.967) and 0.775 (95% CI, 0.591-0.959) in the training and validation cohorts, respectively. Survival analysis indicated that low-risk and high-risk groups defined by the value of radiomics signature had significant difference in PFS (3-year PFS 66.4% vs 29.7%, p < 0.001). CONCLUSIONS Multiparametric CT-based radiomics model could be useful for predicting treatment response and PFS in patients with LAHC who underwent IC. KEY POINTS • CT radiomics can predict IC response and progression-free survival in hypopharyngeal carcinoma. • We combined significant radiomics signature with clinical predictors to establish a nomogram to predict individual response to IC. • Radiomics signature could divide patients into the high-risk and low-risk groups based on the PFS.
Collapse
Affiliation(s)
- Xiaobin Liu
- Department of Radiology, Tianjin Medical Imaging Institute, Tianjin First Central Hospital, School of Medicine, Nankai University, Fukang Road No. 24, Nankai District, 300192, Tianjin, China
| | - Miaomiao Long
- Department of Radiology, Tianjin Medical Imaging Institute, Tianjin First Central Hospital, School of Medicine, Nankai University, Fukang Road No. 24, Nankai District, 300192, Tianjin, China
| | - Chuanqi Sun
- Department of Biomedical Engineering, Guangzhou Medical University, Xinzao Road No. 1, Panyu District, Guangzhou, 511436, China
| | - Yining Yang
- Department of Radiotherapy, Tianjin First Central Hospital, School of Medicine, Nankai University, Fukang Road No. 24, Nankai District, Tianjin, 300192, China
| | - Peng Lin
- Department of Otorhinolaryngology Head and Neck Surgery, Tianjin First Central Hospital, School of Medicine, Nankai University, Fukang Road No. 24, Nankai District, Tianjin, 300192, China
| | - Zhiwei Shen
- Philips Healthcare, World Profit Centre, 100125, Tianze Road No. 16, Chaoyang District, Beijing, China
| | - Shuang Xia
- Department of Radiology, Tianjin Medical Imaging Institute, Tianjin First Central Hospital, School of Medicine, Nankai University, Fukang Road No. 24, Nankai District, 300192, Tianjin, China.
| | - Wen Shen
- Department of Radiology, Tianjin Medical Imaging Institute, Tianjin First Central Hospital, School of Medicine, Nankai University, Fukang Road No. 24, Nankai District, 300192, Tianjin, China.
| |
Collapse
|
17
|
Asociación entre el standarized uptake value (SUV) máximo y el control local en pacientes con carcinoma de orofaringe tratados con radioterapia. ACTA OTORRINOLARINGOLOGICA ESPANOLA 2022. [DOI: 10.1016/j.otorri.2022.05.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
18
|
Zhu Y, Jiang Z, Wang B, Li Y, Jiang J, Zhong Y, Wang S, Jiang L. Quantitative Dynamic-Enhanced MRI and Intravoxel Incoherent Motion Diffusion-Weighted Imaging for Prediction of the Pathological Response to Neoadjuvant Chemotherapy and the Prognosis in Locally Advanced Gastric Cancer. Front Oncol 2022; 12:841460. [PMID: 35425711 PMCID: PMC9001840 DOI: 10.3389/fonc.2022.841460] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Accepted: 02/28/2022] [Indexed: 01/31/2023] Open
Abstract
Background This study aimed to explore the predictive value of quantitative dynamic contrast-enhanced MRI (DCE-MRI) and intravoxel incoherent motion diffusion-weighted imaging (IVIM-DWI) quantitative parameters for the response to neoadjuvant chemotherapy (NCT) in locally advanced gastric cancer (LAGC) patients, and the relationship between the prediction results and patients’ prognosis, so as to provide a basis for clinical individualized precision treatment. Methods One hundred twenty-nine newly diagnosed LAGC patients who underwent IVIM-DWI and DCE-MRI pretreatment were enrolled in this study. Pathological tumor regression grade (TRG) served as the reference standard of NCT response evaluation. The differences in DCE-MRI and IVIM-DWI parameters between pathological responders (pR) and pathological non-responders (pNR) groups were analyzed. Univariate and multivariate logistic regressions were used to identify independent predictive parameters for NCT response. Prediction models were built with statistically significant quantitative parameters and their combinations. The performance of these quantitative parameters and models was evaluated using receiver operating characteristic (ROC) analysis. Clinicopathological variables, DCE-MRI and IVIM-DWI derived parameters, as well as the prediction model were analyzed in relation to 2-year recurrence-free survival (RFS) by using Cox proportional hazards model. RFS was compared using the Kaplan–Meier method and the log-rank test. Results Sixty-nine patients were classified as pR and 60 were pNR. Ktrans, kep, and ve values in the pR group were significantly higher, while ADCstandard and D values were significantly lower than those in the pNR group. Multivariate logistic regression analysis demonstrated that Ktrans, kep, ve, and D values were independent predictors for NCT response. The combined predictive model, which consisted of DCE-MRI and IVIM-DWI, showed the best prediction performance with an area under the curve (AUC) of 0.922. Multivariate Cox regression analysis showed that ypStage III and NCT response predicted by the IVIM-DWI model were independent predictors of poor RFS. The IVIM-DWI model could significantly stratify median RFS (52 vs. 15 months) and 2-year RFS rate (72.3% vs. 21.8%) of LAGC. Conclusion Pretreatment DCE-MRI quantitative parameters Ktrans, kep, ve, and IVIM-DWI parameter D value were independent predictors of NCT response for LAGC patients. The regression model based on baseline DCE-MRI, IVIM-DWI, and their combination could help RFS stratification of LAGC patients.
Collapse
Affiliation(s)
- Yongjian Zhu
- Department of Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhichao Jiang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bingzhi Wang
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ying Li
- Department of Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jun Jiang
- Department of Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuxin Zhong
- Department of Pancreatic and Gastric Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Sicong Wang
- Pharmaceutical Diagnostic Team, GE Healthcare, Life Sciences, Beijing, China
| | - Liming Jiang
- Department of Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
19
|
Liu X, Sun C, Long M, Yang Y, Lin P, Xia S, Shen W. Computed tomography-based radiomics signature as a pretreatment predictor of progression-free survival in locally advanced hypopharyngeal carcinoma with a different response to induction chemotherapy. Eur Arch Otorhinolaryngol 2022; 279:3551-3562. [PMID: 35212776 DOI: 10.1007/s00405-022-07306-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2021] [Accepted: 02/07/2022] [Indexed: 11/27/2022]
Abstract
PURPOSE To establish and validate a radiomics signature for stratifying the risk of progression-free survival (PFS) in patients with locally advanced hypopharyngeal carcinoma (LAHC) undergoing induction chemotherapy (IC). METHODS We extracted radiomics features from baseline contrast-enhanced computed tomography (CECT) images. We enrolled 112 LAHC patients (78 in the training cohort and 34 in the validation cohort). We used cox regression model and random survival forests variable hunting (RSFVH) algorithm for feature selection and radiomics signature building. The radiomics signature was established in the training cohort and tested in the validation cohort. We used the Kaplan-Meier analysis and log-rank test to evaluate the ability of radiomics signature in PFS risk stratification among patients with different IC responses and constructed a radiomics nomogram to predict individual PFS risk. RESULTS The radiomics signature performed well in stratifying patients into highrisk and low-risk groups of progression in both the training and validation cohorts. The radiomics nomogram showed good discriminative ability for predicting PFS. Survival outcome analysis of subsets indicated that the radiomics signature performed well in stratifying the risk of PFS in patients with LAHC with different IC responses. CONCLUSIONS The radiomics signature was a pretreatment predictor for PFS in patients with LAHC who exhibited different responses to IC.
Collapse
Affiliation(s)
- Xiaobin Liu
- Department of Radiology, First Central Clinical College, Tianjin Medical University, Qixiangtai Road No. 22, Heping District, Tianjin, 300070, China
- Department of Radiology, Tianjin Medical Imaging Institute, Tianjin First Central Hospital, School of Medicine, Nankai University, Fukang Road No. 24, Nankai District, Tianjin, 300192, China
| | - Chuanqi Sun
- Department of Biomedical Engineering, Guangzhou Medical University, Xinzao Road No. 1, Panyu District, Guangzhou, 511436, China
| | - Miaomiao Long
- Department of Radiology, Tianjin Medical Imaging Institute, Tianjin First Central Hospital, School of Medicine, Nankai University, Fukang Road No. 24, Nankai District, Tianjin, 300192, China
| | - Yining Yang
- Department of Radiotherapy, Tianjin First Central Hospital, School of Medicine, Nankai University, Fukang Road No. 24, Nankai District, Tianjin, 300192, China
| | - Peng Lin
- Department of Otorhinolaryngology Head and Neck Surgery, Tianjin First Central Hospital, School of Medicine, Nankai University, Fukang Road No. 24, Nankai District, Tianjin, 300192, China
| | - Shuang Xia
- Department of Radiology, Tianjin Medical Imaging Institute, Tianjin First Central Hospital, School of Medicine, Nankai University, Fukang Road No. 24, Nankai District, Tianjin, 300192, China
| | - Wen Shen
- Department of Radiology, Tianjin Medical Imaging Institute, Tianjin First Central Hospital, School of Medicine, Nankai University, Fukang Road No. 24, Nankai District, Tianjin, 300192, China.
| |
Collapse
|
20
|
Zhang Z, He K, Wang Z, Zhang Y, Wu D, Zeng L, Zeng J, Ye Y, Gu T, Xiao X. Multiparametric MRI Radiomics for the Early Prediction of Response to Chemoradiotherapy in Patients With Postoperative Residual Gliomas: An Initial Study. Front Oncol 2021; 11:779202. [PMID: 34869030 PMCID: PMC8636428 DOI: 10.3389/fonc.2021.779202] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 10/29/2021] [Indexed: 12/28/2022] Open
Abstract
Purpose To evaluate whether multiparametric magnetic resonance imaging (MRI)-based logistic regression models can facilitate the early prediction of chemoradiotherapy response in patients with residual brain gliomas after surgery. Patients and Methods A total of 84 patients with residual gliomas after surgery from January 2015 to September 2020 who were treated with chemoradiotherapy were retrospectively enrolled and classified as treatment-sensitive or treatment-insensitive. These patients were divided into a training group (from institution 1, 57 patients) and a validation group (from institutions 2 and 3, 27 patients). All preoperative and postoperative MR images were obtained, including T1-weighted (T1-w), T2-weighted (T2-w), and contrast-enhanced T1-weighted (CET1-w) images. A total of 851 radiomics features were extracted from every imaging series. Feature selection was performed with univariate analysis or in combination with multivariate analysis. Then, four multivariable logistic regression models derived from T1-w, T2-w, CET1-w and Joint series (T1+T2+CET1-w) were constructed to predict the response of postoperative residual gliomas to chemoradiotherapy (sensitive or insensitive). These models were validated in the validation group. Calibration curves, receiver operating characteristic (ROC) curves, and decision curve analysis (DCA) were applied to compare the predictive performances of these models. Results Four models were created and showed the following areas under the ROC curves (AUCs) in the training and validation groups: Model-Joint series (AUC, 0.923 and 0.852), Model-T1 (AUC, 0.835 and 0.809), Model-T2 (AUC, 0.784 and 0.605), and Model-CET1 (AUC, 0.805 and 0.537). These results indicated that the Model-Joint series had the best performance in the validation group, followed by Model-T1, Model-T2 and finally Model-CET1. The calibration curves indicated good agreement between the Model-Joint series predictions and actual probabilities. Additionally, the DCA curves demonstrated that the Model-Joint series was clinically useful. Conclusion Multiparametric MRI-based radiomics models can potentially predict tumor response after chemoradiotherapy in patients with postoperative residual gliomas, which may aid clinical decision making, especially to help patients initially predicted to be treatment-insensitive avoid the toxicity of chemoradiotherapy.
