1
|
Sun Z, Wang K, Gao G, Wang H, Wu P, Li J, Zhang X, Wang X. Assessing the Performance of Artificial Intelligence Assistance for Prostate MRI: A Two-Center Study Involving Radiologists With Different Experience Levels. J Magn Reson Imaging 2025; 61:2234-2245. [PMID: 39540567 DOI: 10.1002/jmri.29660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 10/22/2024] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
BACKGROUND Artificial intelligence (AI) assistance may enhance radiologists' performance in detecting clinically significant prostate cancer (csPCa) on MRI. Further validation is needed for radiologists with different experiences. PURPOSE To assess the performance of experienced and less-experienced radiologists in detecting csPCa, with and without AI assistance. STUDY TYPE Retrospective. POPULATION Nine hundred patients who underwent prostate MRI and biopsy (median age 67 years; 356 with csPCa and 544 with non-csPCa). FIELD STRENGTH/SEQUENCE 3-T and 1.5-T, diffusion-weighted imaging using a single-shot gradient echo-planar sequence, turbo spin echo T2-weighted image. ASSESSMENT CsPCa regions based on biopsy results served as the reference standard. Ten less-experienced (<500 prostate MRIs) and six experienced (>1000 prostate MRIs) radiologists reviewed each case twice using Prostate Imaging Reporting and Data System v2.1, with and without AI, separated by 4-week intervals. Cases were equally distributed among less-experienced radiologists, and 90 cases were randomly assigned to each experienced radiologist. Reading time and diagnostic confidence were assessed. STATISTICAL TESTS Area under the curve (AUC), sensitivity, specificity, reading time, and diagnostic confidence were compared using the DeLong test, Chi-squared test, Fisher exact test, or Wilcoxon rank-sum test between the two sessions. A P-value <0.05 was considered significant. Adjusting threshold using Bonferroni correction was performed for multiple comparisons. RESULTS For less-experienced radiologists, AI assistance significantly improved lesion-level sensitivity (0.78 vs. 0.88), sextant-level AUC (0.84 vs. 0.93), and patient-level AUC (0.84 vs. 0.89). For experienced radiologists, AI assistance only improved sextant-level AUC (0.82 vs. 0.91). AI assistance significantly reduced median reading time (250 s [interquartile range, IQR: 157, 402] vs. 130 s [IQR: 88, 209]) and increased diagnostic confidence (5 [IQR: 4, 5] vs. 5 [IQR: 4, 5]) irrespective of experience and enhanced consistency among experienced radiologists (Fleiss κ: 0.53 vs. 0.61). DATA CONCLUSION AI-assisted reading improves the performance of detecting csPCa on MRI, particularly for less-experienced radiologists. EVIDENCE LEVEL 3 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Zhaonan Sun
- Department of Radiology, Peking University First Hospital, Beijing, China
| | - Kexin Wang
- School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Ge Gao
- Department of Radiology, Peking University First Hospital, Beijing, China
| | - Huihui Wang
- Department of Radiology, Peking University First Hospital, Beijing, China
| | - Pengsheng Wu
- Beijing Smart Tree Medical Technology Co. Ltd, Beijing, China
| | - Jialun Li
- Beijing Smart Tree Medical Technology Co. Ltd, Beijing, China
| | - Xiaodong Zhang
- Department of Radiology, Peking University First Hospital, Beijing, China
| | - Xiaoying Wang
- Department of Radiology, Peking University First Hospital, Beijing, China
| |
Collapse
|
2
|
Guenzel K, Lukas Baumgaertner G, Padhani AR, Luckau J, Carsten Lock U, Ozimek T, Heinrich S, Schlegel J, Busch J, Magheli A, Struck J, Borgmann H, Penzkofer T, Hamm B, Hinz S, Alexander Hamm C. Diagnostic Utility of Artificial Intelligence-assisted Transperineal Biopsy Planning in Prostate Cancer Suspected Men: A Prospective Cohort Study. Eur Urol Focus 2024; 10:833-842. [PMID: 38688825 DOI: 10.1016/j.euf.2024.04.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/22/2024] [Accepted: 04/12/2024] [Indexed: 05/02/2024]
Abstract
BACKGROUND AND OBJECTIVE Accurate magnetic resonance imaging (MRI) reporting is essential for transperineal prostate biopsy (TPB) planning. Although approved computer-aided diagnosis (CAD) tools may assist urologists in this task, evidence of improved clinically significant prostate cancer (csPCa) detection is lacking. Therefore, we aimed to document the diagnostic utility of using Prostate Imaging Reporting and Data System (PI-RADS) and CAD for biopsy planning compared with PI-RADS alone. METHODS A total of 262 consecutive men scheduled for TPB at our referral centre were analysed. Reported PI-RADS lesions and an US Food and Drug Administration-cleared CAD tool were used for TPB planning. PI-RADS and CAD lesions were targeted on TPB, while four (interquartile range: 2-5) systematic biopsies were taken. The outcomes were the (1) proportion of csPCa (grade group ≥2) and (2) number of targeted lesions and false-positive rate. Performance was tested using free-response receiver operating characteristic curves and the exact Fisher-Yates test. KEY FINDINGS AND LIMITATIONS Overall, csPCa was detected in 56% (146/262) of men, with sensitivity of 92% and 97% (p = 0.007) for PI-RADS- and CAD-directed TPB, respectively. In 4% (10/262), csPCa was detected solely by CAD-directed biopsies; in 8% (22/262), additional csPCa lesions were detected. However, the number of targeted lesions increased by 54% (518 vs 336) and the false-positive rate doubled (0.66 vs 1.39; p = 0.009). Limitations include biopsies only for men at clinical/radiological suspicion and no multidisciplinary review of MRI before biopsy. CONCLUSIONS AND CLINICAL IMPLICATIONS The tested CAD tool for TPB planning improves csPCa detection at the cost of an increased number of lesions sampled and false positives. This may enable more personalised biopsy planning depending on urological and patient preferences. PATIENT SUMMARY The computer-aided diagnosis tool tested for transperineal prostate biopsy planning improves the detection of clinically significant prostate cancer at the cost of an increased number of lesions sampled and false positives. This may enable more personalised biopsy planning depending on urological and patient preferences.
Collapse
Affiliation(s)
- Karsten Guenzel
- Department of Urology, Vivantes Klinikum Am Urban, Berlin, Germany; Prostate-Diagnostic-Centre Berlin, PDZB, Berlin, Germany; Department of Urology, Faculty of Health Sciences Brandenburg, Brandenburg Medical School Theodor Fontane, Neuruppin, Germany.
| | | | - Anwar R Padhani
- Paul Strickland Scanner Centre, Mount Vernon Hospital, Middlesex, UK
| | - Johannes Luckau
- Department of Urology, Vivantes Klinikum Am Urban, Berlin, Germany
| | | | - Tomasz Ozimek
- Department of Urology, Vivantes Klinikum Am Urban, Berlin, Germany
| | - Stefan Heinrich
- Department of Urology, Vivantes Klinikum Am Urban, Berlin, Germany
| | - Jakob Schlegel
- Department of Urology, Vivantes Klinikum Am Urban, Berlin, Germany
| | - Jonas Busch
- Department of Urology, Vivantes Klinikum Am Urban, Berlin, Germany
| | - Ahmed Magheli
- Department of Urology, Vivantes Klinikum Am Urban, Berlin, Germany
| | - Julian Struck
- Department of Urology, Faculty of Health Sciences Brandenburg, Brandenburg Medical School Theodor Fontane, Neuruppin, Germany
| | - Hendrik Borgmann
- Department of Urology, Faculty of Health Sciences Brandenburg, Brandenburg Medical School Theodor Fontane, Neuruppin, Germany
| | - Tobias Penzkofer
- Department of Radiology, Charité - Universitätsmedizin Berlin, Berlin, Germany; Berlin Institute of Health (BIH), Berlin, Germany
| | - Bernd Hamm
- Department of Radiology, Charité - Universitätsmedizin Berlin, Berlin, Germany
| | - Stefan Hinz
- Department of Urology, Vivantes Klinikum Am Urban, Berlin, Germany; Department of Urology, Magdeburg University Medical Center, Otto von Guericke University, Magdeburg, Germany
| | - Charlie Alexander Hamm
- Department of Radiology, Charité - Universitätsmedizin Berlin, Berlin, Germany; Berlin Institute of Health (BIH), Berlin, Germany
| |
Collapse
|
3
|
Khizir L, Bhandari V, Kaloth S, Pfail J, Lichtbroun B, Yanamala N, Elsamra SE. From Diagnosis to Precision Surgery: The Transformative Role of Artificial Intelligence in Urologic Imaging. J Endourol 2024; 38:824-835. [PMID: 38888003 DOI: 10.1089/end.2023.0695] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/20/2024] Open
Abstract
The multidisciplinary nature of artificial intelligence (AI) has allowed for rapid growth of its application in medical imaging. Artificial intelligence algorithms can augment various imaging modalities, such as X-rays, CT, and MRI, to improve image quality and generate high-resolution three-dimensional images. AI reconstruction of three-dimensional models of patient anatomy from CT or MRI scans can better enable urologists to visualize structures and accurately plan surgical approaches. AI can also be optimized to create virtual reality simulations of surgical procedures based on patient-specific data, giving urologists more hands-on experience and preparation. Recent development of artificial intelligence modalities, such as TeraRecon and Ceevra, offer rapid and efficient medical imaging analyses aimed at enhancing the provision of urologic care, notably for intraoperative guidance during robot-assisted radical prostatectomy (RARP) and partial nephrectomy.