Collapse
Affiliation(s)
- Zhaotao Zhang
- Department of Radiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Keng He
- Department of Radiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Zhenhua Wang
- Department of Radiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Youming Zhang
- Department of Radiology, Hsiang-ya Hospital, Changsha, China
| | - Di Wu
- Department of Radiology, The First Affiliated Hospital of Gannan Medical College, Ganzhou, China
| | - Lei Zeng
- Department of Oncology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Junjie Zeng
- Department of Radiology, The Fifth Affiliated Hospital of Jinan University, Heyuan, China
| | - Yinquan Ye
- Department of Radiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Taifu Gu
- Department of Radiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| | - Xinlan Xiao
- Department of Radiology, The Second Affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
21
|
Bos P, van der Hulst HJ, van den Brekel MWM, Schats W, Jasperse B, Beets-Tan RGH, Castelijns JA. Prognostic functional MR imaging parameters in head and neck squamous cell carcinoma: A systematic review. Eur J Radiol 2021; 144:109952. [PMID: 34562743 DOI: 10.1016/j.ejrad.2021.109952] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 08/10/2021] [Accepted: 08/31/2021] [Indexed: 01/17/2023]
Abstract
OBJECTIVE Functional MR imaging has demonstrated potential for predicting treatment response. This systematic review gives an extensive overview of the current level of evidence for pre-treatment MR-based perfusion and diffusion imaging parameters that are prognostic for treatment outcome in head and neck squamous cell carcinoma (HNSCC) (PROSPERO registrationCRD42020210689). MATERIALS AND METHODS According to the PRISMA statements, Medline, Embase and Scopus were queried for articles with a maximum date of October 19th, 2020. Studies investigating the predictive performance of pre-treatment MR-based perfusion and/or diffusion imaging parameters in HNSCC treatment response were included. All prognosticators were extracted from the primary tumor. Risk of bias was assessed using the QUIPS tool. Results were summarized in tables and forest plots. RESULTS 31 unique studies met the inclusion criteria; among them, 11 articles described perfusion (n = 529 patients) and 28 described diffusion (n = 1626 patients) MR-imaging, eight studies were included in both categories. Higher Ktrans and Kep were associated with better treatment response for OS and DFS, respectively. Study findings for Vp and Ve were inconsistent or not significant. High-level controversy was observed between studies examining the MR diffusion parameters mean and median ADC. CONCLUSION For HNSCC patients, the accurate and consistent results of pre-treatment MR-based perfusion parameters Ktrans and Kep are potential for clinical applicability predictive of OS and DFS and treatment decision guidance. Significant heterogeneity in study designs might affect high discrepancy in study results for parameters extracted from diffusion imaging. Furthermore, recommendations for future research were summarized.
Collapse
Affiliation(s)
- Paula Bos
- Department of Radiology, The Netherlands Cancer Institute, Amsterdam, the Netherlands; Department of Head and Neck Oncology and Surgery, The Netherlands Cancer Institute, Amsterdam, the Netherlands; GROW School for Oncology and Developmental Biology - University of Maastricht, Maastricht, the Netherlands.
| | - Hedda J van der Hulst
- Department of Radiology, The Netherlands Cancer Institute, Amsterdam, the Netherlands; Department of Head and Neck Oncology and Surgery, The Netherlands Cancer Institute, Amsterdam, the Netherlands; GROW School for Oncology and Developmental Biology - University of Maastricht, Maastricht, the Netherlands
| | - Michiel W M van den Brekel
- Department of Head and Neck Oncology and Surgery, The Netherlands Cancer Institute, Amsterdam, the Netherlands; Department of Oral and Maxillofacial Surgery, Amsterdam University Medical Center (AUMC), Amsterdam, the Netherlands
| | - Winnie Schats
- Scientific Information Service, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Bas Jasperse
- Department of Radiology, Amsterdam University Medical Center, Amsterdam, the Netherlands
| | - Regina G H Beets-Tan
- Department of Radiology, The Netherlands Cancer Institute, Amsterdam, the Netherlands; GROW School for Oncology and Developmental Biology - University of Maastricht, Maastricht, the Netherlands; Department of Regional Health Research, University of Southern Denmark, Denmark
| | - Jonas A Castelijns
- Department of Radiology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| |
Collapse
|
22
|
Wang C, Padgett KR, Su MY, Mellon EA, Maziero D, Chang Z. Multi-parametric MRI (mpMRI) for treatment response assessment of radiation therapy. Med Phys 2021; 49:2794-2819. [PMID: 34374098 DOI: 10.1002/mp.15130] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Revised: 06/23/2021] [Accepted: 06/28/2021] [Indexed: 11/11/2022] Open
Abstract
Magnetic resonance imaging (MRI) plays an important role in the modern radiation therapy (RT) workflow. In comparison with computed tomography (CT) imaging, which is the dominant imaging modality in RT, MRI possesses excellent soft-tissue contrast for radiographic evaluation. Based on quantitative models, MRI can be used to assess tissue functional and physiological information. With the developments of scanner design, acquisition strategy, advanced data analysis, and modeling, multiparametric MRI (mpMRI), a combination of morphologic and functional imaging modalities, has been increasingly adopted for disease detection, localization, and characterization. Integration of mpMRI techniques into RT enriches the opportunities to individualize RT. In particular, RT response assessment using mpMRI allows for accurate characterization of both tissue anatomical and biochemical changes to support decision-making in monotherapy of radiation treatment and/or systematic cancer management. In recent years, accumulating evidence have, indeed, demonstrated the potentials of mpMRI in RT response assessment regarding patient stratification, trial benchmarking, early treatment intervention, and outcome modeling. Clinical application of mpMRI for treatment response assessment in routine radiation oncology workflow, however, is more complex than implementing an additional imaging protocol; mpMRI requires additional focus on optimal study design, practice standardization, and unified statistical reporting strategy to realize its full potential in the context of RT. In this article, the mpMRI theories, including image mechanism, protocol design, and data analysis, will be reviewed with a focus on the radiation oncology field. Representative works will be discussed to demonstrate how mpMRI can be used for RT response assessment. Additionally, issues and limits of current works, as well as challenges and potential future research directions, will also be discussed.
Collapse
Affiliation(s)
- Chunhao Wang
- Department of Radiation Oncology, Duke University, Durham, North Carolina, USA
| | - Kyle R Padgett
- Department of Radiation Oncology, University of Miami, Miami, Florida, USA.,Department of Radiology, University of Miami, Miami, Florida, USA
| | - Min-Ying Su
- Department of Radiological Sciences, University of California, Irvine, California, USA.,Department of Medical Imaging and Radiological Sciences, Kaohsiung Medical University, Kaohsiung, Taiwan
| | - Eric A Mellon
- Department of Radiation Oncology, University of Miami, Miami, Florida, USA
| | - Danilo Maziero
- Department of Radiation Oncology, University of Miami, Miami, Florida, USA
| | - Zheng Chang
- Department of Radiation Oncology, Duke University, Durham, North Carolina, USA
| |
Collapse
|
23
|
Connor S, Sit C, Anjari M, Szyszko T, Dunn J, Pai I, Cook G, Goh V. Correlations between DW-MRI and 18 F-FDG PET/CT parameters in head and neck squamous cell carcinoma following definitive chemo-radiotherapy. Cancer Rep (Hoboken) 2021; 4:e1360. [PMID: 33960739 PMCID: PMC8388179 DOI: 10.1002/cnr2.1360] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2020] [Revised: 01/20/2021] [Accepted: 01/22/2021] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Posttreatment diffusion-weighted magnetic resonance imaging (DW-MRI) and 18F-fluorodeoxygluocose (18 F-FDG) positron emission tomography (PET) with computed tomography (PET/CT) have potential prognostic value following chemo-radiotherapy (CRT) for head and neck squamous cell carcinoma (HNSCC). Correlations between these PET/CT (standardized uptake value or SUV) and DW-MRI (apparent diffusion coefficient or ADC) parameters have only been previously explored in the pretreatment setting. AIM To evaluate stage III and IV HNSCC at 12-weeks post-CRT for the correlation between SUVmax and ADC values and their interval changes from pretreatment imaging. METHODS Fifty-six patients (45 male, 11 female, mean age 59.9 + - 7.38) with stage 3 and 4 HNSCC patients underwent 12-week posttreatment DW-MRI and 18 F-FDG PET/CT studies in this prospective study. There were 41/56 patients in the cohort with human papilloma virus-related oropharyngeal cancer (HPV OPC). DW-MRI (ADCmax and ADCmin) and 18 F-FDG PET/CT (SUVmax and SUVmax ratio to liver) parameters were measured at the site of primary tumors (n = 48) and the largest lymph nodes (n = 52). Kendall's tau evaluated the correlation between DW-MRI and 18 F-FDG PET/CT parameters. Mann-Whitney test compared the post-CRT PET/CT and DW-MRI parameters between those participants with and without 2-year disease-free survival (DFS). RESULTS There was no correlation between DW-MRI and 18 F-FDG PET/CT parameters on 12-week posttreatment imaging (P = .455-.794; tau = -0.075-0.25) or their interval changes from pretreatment to 12-week posttreatment imaging (P = .1-.946; tau = -0.194-0.044). The primary tumor ADCmean (P = .03) and the interval change in nodal ADCmin (P = .05) predicted 2-year DFS but none of the 18 F-FDG PET/CT parameters were associated with 2-year DFS. CONCLUSIONS There is no correlation between the quantitative DWI-MRI and 18 F-FDG PET/CT parameters derived from 12-week post-CRT studies. These parameters may be independent biomarkers however in this HPV OPC dominant cohort, only selected ADC parameters demonstrated prognostic significance. Study was prospectively registered at http://www.controlled-trials.com/ISRCTN58327080.
Collapse
Affiliation(s)
- Steve Connor
- School of Biomedical Engineering and Imaging SciencesSt Thomas' Hospital, King's CollegeLondonUK
- Department of NeuroradiologyKing's College Hospital NHS Foundation TrustLondonUK
- Department of RadiologyGuy's and St Thomas' NHS Foundation TrustLondonUK
| | - Cherry Sit
- Department of RadiologyGuy's and St Thomas' NHS Foundation TrustLondonUK
| | - Mustafa Anjari
- Department of RadiologyGuy's and St Thomas' NHS Foundation TrustLondonUK
| | - Teresa Szyszko
- King's College London & Guy's and St. Thomas' PET CentreLondonUK
| | - Joel Dunn
- King's College London & Guy's and St. Thomas' PET CentreLondonUK
| | - Irumee Pai
- School of Biomedical Engineering and Imaging SciencesSt Thomas' Hospital, King's CollegeLondonUK
- Department of OtolaryngologyGuy's and St Thomas' NHS Foundation TrustLondonUK
| | - Gary Cook
- School of Biomedical Engineering and Imaging SciencesSt Thomas' Hospital, King's CollegeLondonUK
- King's College London & Guy's and St. Thomas' PET CentreLondonUK
| | - Vicky Goh
- School of Biomedical Engineering and Imaging SciencesSt Thomas' Hospital, King's CollegeLondonUK
- Department of RadiologyGuy's and St Thomas' NHS Foundation TrustLondonUK
| |
Collapse
|
24
|
Connor S, Anjari M, Burd C, Guha A, Lei M, Guerrero-Urbano T, Pai I, Bassett P, Goh V. The impact of human papilloma virus status on the prediction of head and neck cancer chemoradiotherapy outcomes using the pre-treatment apparent diffusion coefficient. Br J Radiol 2021; 95:20210333. [PMID: 34111977 PMCID: PMC8822554 DOI: 10.1259/bjr.20210333] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Objective: To determine the impact of Human Papilloma Virus (HPV) oropharyngeal cancer (OPC) status on the prediction of head and neck squamous cell cancer (HNSCC) chemoradiotherapy (CRT) outcomes with pre-treatment quantitative diffusion-weighted magnetic resonance imaging (DW-MRI). Methods: Following ethical approval, 65 participants (53 male, age 59.9 ± 7.86) underwent pre-treatment DW-MRI in this prospective cohort observational study. There were 46 HPV OPC and 19 other HNSCC cases with Stage III/IV HNSCC. Regions of interest (ROIs) (volume, largest area, core) at the primary tumour (n = 57) and largest pathological node (n = 59) were placed to analyse ADCmean and ADCmin. Unpaired t-test or Mann–Whitney test evaluated the impact of HPV OPC status and clinical parameters on their prediction of post-CRT 2 year locoregional and disease-free survival (LRFS and DFS). Multivariate logistic regression compared significant variables with 2 year outcomes. Results: On univariate analysis of all participants, the primary tumour area ADCmean was predictive of 2 year LRFS (p = 0.04). However, only the HPV OPC diagnosis (LFRS p = 0.03; DFS p = 0.02) predicted outcomes on multivariate analysis. None of the pre-treatment ADC values were predictive of 2 year DFS in the HPV OPC subgroup (p = 0.21–0.68). Amongst participants without 2 year disease-free survival, HPV-OPC was found to have much lower primary tumour ADCmean values than other HNSCC. Conclusion: Knowledge of HPV OPC status is required in order to determine the impact of the pre-treatment ADC values on post-CRT outcomes in HNSCC. Advances in knowledge: Pre-treatment ADCmean and ADCmin values acquired using different ROI methods are not predictive of 2 year survival outcomes in HPV OPC.