Collapse
Affiliation(s)
- Labeeqa Khizir
- Division of Urology, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA
| | | | - Srivarsha Kaloth
- Department of Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA
| | - John Pfail
- Division of Urology, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA
| | - Benjamin Lichtbroun
- Division of Urology, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA
| | - Naveena Yanamala
- Department of Medicine, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA
| | - Sammy E Elsamra
- Division of Urology, Rutgers Robert Wood Johnson Medical School, New Brunswick, New Jersey, USA
| |
Collapse
|
4
|
Nicoletti G, Mazzetti S, Maimone G, Cignini V, Cuocolo R, Faletti R, Gatti M, Imbriaco M, Longo N, Ponsiglione A, Russo F, Serafini A, Stanzione A, Regge D, Giannini V. Development and Validation of an Explainable Radiomics Model to Predict High-Aggressive Prostate Cancer: A Multicenter Radiomics Study Based on Biparametric MRI. Cancers (Basel) 2024; 16:203. [PMID: 38201630 PMCID: PMC10778513 DOI: 10.3390/cancers16010203] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2023] [Revised: 12/19/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024] Open
Abstract
In the last years, several studies demonstrated that low-aggressive (Grade Group (GG) ≤ 2) and high-aggressive (GG ≥ 3) prostate cancers (PCas) have different prognoses and mortality. Therefore, the aim of this study was to develop and externally validate a radiomic model to noninvasively classify low-aggressive and high-aggressive PCas based on biparametric magnetic resonance imaging (bpMRI). To this end, 283 patients were retrospectively enrolled from four centers. Features were extracted from apparent diffusion coefficient (ADC) maps and T2-weighted (T2w) sequences. A cross-validation (CV) strategy was adopted to assess the robustness of several classifiers using two out of the four centers. Then, the best classifier was externally validated using the other two centers. An explanation for the final radiomics signature was provided through Shapley additive explanation (SHAP) values and partial dependence plots (PDP). The best combination was a naïve Bayes classifier trained with ten features that reached promising results, i.e., an area under the receiver operating characteristic (ROC) curve (AUC) of 0.75 and 0.73 in the construction and external validation set, respectively. The findings of our work suggest that our radiomics model could help distinguish between low- and high-aggressive PCa. This noninvasive approach, if further validated and integrated into a clinical decision support system able to automatically detect PCa, could help clinicians managing men with suspicion of PCa.
Collapse
Affiliation(s)
- Giulia Nicoletti
- Department of Electronics and Telecommunications, Polytechnic of Turin, Corso Duca degli Abruzzi, 24, 10129 Turin, Italy;
- Department of Surgical Sciences, University of Turin, Corso Dogliotti, 14, 10126 Turin, Italy; (V.C.); (R.F.); (A.S.)
| | - Simone Mazzetti
- Radiology Unit, Candiolo Cancer Institute, FPO-IRCCS, Strada Provinciale, 142—KM 3.95, 10060 Candiolo, Italy; (S.M.); (G.M.); (F.R.); (D.R.)
| | - Giovanni Maimone
- Radiology Unit, Candiolo Cancer Institute, FPO-IRCCS, Strada Provinciale, 142—KM 3.95, 10060 Candiolo, Italy; (S.M.); (G.M.); (F.R.); (D.R.)
| | - Valentina Cignini
- Department of Surgical Sciences, University of Turin, Corso Dogliotti, 14, 10126 Turin, Italy; (V.C.); (R.F.); (A.S.)
| | - Renato Cuocolo
- Department of Medicine, Surgery, and Dentistry, University of Salerno, Via Salvador Allende, 43, 84081 Baronissi, Italy;
| | - Riccardo Faletti
- Department of Surgical Sciences, University of Turin, Corso Dogliotti, 14, 10126 Turin, Italy; (V.C.); (R.F.); (A.S.)