Collapse
Affiliation(s)
- Steve Connor
- School of Biomedical Engineering and Imaging Sciences, St Thomas' Hospital, King's College, London, SE1 7EH, United Kingdom.,Department of Neuroradiology, King's College Hospital, London, SE5 9RS, United Kingdom.,Department of Radiology, Guy's Hospital, 2nd Floor, Tower Wing, Great Maze Pond, London, SE1 9RT, United Kingdom
| | - Mustafa Anjari
- Department of Radiology, Guy's Hospital, 2nd Floor, Tower Wing, Great Maze Pond, London, SE1 9RT, United Kingdom
| | - Christian Burd
- Department of Radiology, Guy's Hospital, 2nd Floor, Tower Wing, Great Maze Pond, London, SE1 9RT, United Kingdom
| | - Amrita Guha
- Department of Radio-diagnosis, Tata Memorial Hospital, Parel, Homi Bhabha National Institute, Mumbai, India
| | - Mary Lei
- Department of Oncology, Guy's Hospital, 2nd Floor, Tower Wing, Great Maze Pond, London, SE1 9RT UK5, United Kingdom
| | - Teresa Guerrero-Urbano
- Department of Oncology, Guy's Hospital, 2nd Floor, Tower Wing, Great Maze Pond, London, SE1 9RT UK5, United Kingdom
| | - Irumee Pai
- School of Biomedical Engineering and Imaging Sciences, St Thomas' Hospital, King's College, London, SE1 7EH, United Kingdom.,Department of Ear, Nose and Throat Surgery, Guy's and St Thomas' Hospital, London, United Kingdom
| | - Paul Bassett
- Freelance medical statistician, London, United Kingdom
| | - Vicky Goh
- School of Biomedical Engineering and Imaging Sciences, St Thomas' Hospital, King's College, London, SE1 7EH, United Kingdom.,Department of Radiology, Guy's Hospital, 2nd Floor, Tower Wing, Great Maze Pond, London, SE1 9RT, United Kingdom
| |
Collapse
|
25
|
Bogowicz M, Pavic M, Riesterer O, Finazzi T, Garcia Schüler H, Holz-Sapra E, Rudofsky L, Basler L, Spaniol M, Ambrusch A, Hüllner M, Guckenberger M, Tanadini-Lang S. Targeting Treatment Resistance in Head and Neck Squamous Cell Carcinoma - Proof of Concept for CT Radiomics-Based Identification of Resistant Sub-Volumes. Front Oncol 2021; 11:664304. [PMID: 34123824 PMCID: PMC8191457 DOI: 10.3389/fonc.2021.664304] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 04/06/2021] [Indexed: 12/18/2022] Open
Abstract
Purpose Radiomics has already been proposed as a prognostic biomarker in head and neck cancer (HNSCC). However, its predictive power in radiotherapy has not yet been studied. Here, we investigated a local radiomics approach to distinguish between tumor sub-volumes with different levels of radiosensitivity as a possible target for radiation dose intensification. Materials and Methods Of 40 patients (n=28 training and n=12 validation) with biopsy confirmed locally recurrent HNSCC, pretreatment contrast-enhanced CT images were registered with follow-up PET/CT imaging allowing identification of controlled (GTVcontrol) vs non-controlled (GTVrec) tumor sub-volumes on pretreatment imaging. A bi-regional model was built using radiomic features extracted from pretreatment CT in the GTVrec and GTVcontrol to differentiate between those regions. Additionally, concept of local radiomics was implemented to perform detection task. The original tumor volume was divided into sub-volumes with no prior information on the location of recurrence. Radiomic features from those sub-volumes were then used to detect recurrent sub-volumes using multivariable logistic regression. Results Radiomic features extracted from non-controlled regions differed significantly from those in controlled regions (training AUC = 0.79 CI 95% 0.66 - 0.91 and validation AUC = 0.88 CI 95% 0.72 – 1.00). Local radiomics analysis allowed efficient detection of non-controlled sub-volumes both in the training AUC = 0.66 (CI 95% 0.56 – 0.75) and validation cohort 0.70 (CI 95% 0.53 – 0.86), however performance of this model was inferior to bi-regional model. Both models indicated that sub-volumes characterized by higher heterogeneity were linked to tumor recurrence. Conclusion Local radiomics is able to detect sub-volumes with decreased radiosensitivity, associated with location of tumor recurrence in HNSCC in the pre-treatment CT imaging. This proof of concept study, indicates that local CT radiomics can be used as predictive biomarker in radiotherapy and potential target for dose intensification.
Collapse
Affiliation(s)
- Marta Bogowicz
- Department of Radiation Oncology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Matea Pavic
- Department of Radiation Oncology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Oliver Riesterer
- Department of Radiation Oncology, University Hospital Zurich, University of Zurich, Zurich, Switzerland.,Centre for Radiation Oncology KSA-KSB, Cantonal Hospital Aarau, Aarau, Switzerland
| | - Tobias Finazzi
- Department of Radiation Oncology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Helena Garcia Schüler
- Department of Radiation Oncology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Edna Holz-Sapra
- Department of Radiation Oncology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Leonie Rudofsky
- Department of Radiation Oncology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Lucas Basler
- Department of Radiation Oncology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Manon Spaniol
- Department of Radiation Oncology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Andreas Ambrusch
- Department of Radiation Oncology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Martin Hüllner
- Department of Nuclear Medicine, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Matthias Guckenberger
- Department of Radiation Oncology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| | - Stephanie Tanadini-Lang
- Department of Radiation Oncology, University Hospital Zurich, University of Zurich, Zurich, Switzerland
| |
Collapse
|
26
|
Diagnostic Accuracy of Combined PET/CT with MRI, 18F-FDG PET/MRI, and 18F-FDG PET/CT in Patients with Oropharyngeal and Hypopharyngeal Squamous Cell Carcinoma: A Systematic Review and Meta-Analysis. CONTRAST MEDIA & MOLECULAR IMAGING 2021; 2021:6653117. [PMID: 34007251 PMCID: PMC8099512 DOI: 10.1155/2021/6653117] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 04/03/2021] [Accepted: 04/19/2021] [Indexed: 01/06/2023]
Abstract
Introduction The aim of this paper is to compare the diagnostic accuracy of PET/CT, PET/MRI, and the combination of PET/CT and MRI for detecting synchronous cancer and distant metastasis in patients with oropharyngeal and hypopharyngeal squamous cell carcinomas (OHSCC). Method A large and growing body of literature has been conducted using the Preferred Reporting Items for Systematic Reviews (PRISMA). The researchers collected all accessible literature existing through Cochrane Library (John Wiley & Sons) electronic databases, Embase (Elsevier), PubMed (U.S. National Library of Medicine), Scopus, and Google Scholar up to June 2020. Analyses were conducted using Stata version 12.0 (StataCorp LP). Results A total of nine studies consisting of 1166 patients were included. The pooled sensitivity of combined PET/CT with MRI, 18F-FDG PET/MRI, and 18F-FDG PET/CT was 0.92, 0.80, and 0.79, respectively, and the corresponding specificities were 0.93, 0.91, and 0.88. The overall prevalence of distant metastases and synchronous cancer in patients with oropharyngeal and hypopharyngeal squamous cell carcinomas was 9.2% and 11.8%, respectively, with the esophagus (4.6%) being the most common site of synchronous cancer. The most common sites of distant metastases were lung (3%), bone (1.2%), and distant lymph nodes (1.2%), respectively. Conclusion Our study showed an approximately similar diagnostic performance for PET/CT, PET/MRI, and the combination of PET/CT and MRI for metastasis assessment in advanced oropharyngeal and hypopharyngeal squamous cell carcinomas.
Collapse
|
27
|
Bos P, van den Brekel MWM, Gouw ZAR, Al-Mamgani A, Taghavi M, Waktola S, Aerts HJWL, Castelijns JA, Beets-Tan RGH, Jasperse B. Improved outcome prediction of oropharyngeal cancer by combining clinical and MRI features in machine learning models. Eur J Radiol 2021; 139:109701. [PMID: 33865064 DOI: 10.1016/j.ejrad.2021.109701] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 03/14/2021] [Accepted: 04/01/2021] [Indexed: 02/07/2023]
Abstract
OBJECTIVES New markers are required to predict chemoradiation response in oropharyngeal squamous cell carcinoma (OPSCC) patients. This study evaluated the ability of magnetic resonance (MR) radiomics to predict locoregional control (LRC) and overall survival (OS) after chemoradiation and aimed to determine whether this has added value to traditional clinical outcome predictors. METHODS 177 OPSCC patients were eligible for this study. Radiomic features were extracted from the primary tumor region in T1-weighted postcontrast MRI acquired before chemoradiation. Logistic regression models were created using either clinical variables (clinical model), radiomic features (radiomic model) or clinical and radiomic features combined (combined model) to predict LRC and OS 2-years posttreatment. Model performance was evaluated using area under the curve (AUC), 95 % confidence intervals were calculated using 500 iterations of bootstrap. All analyses were performed for the total population and the Human papillomavirus (HPV) negative tumor subgroup. RESULTS A combined model predicted treatment outcome with a higher AUC (LRC: 0.745 [0.734-0.757], OS: 0.744 [0.735-0.753]) than the clinical model (LRC: 0.607 [0.594-0.620], OS: 0.708 [0.697-0.719]). Performance of the radiomic model was comparable to the combined model for LRC (AUC: 0.740 [0.729-0.750]), but not for OS prediction (AUC: 0.654 [0.646-0.662]). In HPV negative patients, the performance of all models was not sufficient with AUCs ranging from 0.587 to 0.660 for LRC and 0.559 to 0.600 for OS prediction. CONCLUSION Predictive models that include clinical variables and radiomic tumor features derived from MR images of OPSCC better predict LRC after chemoradiation than models based on only clinical variables. Predictive models that include clinical variables perform better than models based on only radiomic features for the prediction of OS.