| | - Marco Gatti
- Department of Surgical Sciences, University of Turin, Corso Dogliotti, 14, 10126 Turin, Italy; (V.C.); (R.F.); (A.S.)
| | - Massimo Imbriaco
- Department of Advanced Biomedical Sciences, University of Naples “Federico II”, Via Pansini, 5, 80131 Naples, Italy; (M.I.); (A.P.)
| | - Nicola Longo
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples “Federico II”, Via Pansini, 5, 80131 Naples, Italy;
| | - Andrea Ponsiglione
- Department of Advanced Biomedical Sciences, University of Naples “Federico II”, Via Pansini, 5, 80131 Naples, Italy; (M.I.); (A.P.)
| | - Filippo Russo
- Radiology Unit, Candiolo Cancer Institute, FPO-IRCCS, Strada Provinciale, 142—KM 3.95, 10060 Candiolo, Italy; (S.M.); (G.M.); (F.R.); (D.R.)
| | - Alessandro Serafini
- Department of Surgical Sciences, University of Turin, Corso Dogliotti, 14, 10126 Turin, Italy; (V.C.); (R.F.); (A.S.)
| | - Arnaldo Stanzione
- Department of Advanced Biomedical Sciences, University of Naples “Federico II”, Via Pansini, 5, 80131 Naples, Italy; (M.I.); (A.P.)
| | - Daniele Regge
- Radiology Unit, Candiolo Cancer Institute, FPO-IRCCS, Strada Provinciale, 142—KM 3.95, 10060 Candiolo, Italy; (S.M.); (G.M.); (F.R.); (D.R.)
- Department of Translational Research, Via Risorgimento, 36, University of Pisa, 56126 Pisa, Italy
| | - Valentina Giannini
- Department of Surgical Sciences, University of Turin, Corso Dogliotti, 14, 10126 Turin, Italy; (V.C.); (R.F.); (A.S.)
- Radiology Unit, Candiolo Cancer Institute, FPO-IRCCS, Strada Provinciale, 142—KM 3.95, 10060 Candiolo, Italy; (S.M.); (G.M.); (F.R.); (D.R.)
| |
Collapse
|
5
|
Wang K, Xing Z, Kong Z, Yu Y, Chen Y, Zhao X, Song B, Wang X, Wu P, Wang X, Xue Y. Artificial intelligence as diagnostic aiding tool in cases of Prostate Imaging Reporting and Data System category 3: the results of retrospective multi-center cohort study. Abdom Radiol (NY) 2023; 48:3757-3765. [PMID: 37740046 DOI: 10.1007/s00261-023-03989-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2023] [Revised: 06/12/2023] [Accepted: 06/13/2023] [Indexed: 09/24/2023]
Abstract
PURPOSE To study the effect of artificial intelligence (AI) on the diagnostic performance of radiologists in interpreting prostate mpMRI images of the PI-RADS 3 category. METHODS In this multicenter study, 16 radiologists were invited to interpret prostate mpMRI cases with and without AI. The study included a total of 87 cases initially diagnosed as PI-RADS 3 by radiologists without AI, with 28 cases being clinically significant cancers (csPCa) and 59 cases being non-csPCa. The study compared the diagnostic efficacy between readings without and with AI, the reading time, and confidence levels. RESULTS AI changed the diagnosis in 65 out of 87 cases. Among the 59 non-csPCa cases, 41 were correctly downgraded to PI-RADS 1-2, and 9 were incorrectly upgraded to PI-RADS 4-5. For the 28 csPCa cases, 20 were correctly upgraded to PI-RADS 4-5, and 5 were incorrectly downgraded to PI-RADS 1-2. Radiologists assisted by AI achieved higher diagnostic specificity and accuracy than those without AI [0.695 vs 0.000 and 0.736 vs 0.322, both P < 0.001]. Sensitivity with AI was not significantly different from that without AI [0.821 vs 1.000, P = 1.000]. AI reduced reading time significantly compared to without AI (mean: 351 seconds, P < 0.001). The diagnostic confidence score with AI was significantly higher than that without AI (Cohen Kappa: -0.016). CONCLUSION With the help of AI, there was an improvement in the diagnostic accuracy of PI-RADS category 3 cases by radiologists. There is also an increase in diagnostic efficiency and diagnostic confidence.
Collapse
Affiliation(s)
- Kexin Wang
- School of Basic Medical Sciences, Capital Medical University, Beijing, 100069, China
| | - Zhangli Xing
- Department of Radiology, Fujian Medical University Union Hospital, No. 29, Xin Quan Road, Gulou District, Fuzhou, 350001, Fujian Province, China
| | - Zixuan Kong
- Department of Radiology, The Second Affiliated Hospital of Dalian Medical University, No. 467, Zhongshan Road, Shahekou District, Dalian, 116023, Liaoning Province, China
| | - Yang Yu
- Department of Radiology, Fujian Medical University Union Hospital, No. 29, Xin Quan Road, Gulou District, Fuzhou, 350001, Fujian Province, China
| | - Yuntian Chen
- Department of Radiology, West China Hospital, Sichuan University, No. 37, Guoxue Lane, Wuhou District, Chengdu, 610044, Sichuan Province, China
| | - Xiangpeng Zhao
- Department of Radiology, The Second Affiliated Hospital of Dalian Medical University, No. 467, Zhongshan Road, Shahekou District, Dalian, 116023, Liaoning Province, China
| | - Bin Song
- Department of Radiology, West China Hospital, Sichuan University, No. 37, Guoxue Lane, Wuhou District, Chengdu, 610044, Sichuan Province, China
| | - Xiangpeng Wang
- Beijing Smart Tree Medical Technology Co. Ltd., No. 97, Changping Road, Shahe Town, Changping District, Beijing, 102200, China
| | - Pengsheng Wu
- Beijing Smart Tree Medical Technology Co. Ltd., No. 97, Changping Road, Shahe Town, Changping District, Beijing, 102200, China
| | - Xiaoying Wang
- Peking University First Hospital, No. 8, Xishku Road, Xicheng District, Beijing, 100034, China.
| | - Yunjing Xue
- Department of Radiology, Fujian Medical University Union Hospital, No. 29, Xin Quan Road, Gulou District, Fuzhou, 350001, Fujian Province, China.
| |
Collapse
|
6
|
Yilmaz EC, Harmon SA, Belue MJ, Merriman KM, Phelps TE, Lin Y, Garcia C, Hazen L, Patel KR, Merino MJ, Wood BJ, Choyke PL, Pinto PA, Citrin DE, Turkbey B. Evaluation of a Deep Learning-based Algorithm for Post-Radiotherapy Prostate Cancer Local Recurrence Detection Using Biparametric MRI. Eur J Radiol 2023; 168:111095. [PMID: 37717420 PMCID: PMC10615746 DOI: 10.1016/j.ejrad.2023.111095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2023] [Revised: 09/04/2023] [Accepted: 09/12/2023] [Indexed: 09/19/2023]
Abstract
OBJECTIVE To evaluate a biparametric MRI (bpMRI)-based artificial intelligence (AI) model for the detection of local prostate cancer (PCa) recurrence in patients with radiotherapy history. MATERIALS AND METHODS This study included post-radiotherapy patients undergoing multiparametric MRI and subsequent MRI/US fusion-guided and/or systematic biopsy. Histopathology results were used as ground truth. The recurrent cancer detection sensitivity of a bpMRI-based AI model, which was developed on a large dataset to primarily identify lesions in treatment-naïve patients, was compared to a prospective radiologist assessment using the Wald test. Subanalysis was conducted on patients stratified by the treatment modality (external beam radiation treatment [EBRT] and brachytherapy) and the prostate volume quartiles. RESULTS Of the 62 patients included (median age = 70 years; median PSA = 3.51 ng/ml; median prostate volume = 27.55 ml), 56 recurrent PCa foci were identified within 46 patients. The AI model detected 40 lesions in 35 patients. The AI model performance was lower than the prospective radiology interpretation (Rad) on a patient-(AI: 76.1% vs. Rad: 91.3%, p = 0.02) and lesion-level (AI: 71.4% vs. Rad: 87.5%, p = 0.01). The mean number of false positives per patient was 0.35 (range: 0-2). The AI model performance was higher in EBRT group both on patient-level (EBRT: 81.5% [22/27] vs. brachytherapy: 68.4% [13/19]) and lesion-level (EBRT: 79.4% [27/34] vs. brachytherapy: 59.1% [13/22]). In patients with gland volumes >34 ml (n = 25), detection sensitivities were 100% (11/11) and 94.1% (16/17) on patient- and lesion-level, respectively. CONCLUSION The reported bpMRI-based AI model detected the majority of locally recurrent prostate cancer after radiotherapy. Further testing including external validation of this model is warranted prior to clinical implementation.