Collapse
Affiliation(s)
- Paula Bos
- Department of Radiology, The Netherlands Cancer Institute, Amsterdam, the Netherlands; Department of Head and Neck Oncology and Surgery, The Netherlands Cancer Institute, Amsterdam, the Netherlands; GROW School for Oncology and Developmental Biology, University of Maastricht, Maastricht, the Netherlands.
| | - Michiel W M van den Brekel
- Department of Head and Neck Oncology and Surgery, The Netherlands Cancer Institute, Amsterdam, the Netherlands; Department of Oral and Maxillofacial Surgery, Amsterdam University Medical Center (AUMC), Amsterdam, the Netherlands
| | - Zeno A R Gouw
- Department of Radiation Oncology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Abrahim Al-Mamgani
- Department of Radiation Oncology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Marjaneh Taghavi
- Department of Radiology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Selam Waktola
- Department of Radiology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Hugo J W L Aerts
- Department of Radiology, The Netherlands Cancer Institute, Amsterdam, the Netherlands; GROW School for Oncology and Developmental Biology, University of Maastricht, Maastricht, the Netherlands; Artificial Intelligence in Medicine (AIM) Program, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, United States
| | - Jonas A Castelijns
- Department of Radiology, The Netherlands Cancer Institute, Amsterdam, the Netherlands
| | - Regina G H Beets-Tan
- Department of Radiology, The Netherlands Cancer Institute, Amsterdam, the Netherlands; GROW School for Oncology and Developmental Biology, University of Maastricht, Maastricht, the Netherlands; Department of Regional Health Research, University of Southern Denmark, Denmark
| | - Bas Jasperse
- Department of Radiology, The Netherlands Cancer Institute, Amsterdam, the Netherlands; Department of Radiology, Amsterdam University Medical Center, Amsterdam, the Netherlands
| |
Collapse
|
28
|
Chan SC, Yeh CH, Chang JTC, Chang KP, Wang JH, Ng SH. Combing MRI Perfusion and 18F-FDG PET/CT Metabolic Biomarkers Helps Predict Survival in Advanced Nasopharyngeal Carcinoma: A Prospective Multimodal Imaging Study. Cancers (Basel) 2021; 13:cancers13071550. [PMID: 33800542 PMCID: PMC8036946 DOI: 10.3390/cancers13071550] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Revised: 03/18/2021] [Accepted: 03/24/2021] [Indexed: 02/06/2023] Open
Abstract
We prospectively investigated the prognostic value of imaging parameters for nasopharyngeal carcinoma (NPC) using dynamic contrast-enhanced MRI (DCE-MRI), diffusion-weighted imaging (DWI), and 2-deoxy-2-[fluorine-18]fluoro-D-glucose positron emission tomography (18F-FDG PET)/computed tomography (CT). Patients with stage III-IVb NPC underwent F-FDG PET/CT, DCE-MRI, and DWI before treatment. Kaplan-Meier and Cox-regression analyses were used to assess associations of PET and MRI imaging biomarkers with overall survival (OS) and recurrence-free survival (RFS). We used independent prognosticators to establish prognostic models; model performance was examined using Harrell's concordance index (c-index). Sixty-one patients were available for analysis, as 13 patients died and 20 experienced recurrence. Total lesion glycolysis (TLG) (p = 0.002) from PET/CT and the initial area under the curve (iAUC) (p = 0.036) from DCE-MRI were identified as independent prognosticators of OS; Epstein-Barr virus (EBV) DNA (p = 0.027), the extracellular volume fraction (Ve) (p = 0.027) from DCE-MRI, and TLG/iAUC (p = 0.025) were significant predictors of RFS. The c-indices of the prognostic models incorporating TLG + iAUC in predicting OS and incorporating EBV DNA + Ve + TLG/iAUC in predicting RFS were 0.79 and 0.76, respectively. These were significantly higher than the corresponding c-indices of the TNM staging system (p = 0.047 and 0.025, respectively); they were also higher than those of models with only MRI or PET biomarkers. In conclusion, the combination of pretreatment DCE-MRI and 18F-FDG PET/CT imaging biomarkers helps survival prediction in advanced NPC. Integrating MRI perfusion with PET metabolism and plasma EBV information may aid clinicians in planning the optimal personalized management strategy.
Collapse
Affiliation(s)
- Sheng-Chieh Chan
- Department of Nuclear Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970473, Taiwan;
- Department of Medicine, School of Medicine, Tzu Chi University, Hualien 97004, Taiwan
| | - Chih-Hua Yeh
- Department of Diagnostic Radiology, Linkou Chang Gung Memorial Hospital and Chang Gung University, Taoyuan 333423, Taiwan;
| | - Joseph Tung-Chieh Chang
- Department of Radiation Oncology, Linkou Chang Gung Memorial Hospital and Chang Gung University, Taoyuan 333423, Taiwan;
| | - Kai-Ping Chang
- Department of Otorhinolaryngology, Linkou Chang Gung Memorial Hospital and Chang Gung University, Taoyuan 333423, Taiwan;
| | - Jen-Hung Wang
- Department of Medical Research, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien 970473, Taiwan;
| | - Shu-Hang Ng
- Department of Diagnostic Radiology, Linkou Chang Gung Memorial Hospital and Chang Gung University, Taoyuan 333423, Taiwan;
- Correspondence: ; Tel.: +886-3-3281200; Fax: +886-3-3281200-2620
| |
Collapse
|
29
|
Pace L, Nicolai E, Cavaliere C, Basso L, Garbino N, Spinato G, Salvatore M. Prognostic value of 18F-FDG PET/MRI in patients with advanced oropharyngeal and hypopharyngeal squamous cell carcinoma. Ann Nucl Med 2021; 35:479-484. [PMID: 33575927 PMCID: PMC7981313 DOI: 10.1007/s12149-021-01590-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 01/12/2021] [Indexed: 12/14/2022]
Abstract
OBJECTIVE The aim of this study was to evaluate the prognostic value of combined positron emission tomography (PET)/magnetic resonance imaging (MRI) parameters provided by simultaneous 18F-fluorodeoxyglucose (FDG) PET/MRI in patients with locally advanced oropharyngeal and hypopharyngeal squamous cell carcinomas (OHSCC). METHODS Forty-five patients with locally advanced OHSCC who underwent simultaneous FDG PET/MRI before (chemo)radiotherapy were retrospectively enrolled. Peak standardized uptake value (SULpeak), metabolic tumor volume (MTV) and total lesion glycolysis (TLG) of the primary lesion were obtained on PET data. On MRI scans, primary tumor size, diffusion and perfusion parameters were assessed using pre-contrast and high-resolution post-contrast images. Ratios between metabolic/metabolo-volumetric parameters and ADC were calculated. Comparisons between groups were performed by Student's t test. Survival analysis was performed by univariate Cox proportional hazard regression analysis. Overall survival curves were obtained by the Kaplan-Meier method and compared with the log-rank test. Survivors were censored at the time of the last clinical control. p < 0.05 was considered statistically significant RESULTS: During follow-up (mean 31.4 ± 21 months), there were 15 deaths. Univariate analysis shows that SULpeak and SULpeak/ADCmean were significant predictors of overall survival (OS). At multivariate analysis, only SULpeak remained a significant predictor of OS. Kaplan-Meier survival analyses showed that patients with higher SULpeak had poorer outcome compared to those with lower values (HR: 3.7, p = 0.007). CONCLUSION Pre-therapy SULpeak of the primary site was predictive of overall survival in patients with oropharyngeal or hypopharyngeal cancer treated with (chemo)radiotherapy.
Collapse
Affiliation(s)
- Leonardo Pace
- Dipartimento di Medicina Chirurgia e Odontoiatria "Scuola Medica Salernitana", Università degli Studi di Salerno, via M. de Vito Piscicelli 44, 80128, Naples, Italy.
| | | | | | | | | | - Giacomo Spinato
- Dipartimento di Neuroscienze Sezione di Otorinolaringoiatria e Centro Regionale Tumori Testa Collo, Università degli Studi di Padova, Treviso, Italy
- Dipartimento di ChirurgiaOncologia e GastroenterologiaSezione di Oncologia ed Immunologia, Università degli Studi di Padova, Padua, Italy
| | | |
Collapse
|
30
|
Zhu Y, Zhou Y, Zhang W, Xue L, Li Y, Jiang J, Zhong Y, Wang S, Jiang L. Value of quantitative dynamic contrast-enhanced and diffusion-weighted magnetic resonance imaging in predicting extramural venous invasion in locally advanced gastric cancer and prognostic significance. Quant Imaging Med Surg 2021; 11:328-340. [PMID: 33392032 DOI: 10.21037/qims-20-246] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Background Extramural venous invasion (EMVI) has been found to be related to poor prognosis in gastric cancer. Preoperative diagnosis of EMVI is challenging, as it can only be detected by surgical pathology. The present study aimed to investigate the value of quantitative dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) and diffusion-weighted imaging (DWI) in predicting EMVI preoperatively, and to determine the relationship between prediction results and prognosis in patients with locally advanced gastric cancer (LAGC). Methods Between January, 2015, and June, 2017, 79 LAGC patients underwent MRI preoperatively were enrolled in this study. Pathological EMVI (pEMVI) was used as the gold standard for diagnosis. The differences in quantitative DCE-MRI and DWI parameters between groups with different pEMVI status were analyzed. Multivariate logistic regression was used to build the combined prediction model for pEMVI with statistically significant quantitative parameters. The performance of the model for predicting pEMVI was evaluated using receiver operating characteristic (ROC) analysis. Patients were grouped based on MRI-predicted EMVI (mrEMVI). Kaplan-Meier analysis was used to investigate the relationship between mrEMVI and 2-year recurrence-free survival (RFS). Results Of the 79 LAGC patients who underwent MRI, 29 were pEMVI positive and 50 were pEMVI negative. Among the patients' clinical and pathological characteristics, only postoperative staging showed a significant difference between the 2 groups (P=0.015). The pEMVI-positive group had higher volume transfer constant (Ktrans) and rate constant (kep), and lower apparent diffusion coefficient (ADC) values than the negative group (0.189 vs. 0.082 min-1, 0.687 vs. 0.475 min-1, and 1.230×10-3 vs. 1.463×10-3 mm2/s, respectively; P<0.05). Quantitative parameters, Ktrans and kep, and ADC values, were independently associated with pEMVI which odds ratio values were 3.66, 2.65, and 0.30 (P<0.05), respectively, using multivariate logistic regression. ROC analysis showed that the area under the curve, sensitivity, specificity, positive predictive value, and negative predictive value in predicting pEMVI using combined Ktrans, kep, and ADC values were 0.879, 72.4%, 96%, 91.3%, and 85.7%, respectively. A total of 23 cases were considered to be mrEMVI positive, and 56 cases were considered to be mrEMVI negative, according to the predictive results. The median RFS of the mrEMVI-positive group was significant lower than the negative group (21.7 vs. 31.2 months), and the 2-year RFS rate in the mrEMVI-positive group was significantly lower than that of the negative group (43.6% vs. 72.5%, P=0.010). Conclusions The quantitative DCE-MRI parameters, Ktrans and kep, and DWI parameter, ADC, are independent predictors of pEMVI in LAGC; mrEMVI was confirmed to be a poor prognostic predictor for RFS.
Collapse
Affiliation(s)
- Yongjian Zhu
- Department of Imaging Diagnosis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yutao Zhou
- Department of Imaging Diagnosis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wen Zhang
- Department of Medical Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Liyan Xue
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ying Li
- Department of Imaging Diagnosis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jun Jiang
- Department of Imaging Diagnosis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuxin Zhong
- Department of Pancreatic and Gastric Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Sicong Wang
- GE Healthcare, Life Sciences, Beijing, China
| | - Liming Jiang
- Department of Imaging Diagnosis, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
31
|
Multiple Testing, Cut-Point Optimization, and Signs of Publication Bias in Prognostic FDG-PET Imaging Studies of Head and Neck and Lung Cancer: A Review and Meta-Analysis. Diagnostics (Basel) 2020; 10:diagnostics10121030. [PMID: 33271785 PMCID: PMC7761090 DOI: 10.3390/diagnostics10121030] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Revised: 11/25/2020] [Accepted: 11/29/2020] [Indexed: 12/23/2022] Open
Abstract
Positron emission tomography (PET) imaging with 2-deoxy-2-[18F]-fluorodeoxyglucose (FDG) was proposed as prognostic marker in radiotherapy. Various uptake metrics and cut points were used, potentially leading to inflated effect estimates. Here, we performed a meta-analysis and systematic review of the prognostic value of pretreatment FDG–PET in head and neck squamous cell carcinoma (HNSCC) and non-small cell lung cancer (NSCLC), with tests for publication bias. Hazard ratio (HR) for overall survival (OS), disease free survival (DFS), and local control was extracted or derived from the 57 studies included. Test for publication bias was performed, and the number of statistical tests and cut-point optimizations were registered. Eggers regression related to correlation of SUVmax with OS/DFS yielded p = 0.08/p = 0.02 for HNSCC and p < 0.001/p = 0.014 for NSCLC. No outcomes showed significant correlation with SUVmax, when adjusting for publication bias effect, whereas all four showed a correlation in the conventional meta-analysis. The number of statistical tests and cut points were high with no indication of improvement over time. Our analysis showed significant evidence of publication bias leading to inflated estimates of the prognostic value of SUVmax. We suggest that improved management of these complexities, including predefined statistical analysis plans, are critical for a reliable assessment of FDG–PET.
Collapse
|
32
|
Guo W, Zhang Y, Luo D, Yuan H. Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) for pretreatment prediction of neoadjuvant chemotherapy response in locally advanced hypopharyngeal cancer. Br J Radiol 2020; 93:20200751. [PMID: 32915647 DOI: 10.1259/bjr.20200751] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Objective:The aim of this study was to predict response to neoadjuvant chemotherapy (NAC) in patients with locally advanced hypopharyngeal cancer by dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI).Methods:A retrospective study enrolled 46 diagnosed locally advanced hypopharyngeal cancer. DCE-MRI were performed prior to and after two cycles of NAC. The volume transfer constant (Ktrans), extracellular extravascular volume fraction (Ve), and plasma volume fraction (Kep) were computed from primary tumors. DCE-MRI parameters were used to measure tumor response according to the Response Evaluation Criteria in Solid Tumors criteria (RECIST).Results:After 2 NAC cycles, 30 out of 46 patients were categorized into the responder group, whereas the other 16 were categorized into non-responder group. Compared with the pretreatment value, the post-treatment Ktrans and Kep was significantly lower (P < 0.05), but no significant change in Ve (P > 0.05). Compared with non-responders, a notably higher pretreatment Ktrans, Kep, lower post-treatment Ktrans, higher ΔKtrans and ΔKep were observed in responders (all P < 0.05). While the pretreatment Ve, post-treatment Ve, and ΔVe did not differ significantly (P>0.05) between the two groups. The receiver operating characteristic curve analysis revealed that pretreatment Ktrans of 0.202/min is the most optimal cut-off in predicting response to chemotherapy, resulting in an AUC of 0.837 and corresponding sensitivity and specificity of 76.7%, and 81.1%, respectively.Conclusion:DCE-MRI especially pretreatment Ktrans can potentially predict the treatment response to neoadjuvant chemotherapy for hypopharyngeal cancer.Advances in knowledge:Few studies of DCE-MRI on hypopharyngeal cancer treated with chemoradiation reported. The results demonstrate that DCE-MRI especially pretreatment Ktrans may be more potential value in predicting the treatment response to neoadjuvant chemotherapy for hypopharyngeal cancer.
Collapse
Affiliation(s)
- Wei Guo
- Department of Radiology, Peking University Third Hospital, Beijing, 100191, China
| | - Ya Zhang
- Department of Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Dehong Luo
- Department of Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, 100021, China
| | - Huishu Yuan
- Department of Radiology, Peking University Third Hospital, Beijing, 100191, China
| |
Collapse
|
33
|
Guo N, Zeng W, Deng H, Hu H, Cheng Z, Yang Z, Jiang S, Duan X, Shen J. Quantitative dynamic contrast-enhanced MR imaging can be used to predict the pathologic stages of oral tongue squamous cell carcinoma. BMC Med Imaging 2020; 20:117. [PMID: 33066760 PMCID: PMC7566024 DOI: 10.1186/s12880-020-00516-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 10/05/2020] [Indexed: 02/06/2023] Open
Abstract
Background To investigate whether quantitative dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) pharmacokinetic parameters can be used to predict the pathologic stages of oral tongue squamous cell carcinoma (OTSCC). Methods For this prospective study, DCE-MRI was performed in participants with OTSCC from May 2016 to June 2017. The pharmacokinetic parameters, including Ktrans, Kep, Ve, and Vp, were derived from DCE-MRI by utilizing a two-compartment extended Tofts model and a three-dimensional volume of interest. The postoperative pathologic stage was determined in each patient based on the 8th AJCC cancer staging manual. The quantitative DCE-MRI parameters were compared between stage I–II and stage III–IV lesions. Logistic regression analysis was used to determine independent predictors of tumor stages, followed by receiver operating characteristic (ROC) analysis to evaluate the predictive performance. Results The mean Ktrans, Kep and Vp values were significantly lower in stage III–IV lesions compared with stage I–II lesions (p = 0.013, 0.005 and 0.011, respectively). Kep was an independent predictor for the advanced stages as determined by univariate and multivariate logistic analysis. ROC analysis showed that Kep had the highest predictive capability, with a sensitivity of 64.3%, a specificity of 82.6%, a positive predictive value of 81.8%, a negative predictive value of 65.5%, and an accuracy of 72.5%. Conclusion The quantitative DCE-MRI parameter Kep can be used as a biomarker for predicting pathologic stages of OTSCC.
Collapse
Affiliation(s)
- Na Guo
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No. 107 Yanjiang Road West, Guangzhou, 510120, Guangdong, China.,Department of Nuclear Medicine, Peking University Third Hospital, No. 49 Huayuan Road North, Beijing, 100191, China
| | - Weike Zeng
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No. 107 Yanjiang Road West, Guangzhou, 510120, Guangdong, China
| | - Hong Deng
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No. 107 Yanjiang Road West, Guangzhou, 510120, Guangdong, China
| | - Huijun Hu
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No. 107 Yanjiang Road West, Guangzhou, 510120, Guangdong, China
| | - Ziliang Cheng
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No. 107 Yanjiang Road West, Guangzhou, 510120, Guangdong, China.,Guangdong Provincial Key Laboratory of Malignant Tumour Epigenetics and Gene Regulation, Medical Research Centre, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Zehong Yang
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No. 107 Yanjiang Road West, Guangzhou, 510120, Guangdong, China.,Guangdong Provincial Key Laboratory of Malignant Tumour Epigenetics and Gene Regulation, Medical Research Centre, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Shuqi Jiang
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No. 107 Yanjiang Road West, Guangzhou, 510120, Guangdong, China
| | - Xiaohui Duan
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No. 107 Yanjiang Road West, Guangzhou, 510120, Guangdong, China. .,Guangdong Provincial Key Laboratory of Malignant Tumour Epigenetics and Gene Regulation, Medical Research Centre, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
| | - Jun Shen
- Department of Radiology, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, No. 107 Yanjiang Road West, Guangzhou, 510120, Guangdong, China. .,Guangdong Provincial Key Laboratory of Malignant Tumour Epigenetics and Gene Regulation, Medical Research Centre, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.
| |
Collapse
|
34
|
Multiparametric functional MRI and 18F-FDG-PET for survival prediction in patients with head and neck squamous cell carcinoma treated with (chemo)radiation. Eur Radiol 2020; 31:616-628. [PMID: 32851444 PMCID: PMC7813703 DOI: 10.1007/s00330-020-07163-3] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 06/17/2020] [Accepted: 08/06/2020] [Indexed: 12/02/2022]
Abstract
Objectives To assess (I) correlations between diffusion-weighted (DWI), intravoxel incoherent motion (IVIM), dynamic contrast-enhanced (DCE) MRI, and 18F-FDG-PET/CT imaging parameters capturing tumor characteristics and (II) their predictive value of locoregional recurrence-free survival (LRFS) and overall survival (OS) in patients with head and neck squamous cell carcinoma (HNSCC) treated with (chemo)radiotherapy. Methods Between 2014 and 2018, patients with histopathologically proven HNSCC, planned for curative (chemo) radiotherapy, were prospectively included. Pretreatment clinical, anatomical, and functional imaging parameters (obtained by DWI/IVIM, DCE-MRI, and 18F-FDG-PET/CT) were extracted for primary tumors (PT) and lymph node metastases. Correlations and differences between parameters were assessed. The predictive value of LRFS and OS was assessed, performing univariable, multivariable Cox and CoxBoost regression analyses. Results In total, 70 patients were included. Significant correlations between 18F-FDG-PET parameters and DWI-/DCE volume parameters were found (r > 0.442, p < 0.002). The combination of HPV (HR = 0.903), intoxications (HR = 1.065), PT ADCGTV (HR = 1.252), Ktrans (HR = 1.223), and Ve (HR = 1.215) was predictive for LRFS (C-index = 0.546; p = 0.023). N-stage (HR = 1.058), HPV positivity (HR = 0.886), hypopharyngeal tumor location (HR = 1.111), ADCGTV (HR = 1.102), ADCmean (HR = 1.137), D* (HR = 0.862), Ktrans (HR = 1.106), Ve (HR = 1.195), SUVmax (HR = 1.094), and TLG (HR = 1.433) were predictive for OS (C-index = 0.664; p = 0.046). Conclusions Functional imaging parameters, performing DWI/IVIM, DCE-MRI, and 18F-FDG-PET/CT, yielded complementary value in capturing tumor characteristics. More specific, intoxications, HPV-negative status, large tumor volume-related parameters, high permeability (Ktrans), and high extravascular extracellular space (Ve) parameters were predictive for adverse locoregional recurrence-free survival and adverse overall survival. Low cellularity (high ADC) and high metabolism (high SUV) were additionally predictive for decreased overall survival. These different predictive factors added to estimated locoregional and overall survival. Key Points • Parameters of DWI/IVIM, DCE-MRI, and 18F-FDG-PET/CT were able to capture complementary tumor characteristics. • Multivariable analysis revealed that intoxications, HPV negativity, large tumor volume and high vascular permeability (Ktrans), and extravascular extracellular space (Ve) were complementary predictive for locoregional recurrence. • In addition to predictive parameters for locoregional recurrence, also high cellularity (low ADC) and high metabolism (high SUV) were complementary predictive for overall survival. Electronic supplementary material The online version of this article (10.1007/s00330-020-07163-3) contains supplementary material, which is available to authorized users.
Collapse
|
35
|
Ravanelli M, Grammatica A, Maddalo M, Ramanzin M, Agazzi GM, Tononcelli E, Battocchio S, Bossi P, Vezzoli M, Maroldi R, Farina D. Pretreatment DWI with Histogram Analysis of the ADC in Predicting the Outcome of Advanced Oropharyngeal Cancer with Known Human Papillomavirus Status Treated with Chemoradiation. AJNR Am J Neuroradiol 2020; 41:1473-1479. [PMID: 32732272 DOI: 10.3174/ajnr.a6695] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2020] [Accepted: 05/23/2020] [Indexed: 12/16/2022]
Abstract
BACKGROUND AND PURPOSE The incidence of oropharyngeal squamous cell carcinoma (OPSCC) has increased in the period from the 1970s to 2004, due to increase of infection with human papilloma virus (HPV). This study aimed to examine the role of histogram analysis of the ADC in treatment response and survival prediction of patients with oropharyngeal squamous cell carcinoma and known human papillomavirus status. MATERIALS AND METHODS This was a retrospective single-center study. Following inclusion and exclusion criteria, data for 59 patients affected by T2-T4 (according to the 8th edition of the AJCC Cancer Staging Manual) oropharyngeal squamous cell carcinoma were retrieved. Twenty-eight had human papillomavirus-positive oropharyngeal squamous cell carcinoma, while 31 had human papillomavirus-negative oropharyngeal squamous cell carcinoma. All patients underwent a pretreatment MR imaging. Histogram analysis of ADC maps obtained by DWI (b = 0-1000 mm/s2) was performed on the central section of all of tumors. The minimum follow-up period was 2 years. Histogram ADC parameters were associated with progression-free survival and overall survival. Univariable and multivariable Cox models were applied to the data; P values were corrected using the Benjamini-Hochberg method. RESULTS At univariable analysis, both human papillomavirus status and mean ADC were associated with progression-free survival (hazard ratio = 0.267, P < .05, and hazard ratio = 1.0028, P ≤ .05, respectively), while only human papillomavirus status was associated with overall survival (hazard ratio = 0.213, P ≤ .05) before correction. At multivariable analysis, no parameter was included (in fact, human papillomavirus status lost significance after correction). If we separated the patients into 2 subgroups according to human papillomavirus status, ADC entropy was associated with overall survival in the human papillomavirus-negative group (hazard ratio = 4.846, P = .01). CONCLUSIONS ADC and human papillomavirus status are related to progression-free survival in patients treated with chemoradiation for advanced oropharyngeal squamous cell carcinoma; however, this association seems to result from the strong association between ADC and human papillomavirus status.
Collapse
Affiliation(s)
- M Ravanelli
- From the Departments of Radiology (M. Ravanelli, M. Ramanzin, G.M.A., E.T., R.M., D.F.)
| | | | | | - M Ramanzin
- From the Departments of Radiology (M. Ravanelli, M. Ramanzin, G.M.A., E.T., R.M., D.F.)
| | - G M Agazzi
- From the Departments of Radiology (M. Ravanelli, M. Ramanzin, G.M.A., E.T., R.M., D.F.)
| | - E Tononcelli
- From the Departments of Radiology (M. Ravanelli, M. Ramanzin, G.M.A., E.T., R.M., D.F.)
| | | | | | - M Vezzoli
- Molecular and Translational Medicine (M.V.), University of Brescia, Brescia, Italy
| | - R Maroldi
- From the Departments of Radiology (M. Ravanelli, M. Ramanzin, G.M.A., E.T., R.M., D.F.)
| | - D Farina
- From the Departments of Radiology (M. Ravanelli, M. Ramanzin, G.M.A., E.T., R.M., D.F.)
| |
Collapse
|
36
|
Chan SC, Ng SH, Yeh CH, Chang KP. Multiparametric positron emission tomography/magnetic resonance imaging in nasopharyngeal carcinoma: Correlations between magnetic resonance imaging functional parameters and 18F-fluorodeoxyglucose positron emission tomography imaging biomarkers and their predictive value for treatment failure. Tzu Chi Med J 2020; 33:61-69. [PMID: 33505880 PMCID: PMC7821831 DOI: 10.4103/tcmj.tcmj_4_20] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 02/10/2020] [Accepted: 02/27/2020] [Indexed: 12/20/2022] Open
Abstract
Objectives: The clinical significance of positron emission tomography/magnetic resonance imaging (PET/MRI) functional parameters in nasopharyngealcarcinoma (NPC) remains unclear. The purpose of this prospective study was two-fold: (1) to investigate the associations between simultaneously acquired PET/MRI perfusion, diffusion, and glucose metabolism parameters in patients with NPC and (2) to analyze their predictive value with respect to treatment failure. Materials and Methods: We enrolled 85 patients with primary NPC who simultaneously underwent18F-fluorodeoxyglucose PET/CT and PET/MRI before definitive treatment. The following variables were determined: (1) functional parameters from the MRI component, including perfusion values (Ktrans,kep,ve, and initial area under the enhancement curve) and apparent diffusion coefficient (ADC) values, and (2) PET parameters, including metabolic tumor volume (MTV). The reciprocal interrelationships between these parameters and their correlations with treatment failure were examined. Results: We observed significant negative associations between Ktrans and ADC (r = −0.215, P = 0.049) as well as between ve and ADC (r = −0.22, P = 0.04). Correlations between PET and MRI functional parameters were not statistically significant. Treatment failures were observed in 21.2% of patients without distant metastases. Multivariate analysis identified ve as a significant independent predictor for treatment failure (P = 0.022), whereas MTV showed a borderline significance (P = 0.095). Patients in whom both ve and MTV values were increased had a significantly higher rate of treatment failure (62.5%) than those with either one (21.9%) or no (7.7%) increased parameter (P = 0.004). Conclusion: Correlation analyses revealed complex interrelationships among PET and MRI indices measured in patients with NPC. These parameters may have a complementary role in predicting treatment failure in this clinical setting.
Collapse
Affiliation(s)
- Sheng-Chieh Chan
- Department of Nuclear Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, Taiwan
| | - Shu-Hang Ng
- Department of Diagnostic Radiology, Linkou Chang Gung Memorial Hospital and Chang Gung University, Taoyuan, Taiwan
| | - Chih-Hua Yeh
- Department of Diagnostic Radiology, Linkou Chang Gung Memorial Hospital and Chang Gung University, Taoyuan, Taiwan
| | - Kai-Ping Chang
- Department of Otorhinolaryngology, Linkou Chang Gung Memorial Hospital and Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
37
|
Mo X, Wu X, Dong D, Guo B, Liang C, Luo X, Zhang B, Zhang L, Dong Y, Lian Z, Liu J, Pei S, Huang W, Ouyang F, Tian J, Zhang S. Prognostic value of the radiomics-based model in progression-free survival of hypopharyngeal cancer treated with chemoradiation. Eur Radiol 2020; 30:833-843. [PMID: 31673835 DOI: 10.1007/s00330-019-06452-w] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2019] [Revised: 07/27/2019] [Accepted: 09/12/2019] [Indexed: 02/05/2023]
Abstract
PURPOSE To develop a radiomics-based model to stratify the risk of early progression (local/regional recurrence or metastasis) among patients with hypopharyngeal cancer undergoing chemoradiotherapy and modify their pretreatment plans. MATERIALS AND METHODS We randomly assigned 113 patients into two cohorts: training (n = 80) and validation (n = 33). The radiomic significant features were selected in the training cohort using least absolute shrinkage and selection operator and Akaike information criterion methods, and they were used to build the radiomic model. The concordance index (C-index) was applied to evaluate the model's prognostic performance. A Kaplan-Meier analysis and the log-rank test were used to assess risk stratification ability of models in predicting progression. A nomogram was plotted to predict individual risk of progression. RESULTS Composed of four significant features, the radiomic model showed good performance in stratifying patients into high- and low-risk groups of progression in both the training and validation cohorts (log-rank test, p = 0.00016, p = 0.0063, respectively). Peripheral invasion and metastasis were selected as significant clinical variables. The combined radiomic-clinical model showed good discriminative performance, with C-indices 0.804 (95% confidence interval (CI), 0.688-0.920) and 0.756 (95% CI, 0.605-0.907) in the training and validation cohorts, respectively. The median progression-free survival (PFS) in the high-risk group was significantly shorter than that in the low-risk group in the training (median PFS, 9.5 m and 19.0 m, respectively; p [log-rank] < 0.0001) and validation (median PFS, 11.3 m and 22.5 m, respectively; p [log-rank] = 0.0063) cohorts. CONCLUSIONS A radiomics-based model was established to predict the risk of progression in hypopharyngeal cancer with chemoradiotherapy. KEY POINTS • Clinical information showed limited performance in stratifying the risk of progression among patients with hypopharyngeal cancer. • Imaging features extracted from CECT and NCCT images were independent predictors of PFS. • We combined significant features and valuable clinical variables to establish a nomogram to predict individual risk of progression.
Collapse
Affiliation(s)
- Xiaokai Mo
- Department of Radiology, Guangdong Provincial People's Hospital/Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, People's Republic of China
- Shantou University Medical College, Shantou, Guangdong, People's Republic of China
| | - Xiangjun Wu
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, No. 95 Zhongguancun East Road, Hai Dian District, Beijing, 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100190, People's Republic of China
| | - Di Dong
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, No. 95 Zhongguancun East Road, Hai Dian District, Beijing, 100190, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100190, People's Republic of China
| | - Baoliang Guo
- Department of Radiology, Guangdong Provincial People's Hospital/Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, People's Republic of China
| | - Changhong Liang
- Department of Radiology, Guangdong Provincial People's Hospital/Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, People's Republic of China
| | - Xiaoning Luo
- Department of Radiology, Guangdong Provincial People's Hospital/Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, People's Republic of China
- Department of Otolaryngology-Head and Neck Surgery, Guangdong Provincial People's Hospital/Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, People's Republic of China
| | - Bin Zhang
- Department of Radiology, The First Affiliated Hospital, Jinan University, No. 613, Huangpu West Road, Tianhe District, Guangzhou, Guangdong, 510627, People's Republic of China
| | - Lu Zhang
- Department of Radiology, Guangdong Provincial People's Hospital/Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, People's Republic of China
| | - Yuhao Dong
- Department of Radiology, Guangdong Provincial People's Hospital/Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, People's Republic of China
- Shantou University Medical College, Shantou, Guangdong, People's Republic of China
| | - Zhouyang Lian
- Department of Radiology, Guangdong Provincial People's Hospital/Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, People's Republic of China
| | - Jing Liu
- Department of Radiology, Guangdong Provincial People's Hospital/Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, People's Republic of China
| | - Shufang Pei
- Department of Radiology, Guangdong Provincial People's Hospital/Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, People's Republic of China
| | - Wenhui Huang
- Department of Radiology, Guangdong Provincial People's Hospital/Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, People's Republic of China
| | - Fusheng Ouyang
- Department of Radiology, Guangdong Provincial People's Hospital/Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, People's Republic of China
| | - Jie Tian
- CAS Key Laboratory of Molecular Imaging, Institute of Automation, Chinese Academy of Sciences, No. 95 Zhongguancun East Road, Hai Dian District, Beijing, 100190, People's Republic of China.
- University of Chinese Academy of Sciences, Beijing, 100190, People's Republic of China.
- Beijing Advanced Innovation Center for Big Data-Based Precision Medicine, School of Medicine, Beihang University, Beijing, 100191, People's Republic of China.
| | - Shuixing Zhang
- Department of Radiology, The First Affiliated Hospital, Jinan University, No. 613, Huangpu West Road, Tianhe District, Guangzhou, Guangdong, 510627, People's Republic of China.
| |
Collapse
|
38
|
Diagnosis of spinal lesions using perfusion parameters measured by DCE-MRI and metabolism parameters measured by PET/CT. EUROPEAN SPINE JOURNAL : OFFICIAL PUBLICATION OF THE EUROPEAN SPINE SOCIETY, THE EUROPEAN SPINAL DEFORMITY SOCIETY, AND THE EUROPEAN SECTION OF THE CERVICAL SPINE RESEARCH SOCIETY 2019; 29:1061-1070. [PMID: 31754820 DOI: 10.1007/s00586-019-06213-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 05/08/2019] [Accepted: 11/07/2019] [Indexed: 12/13/2022]
Abstract
PURPOSE To investigate the correlation of parameters measured by dynamic-contrast-enhanced MRI (DCE-MRI) and 18F-FDG PET/CT in spinal tumors, and their role in differential diagnosis. METHODS A total of 49 patients with pathologically confirmed spinal tumors, including 38 malignant, six benign and five borderline tumors, were analyzed. The MRI and PET/CT were done within 3 days, before biopsy. On MRI, the ROI was manually placed on area showing the strongest enhancement to measure pharmacokinetic parameters Ktrans and kep. On PET, the maximum standardized uptake value SUVmax was measured. The parameters in different histological groups were compared. ROC was performed to differentiate between the two largest subtypes, metastases and plasmacytomas. Spearman rank correlation was performed to compare DCE-MRI and PET/CT parameters. RESULTS The Ktrans, kep and SUVmax were not statistically different among malignant, benign and borderline groups (P = 0.95, 0.50, 0.11). There was no significant correlation between Ktrans and SUVmax (r = - 0.20, P = 0.18), or between kep and SUVmax (r = - 0.16, P = 0.28). The kep was significantly higher in plasmacytoma than in metastasis (0.78 ± 0.17 vs. 0.61 ± 0.18, P = 0.02); in contrast, the SUVmax was significantly lower in plasmacytoma than in metastasis (5.58 ± 2.16 vs. 9.37 ± 4.26, P = 0.03). In differential diagnosis, the AUC of kep and SUVmax was 0.79 and 0.78, respectively. CONCLUSIONS The vascular parameters measured by DCE-MRI and glucose metabolism measured by PET/CT from the most aggressive tumor area did not show a significant correlation. The results suggest they provide complementary information reflecting different aspects of the tumor, which may aid in diagnosis of spinal lesions. These slides can be retrieved under Electronic Supplementary Material.
Collapse
|
39
|
Meyer HJ, Hamerla G, Leifels L, Höhn AK, Surov A. Histogram analysis parameters derived from DCE-MRI in head and neck squamous cell cancer – Associations with microvessel density. Eur J Radiol 2019; 120:108669. [DOI: 10.1016/j.ejrad.2019.108669] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 09/04/2019] [Accepted: 09/10/2019] [Indexed: 01/21/2023]
|
40
|
Wong CK, Chan SC, Ng SH, Hsieh CH, Cheng NM, Yen TC, Liao CT. Textural features on 18F-FDG PET/CT and dynamic contrast-enhanced MR imaging for predicting treatment response and survival of patients with hypopharyngeal carcinoma. Medicine (Baltimore) 2019; 98:e16608. [PMID: 31415354 PMCID: PMC6831375 DOI: 10.1097/md.0000000000016608] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
The utility of multimodality molecular imaging for predicting treatment response and survival of patients with hypopharyngeal carcinoma remains unclear. Here, we sought to investigate whether the combination of different molecular imaging parameters may improve outcome prediction in this patient group.Patients with pathologically proven hypopharyngeal carcinoma scheduled to undergo chemoradiotherapy (CRT) were deemed eligible. Besides clinical data, parameters obtained from pretreatment 2-deoxy-2-[fluorine-18]fluoro-D-glucose positron emission tomography/computed tomography (F-FDG PET/CT), dynamic contrast-enhanced (DCE) magnetic resonance imaging (MRI), and diffusion-weighted MRI were analyzed in relation to treatment response, recurrence-free survival (RFS), and overall survival (OS).A total of 61 patients with advanced-stage disease were examined. After CRT, 36% of the patients did not achieve a complete response. Total lesion glycolysis (TLG) and texture feature entropy were found to predict treatment response. The transfer constant (K), TLG, and entropy were associated with RFS, whereas K, blood plasma volume (Vp), standardized uptake value (SUV), and entropy were predictors of OS. Different scoring systems based on the sum of PET- or MRI-derived prognosticators enabled patient stratification into distinct prognostic groups (P <.0001). The complete response rate of patients with a score of 2 was significantly lower than those of patients with a score 1 or 0 (14.7% vs 58.9% vs 75.7%, respectively, P = .007, respectively). The combination of PET- and DCE-MRI-derived independent risk factors allowed a better survival stratification than the TNM staging system (P <.0001 vs .691, respectively).Texture features on F-FDG PET/CT and DCE-MRI are clinically useful to predict treatment response and survival in patients with hypopharyngeal carcinoma. Their combined use in prognostic scoring systems may help these patients benefit from tailored treatment and obtain better oncological results.
Collapse
Affiliation(s)
| | - Sheng-Chieh Chan
- Department of Nuclear Medicine, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien
| | | | - Chia-Hsun Hsieh
- Division of Medical Oncology, Department of Internal Medicine, Linkou Chang Gung Memorial Hospital and Chang Gung University, Taoyuan
| | - Nai-Ming Cheng
- Department of Nuclear Medicine, Keelung Chang Gung Memorial Hospital, Keelung
| | | | - Chun-Ta Liao
- Department of Otorhinolaryngology, Linkou Chang Gung Memorial Hospital and Chang Gung University, Taoyuan, Taiwan
| |
Collapse
|
41
|
Garbajs M, Strojan P, Surlan-Popovic K. Prognostic role of diffusion weighted and dynamic contrast-enhanced MRI in loco-regionally advanced head and neck cancer treated with concomitant chemoradiotherapy. Radiol Oncol 2019; 53:39-48. [PMID: 30840595 PMCID: PMC6411028 DOI: 10.2478/raon-2019-0010] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2019] [Accepted: 02/04/2019] [Indexed: 02/08/2023] Open
Abstract
Background In the study, the value of pre-treatment dynamic contrast-enhanced (DCE) and diffusion weighted (DW) MRI-derived parameters as well as their changes early during treatment was evaluated for predicting disease-free survival (DFS) and overall survival (OS) in patients with locoregionally advanced head and neck squamous carcinoma (HNSCC) treated with concomitant chemoradiotherapy (cCRT) with cisplatin. Patients and methods MRI scans were performed in 20 patients with locoregionally advanced HNSCC at baseline and after 10 Grays (Gy) of cCRT. Tumour apparent diffusion coefficient (ADC) and DCE parameters (volume transfer constant [Ktrans], extracellular extravascular volume fraction [ve], and plasma volume fraction [Vp]) were measured. Relative changes in parameters from baseline to 10 Gy were calculated. Univariate and multivariate Cox regression analysis were conducted. Receiver operating characteristic (ROC) curve analysis was employed to identify parameters with the best diagnostic performance. Results None of the parameters was identified to predict for DFS. On univariate analysis of OS, lower pre-treatment ADC (p = 0.012), higher pre-treatment Ktrans (p = 0.026), and higher reduction in Ktrans (p = 0.014) from baseline to 10 Gy were identified as significant predictors. Multivariate analysis identified only higher pre-treatment Ktrans (p = 0.026; 95% CI: 0.000-0.132) as an independent predictor of OS. At ROC curve analysis, pre-treatment Ktrans yielded an excellent diagnostic accuracy (area under curve [AUC] = 0.95, sensitivity 93.3%; specificity 80 %). Conclusions In our group of HNSCC patients treated with cisplatin-based cCRT, pre-treatment Ktrans was found to be a good predictor of OS.
Collapse
Affiliation(s)
- Manca Garbajs
- Institute of Clinical Radiology, University Medical CentreLjubljana, Slovenia
- Manca Garbajs, M.D., Institute of Clinical Radiology, University Medical Centre, Zaloška c. 7, SI-1000 Ljubljana, Slovenia.
Phone: + 386 40 212 226
| | - Primoz Strojan
- Division of Radiation Oncology, Institute of Oncology, Ljubljana, Slovenia
| | | |
Collapse
|
42
|
Yuan Y, Jiang M, Wu L, Tao X. Differential diagnostic value of diffusion-weighted and dynamic contrast-enhanced MR imaging in non-cystic lesions in floor of the mouth. Dentomaxillofac Radiol 2019; 48:20180240. [PMID: 30426765 DOI: 10.1259/dmfr.20180240] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
METHODS: A total of 82 patients were included in this study. The apparent diffusion coefficient (ADC) values and time-signal intensity curves (TICs) were measured. Clinical characteristics, ADC value, and TIC pattern were compared between benign and malignant FOM lesions. Receiver operating characteristic curve and logistic regression analyses were performed to evaluate respective and combined value of ADC value and TIC pattern for differential diagnosis. The retrospective study was approved by our institutional review board, and the need for informed consent was waived. RESULTS: The area under the curve ADC value and TIC pattern were 0.71 and 0.73, respectively. The combined use of ADC value and TIC pattern increased the area under the curve value to 0.81 [95% confidence interval (CI), (0.66-0.97)]. ADC < 1.23 × 10-3 mm2 s-1 (odds ratio, 45.8; 95% CI, 2.8-737.9) and both the plateau and washout TIC patterns (OR, 6.8; 95% CI, 1.8-24.8) were significantly associated with malignancy of FOM lesions. CONCLUSIONS: Our results suggest that both diffusion-weighted imaging and DCE-MRI could contribute to the differential diagnosis of non-cystic FOM lesions, especially when used in combination.
Collapse
Affiliation(s)
- Ying Yuan
- 1 Department of Radiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai , China
| | - Mengda Jiang
- 1 Department of Radiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai , China
| | - Lizhong Wu
- 1 Department of Radiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai , China
| | - Xiaofeng Tao
- 1 Department of Radiology, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine , Shanghai , China
| |
Collapse
|
43
|
Associations between Histogram Analysis Parameters Derived from DCE-MRI and Histopathological Features including Expression of EGFR, p16, VEGF, Hif1-alpha, and p53 in HNSCC. CONTRAST MEDIA & MOLECULAR IMAGING 2019; 2019:5081909. [PMID: 30718984 PMCID: PMC6334376 DOI: 10.1155/2019/5081909] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Accepted: 12/05/2018] [Indexed: 12/14/2022]
Abstract
Background Our purpose was to elucidate possible correlations between histogram parameters derived from dynamic contrast-enhanced MRI (DCE-MRI) with several histopathological features in head and neck squamous cell carcinomas (HNSCC). Methods Thirty patients with primary HNSCC were prospectively acquired. Histogram analysis was derived from the DCE-MRI parameters: Ktrans, Kep, and Ve. Additionally, in all cases, expression of human papilloma virus (p16) hypoxia-inducible factor-1-alpha (Hif1-alpha), vascular endothelial growth factor (VEGF), epidermal growth factor receptor (EGFR), and tumor suppressor protein p53 were estimated. Results Kep kurtosis was significantly higher in p16 tumors, and Ve min was significantly lower in p16 tumors compared to the p16 negative tumors. In the overall sample, Kep entropy correlated well with EGFR expression (p=0.38, P=0.04). In p16 positive carcinomas, Ktrans max correlated with VEGF expression (p=0.46, P=0.04), Ktrans kurtosis correlated with Hif1-alpha expression (p=0.46, P=0.04), and Ktrans entropy correlated with EGFR expression (p=0.50, P=0.03). Regarding Kep parameters, mode correlated with VEGF expression (p=0.51, P=0.02), and entropy correlated with Hif1-alpha expression (p=0.47, P=0.04). In p16 negative carcinomas, Kep mode correlated with Her2 expression (p=−0.72, P=0.03), Ve max correlated with p53 expression (p=−0.80, P=0.009), and Ve p10 correlated with EGFR expression (p=0.68, P=0.04). Conclusion DCE-MRI can reflect several histopathological features in HNSCC. Associations between DCE-MRI and histopathology in HNSCC depend on p16 status. Kep kurtosis and Ve min can differentiate p16 positive and p16 negative carcinomas.
Collapse
|
44
|
Bonomo P, Merlotti A, Olmetto E, Bianchi A, Desideri I, Bacigalupo A, Franco P, Franzese C, Orlandi E, Livi L, Caini S. What is the prognostic impact of FDG PET in locally advanced head and neck squamous cell carcinoma treated with concomitant chemo-radiotherapy? A systematic review and meta-analysis. Eur J Nucl Med Mol Imaging 2018; 45:2122-2138. [PMID: 29948105 PMCID: PMC6182396 DOI: 10.1007/s00259-018-4065-5] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2018] [Accepted: 05/10/2018] [Indexed: 01/22/2023]
Abstract
PURPOSE Evidence is conflicting on the prognostic value of 18F-fluorodeoxyglucose (FDG) positron emission tomography (PET) in head and neck squamous cell carcinoma. The aim of our study was to determine the impact of semiquantitative and qualitative metabolic parameters on the outcome in patients managed with standard treatment for locally advanced disease. METHODS A systematic review of the literature was conducted. A meta-analysis was performed of studies providing estimates of relative risk (RR) for the association between semiquantitative metabolic parameters and efficacy outcome measures. RESULTS The analysis included 25 studies, for a total of 2,223 subjects. The most frequent primary tumour site was the oropharynx (1,150/2,223 patients, 51.7%). According to the available data, the majority of patients had stage III/IV disease (1,709/1,799, 94.9%; no information available in four studies) and were treated with standard concurrent chemoradiotherapy (1,562/2,009 patients, 77.7%; only one study without available information). A total of 11, 8 and 4 independent studies provided RR estimates for the association between baseline FDG PET metrics and overall survival (OS), progression-free survival (PFS) and locoregional control (LRC), respectively. High pretreatment metabolic tumour volume (MTV) was significantly associated with a worse OS (summary RR 1.86, 95% CI 1.08-3.21), PFS (summary RR 1.81, 95% CI 1.14-2.89) and LRC (summary RR 3.49, 95% CI 1.65-7.35). Given the large heterogeneity (I2 > 50%) affecting the summary measures, no cumulative threshold for an unfavourable prognosis could be defined. No statistically significant association was found between SUVmax and any of the outcome measures. CONCLUSION FDG PET has prognostic relevance in the context of locally advanced head and neck squamous cell carcinoma. Pretreatment MTV is the only metabolic variable with a significant impact on patient outcome. Because of the heterogeneity and the lack of standardized methodology, no definitive conclusions on optimal cut-off values can be drawn.
Collapse
Affiliation(s)
- Pierluigi Bonomo
- Radiation Oncology, Azienda Ospedaliero - Universitaria Careggi, University of Florence, largo Brambilla 3, 50134, Florence, Italy.
| | - A Merlotti
- Radiation Oncology, Azienda Ospedaliera S.Croce e Carle, Cuneo, Italy
| | - E Olmetto
- Radiation Oncology, Azienda Ospedaliero - Universitaria Careggi, University of Florence, largo Brambilla 3, 50134, Florence, Italy
| | - A Bianchi
- Nuclear Medicine Department, Azienda Ospedaliera S.Croce e Carle, Cuneo, Italy
| | - I Desideri
- Radiation Oncology, Azienda Ospedaliero - Universitaria Careggi, University of Florence, largo Brambilla 3, 50134, Florence, Italy
| | - A Bacigalupo
- Radiation Oncology Department, Ospedale Policlinico San Martino, Genoa, Italy
| | - P Franco
- Department of Oncology, Radiation Oncology, University of Turin, Turin, Italy
| | - C Franzese
- Department of Radiotherapy and Radiosurgery, Humanitas Cancer Center and Research Hospital, Rozzano, Italy
| | - E Orlandi
- Radiotherapy 2 Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - L Livi
- Radiation Oncology, Azienda Ospedaliero - Universitaria Careggi, University of Florence, largo Brambilla 3, 50134, Florence, Italy
| | - S Caini
- Cancer Risk Factors and Lifestyle Epidemiology Unit, Cancer Research and Prevention Institute (ISPO), Florence, Italy
| |
Collapse
|
45
|
Teng F, Aryal M, Lee J, Lee C, Shen X, Hawkins PG, Mierzwa M, Eisbruch A, Cao Y. Adaptive Boost Target Definition in High-Risk Head and Neck Cancer Based on Multi-imaging Risk Biomarkers. Int J Radiat Oncol Biol Phys 2017; 102:969-977. [PMID: 29428251 DOI: 10.1016/j.ijrobp.2017.12.269] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Revised: 12/06/2017] [Accepted: 12/14/2017] [Indexed: 11/19/2022]
Abstract
PURPOSE Positron emission tomography with 18F-deoxyglucose (FDG), dynamic contrast-enhanced magnetic resonance imaging (MRI), and diffusion-weighted MRI each identify unique risk factors for treatment outcomes in head and neck cancer (HNC). Clinical trials in HNC largely rely on a single imaging modality to define targets for boosting. This study aimed to investigate the spatial correspondence of FDG uptake, perfusion, and the apparent diffusion coefficient (ADC) in HNC and their response to chemoradiation therapy (CRT) and to determine the implications of this overlap or lack thereof for adaptive boosting. METHODS AND MATERIALS Forty patients with HNC enrolled in a clinical trial underwent FDG positron emission tomography-computed tomography before CRT and underwent dynamic contrast-enhanced and diffusion-weighted MRI scans before and during CRT. The gross tumor volume (GTV) of the primary tumor was contoured on post-gadolinium T1-weighted images. Tumor subvolumes with high FDG uptake, low blood volume (BV), and low ADC were created by using previously established thresholds. Spatial correspondences between subvolumes were analyzed using the Dice coefficient, and those between each pair of image parameters at voxel level were analyzed by Spearman rank correlation coefficients. RESULTS Prior to CRT, the median subvolumes of high FDG, low BV, and low ADC relative to the primary GTV were 20%, 21%, and 45%, respectively. Spearman correlation coefficients between BV and ADC varied from -0.47 to 0.22; between BV and FDG, from -0.08 to 0.59; and between ADC and FDG, from -0.68 to 0.25. Dice coefficients between subvolumes of FDG and BV, FDG and ADC, and BV and ADC were 10%, 46%, and 15%, respectively. The union of the 3 parameters was 64% of the GTV. The union of the subvolumes of BV and ADC was 56% of the GTV before CRT but was reduced significantly by 57% after 10 fractions of radiation therapy. CONCLUSIONS High FDG uptake, low BV, and low ADC as imaging risk biomarkers of HNC identify largely distinct tumor characteristics. A single imaging modality may not define the boosting target adequately.
Collapse
Affiliation(s)
- Feifei Teng
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan
| | - Madhava Aryal
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan
| | - Jae Lee
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan
| | - Choonik Lee
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan
| | - Xioajin Shen
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan
| | - Peter G Hawkins
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan
| | - Michelle Mierzwa
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan; Department of Radiation Oncology, Ann Arbor VA Hospital, Ann Arbor, Michigan
| | - Avraham Eisbruch
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan
| | - Yue Cao
- Department of Radiation Oncology, University of Michigan, Ann Arbor, Michigan; Department of Radiology, University of Michigan, Ann Arbor, Michigan; Department of Biomedical Engineering, University of Michigan, Ann Arbor, Michigan.
| |
Collapse
|
46
|
Kuno H, Qureshi MM, Chapman MN, Li B, Andreu-Arasa VC, Onoue K, Truong MT, Sakai O. CT Texture Analysis Potentially Predicts Local Failure in Head and Neck Squamous Cell Carcinoma Treated with Chemoradiotherapy. AJNR Am J Neuroradiol 2017; 38:2334-2340. [PMID: 29025727 DOI: 10.3174/ajnr.a5407] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 07/16/2017] [Indexed: 01/08/2023]
Abstract
BACKGROUND AND PURPOSE The accurate prediction of prognosis and failure is crucial for optimizing treatment strategies for patients with cancer. The purpose of this study was to assess the performance of pretreatment CT texture analysis for the prediction of treatment failure in primary head and neck squamous cell carcinoma treated with chemoradiotherapy. MATERIALS AND METHODS This retrospective study included 62 patients diagnosed with primary head and neck squamous cell carcinoma who underwent contrast-enhanced CT examinations for staging, followed by chemoradiotherapy. CT texture features of the whole primary tumor were measured using an in-house developed Matlab-based texture analysis program. Histogram, gray-level co-occurrence matrix, gray-level run-length, gray-level gradient matrix, and Laws features were used for texture feature extraction. Receiver operating characteristic analysis was used to identify the optimal threshold of any significant texture parameter. We used multivariate Cox proportional hazards models to examine the association between the CT texture parameter and local failure, adjusting for age, sex, smoking, primary tumor stage, primary tumor volume, and human papillomavirus status. RESULTS Twenty-two patients (35.5%) developed local failure, and the remaining 40 (64.5%) showed local control. Multivariate analysis revealed that 3 histogram features (geometric mean [hazard ratio = 4.68, P = .026], harmonic mean [hazard ratio = 8.61, P = .004], and fourth moment [hazard ratio = 4.56, P = .048]) and 4 gray-level run-length features (short-run emphasis [hazard ratio = 3.75, P = .044], gray-level nonuniformity [hazard ratio = 5.72, P = .004], run-length nonuniformity [hazard ratio = 4.15, P = .043], and short-run low gray-level emphasis [hazard ratio = 5.94, P = .035]) were significant predictors of outcome after adjusting for clinical variables. CONCLUSIONS Independent primary tumor CT texture analysis parameters are associated with local failure in patients with head and neck squamous cell carcinoma treated with chemoradiotherapy.
Collapse
Affiliation(s)
- H Kuno
- From the Departments of Radiology (H.K., M.M.Q., M.N.C., B.L., V.C.A.A., K.O., M.T.T., O.S.).,Department of Diagnostic Radiology (H.K.), National Cancer Center Hospital East, Kashiwa, Chiba, Japan
| | - M M Qureshi
- From the Departments of Radiology (H.K., M.M.Q., M.N.C., B.L., V.C.A.A., K.O., M.T.T., O.S.).,Radiation Oncology (M.M.Q., M.T.T., O.S.)
| | - M N Chapman
- From the Departments of Radiology (H.K., M.M.Q., M.N.C., B.L., V.C.A.A., K.O., M.T.T., O.S.)
| | - B Li
- From the Departments of Radiology (H.K., M.M.Q., M.N.C., B.L., V.C.A.A., K.O., M.T.T., O.S.)
| | - V C Andreu-Arasa
- From the Departments of Radiology (H.K., M.M.Q., M.N.C., B.L., V.C.A.A., K.O., M.T.T., O.S.)
| | - K Onoue
- From the Departments of Radiology (H.K., M.M.Q., M.N.C., B.L., V.C.A.A., K.O., M.T.T., O.S.)
| | - M T Truong
- From the Departments of Radiology (H.K., M.M.Q., M.N.C., B.L., V.C.A.A., K.O., M.T.T., O.S.).,Radiation Oncology (M.M.Q., M.T.T., O.S.)
| | - O Sakai
- From the Departments of Radiology (H.K., M.M.Q., M.N.C., B.L., V.C.A.A., K.O., M.T.T., O.S.) .,Radiation Oncology (M.M.Q., M.T.T., O.S.).,Otolaryngology-Head and Neck Surgery (O.S.), Boston Medical Center, Boston University School of Medicine, Boston, Massachusetts
| |
Collapse
|
47
|
Thorwarth D. Biologically adapted radiation therapy. Z Med Phys 2017; 28:177-183. [PMID: 28869163 DOI: 10.1016/j.zemedi.2017.08.001] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Revised: 08/02/2017] [Accepted: 08/07/2017] [Indexed: 01/05/2023]
Abstract
The aim of biologically adapted radiotherapy (RT) is to shape or paint the prescribed radiation dose according to biological properties of the tumor in order to increase local control rates in the future. Human tumors are known to present with an extremely heterogeneous tissue architecture leading to highly variable local cell densities and chaotic vascular structures leading to tumor hypoxia and regions of increased radiation resistance. The goal of biologically adapted RT or dose painting is to individually adapt the radiation dose to biological features of the tumor as non-invasively assessed with functional imaging in order to overcome increased radiation resistance. This article discusses the whole development chain of biologically adapted RT from radio-biologically relevant processes, functional imaging techniques to visualize tumor biology non-invasively and radiation prescription functions to the implementation of biologically adapted RT in clinical practice.
Collapse
Affiliation(s)
- Daniela Thorwarth
- Sektion Biomedizinische Physik, Universitätsklinikum für Radioonkologie, Eberhard Karls Universität Tübingen, Germany.
| |
Collapse
|
48
|
State of the art MRI in head and neck cancer. Clin Radiol 2017; 73:45-59. [PMID: 28655406 DOI: 10.1016/j.crad.2017.05.020] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2017] [Accepted: 05/26/2017] [Indexed: 12/17/2022]
Abstract
Head and neck cancer affects more than 11,000 new patients per year in the UK1 and imaging has an important role in the diagnosis, treatment planning, and assessment, and post-treatment surveillance of these patients. The anatomical detail produced by magnetic resonance imaging (MRI) is ideally suited to staging and follow-up of primary tumours and cervical nodal metastases in the head and neck; however, anatomical images have limitations in cancer imaging and so increasingly functional-based MRI techniques, which provide molecular, metabolic, and physiological information, are being incorporated into MRI protocols. This article reviews the state of the art of these functional MRI techniques with emphasis on those that are most relevant to the current management of patients with head and neck cancer.
Collapse
|
49
|
|
50
|
Wong KH, Panek R, Bhide SA, Nutting CM, Harrington KJ, Newbold KL. The emerging potential of magnetic resonance imaging in personalizing radiotherapy for head and neck cancer: an oncologist's perspective. Br J Radiol 2017; 90:20160768. [PMID: 28256151 DOI: 10.1259/bjr.20160768] [Citation(s) in RCA: 43] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Head and neck cancer (HNC) is a challenging tumour site for radiotherapy delivery owing to its complex anatomy and proximity to organs at risk (OARs) such as the spinal cord and optic apparatus. Despite significant advances in radiotherapy planning techniques, radiation-induced morbidities remain substantial. Further improvement would require high-quality imaging and tailored radiotherapy based on intratreatment response. For these reasons, the use of MRI in radiotherapy planning for HNC is rapidly gaining popularity. MRI provides superior soft-tissue contrast in comparison with CT, allowing better definition of the tumour and OARs. The lack of additional radiation exposure is another attractive feature for intratreatment monitoring. In addition, advanced MRI techniques such as diffusion-weighted, dynamic contrast-enhanced and intrinsic susceptibility-weighted MRI techniques are capable of characterizing tumour biology further by providing quantitative functional parameters such as tissue cellularity, vascular permeability/perfusion and hypoxia. These functional parameters are known to have radiobiological relevance, which potentially could guide treatment adaptation based on their changes prior to or during radiotherapy. In this article, we first present an overview of the applications of anatomical MRI sequences in head and neck radiotherapy, followed by the potentials and limitations of functional MRI sequences in personalizing therapy.
Collapse
Affiliation(s)
- Kee H Wong
- 1 Head and neck unit, The Royal Marsden Hospital, London, UK.,2 Radiotherapy and imaging, The Institute of Cancer Research, London, UK
| | - Rafal Panek
- 1 Head and neck unit, The Royal Marsden Hospital, London, UK.,2 Radiotherapy and imaging, The Institute of Cancer Research, London, UK
| | - Shreerang A Bhide
- 1 Head and neck unit, The Royal Marsden Hospital, London, UK.,2 Radiotherapy and imaging, The Institute of Cancer Research, London, UK
| | - Christopher M Nutting
- 1 Head and neck unit, The Royal Marsden Hospital, London, UK.,2 Radiotherapy and imaging, The Institute of Cancer Research, London, UK
| | - Kevin J Harrington
- 1 Head and neck unit, The Royal Marsden Hospital, London, UK.,2 Radiotherapy and imaging, The Institute of Cancer Research, London, UK
| | - Katie L Newbold
- 1 Head and neck unit, The Royal Marsden Hospital, London, UK.,2 Radiotherapy and imaging, The Institute of Cancer Research, London, UK
| |
Collapse
|