Collapse
Affiliation(s)
- Enis C Yilmaz
- Molecular Imaging Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Stephanie A Harmon
- Molecular Imaging Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Mason J Belue
- Molecular Imaging Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Katie M Merriman
- Molecular Imaging Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Tim E Phelps
- Molecular Imaging Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Yue Lin
- Molecular Imaging Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Charisse Garcia
- Center for Interventional Oncology, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States; Department of Radiology, Clinical Center, National Institutes of Health, Bethesda, MD, United States
| | - Lindsey Hazen
- Center for Interventional Oncology, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States; Department of Radiology, Clinical Center, National Institutes of Health, Bethesda, MD, United States
| | - Krishnan R Patel
- Radiation Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Maria J Merino
- Laboratory of Pathology, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Bradford J Wood
- Center for Interventional Oncology, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States; Department of Radiology, Clinical Center, National Institutes of Health, Bethesda, MD, United States
| | - Peter L Choyke
- Molecular Imaging Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Peter A Pinto
- Urologic Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Deborah E Citrin
- Radiation Oncology Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States
| | - Baris Turkbey
- Molecular Imaging Branch, National Cancer Institute, National Institutes of Health, Bethesda, MD, United States; Molecular Imaging Branch, National Cancer Institute, National Institutes of Health, 10 Center Dr., MSC 1182, Building 10, Room B3B85, Bethesda, MD, United States.
| |
Collapse
|
7
|
Sun Z, Wu P, Cui Y, Liu X, Wang K, Gao G, Wang H, Zhang X, Wang X. Deep-Learning Models for Detection and Localization of Visible Clinically Significant Prostate Cancer on Multi-Parametric MRI. J Magn Reson Imaging 2023; 58:1067-1081. [PMID: 36825823 DOI: 10.1002/jmri.28608] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 01/07/2023] [Accepted: 01/09/2023] [Indexed: 02/25/2023] Open
Abstract
BACKGROUND Deep learning for diagnosing clinically significant prostate cancer (csPCa) is feasible but needs further evaluation in patients with prostate-specific antigen (PSA) levels of 4-10 ng/mL. PURPOSE To explore diffusion-weighted imaging (DWI), alone and in combination with T2-weighted imaging (T2WI), for deep-learning-based models to detect and localize visible csPCa. STUDY TYPE Retrospective. POPULATION One thousand six hundred twenty-eight patients with systematic and cognitive-targeted biopsy-confirmation (1007 csPCa, 621 non-csPCa) were divided into model development (N = 1428) and hold-out test (N = 200) datasets. FIELD STRENGTH/SEQUENCE DWI with diffusion-weighted single-shot gradient echo planar imaging sequence and T2WI with T2-weighted fast spin echo sequence at 3.0-T and 1.5-T. ASSESSMENT The ground truth of csPCa was annotated by two radiologists in consensus. A diffusion model, DWI and apparent diffusion coefficient (ADC) as input, and a biparametric model (DWI, ADC, and T2WI as input) were trained based on U-Net. Three radiologists provided the PI-RADS (version 2.1) assessment. The performances were determined at the lesion, location, and the patient level. STATISTICAL TESTS The performance was evaluated using the areas under the ROC curves (AUCs), sensitivity, specificity, and accuracy. A P value <0.05 was considered statistically significant. RESULTS The lesion-level sensitivities of the diffusion model, the biparametric model, and the PI-RADS assessment were 89.0%, 85.3%, and 90.8% (P = 0.289-0.754). At the patient level, the diffusion model had significantly higher sensitivity than the biparametric model (96.0% vs. 90.0%), while there was no significant difference in specificity (77.0%. vs. 85.0%, P = 0.096). For location analysis, there were no significant differences in AUCs between the models (sextant-level, 0.895 vs. 0.893, P = 0.777; zone-level, 0.931 vs. 0.917, P = 0.282), and both models had significantly higher AUCs than the PI-RADS assessment (sextant-level, 0.734; zone-level, 0.863). DATA CONCLUSION The diffusion model achieved the best performance in detecting and localizing csPCa in patients with PSA levels of 4-10 ng/mL. EVIDENCE LEVEL 3 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Zhaonan Sun
- Department of Radiology, Peking University First Hospital, Beijing, China
| | - Pengsheng Wu
- Beijing Smart Tree Medical Technology Co. Ltd, Beijing, China
| | - Yingpu Cui
- Department of Nuclear Medicine, Sun Yat-Sen University Cancer Center, Guangzhou, Guangdong, China
- State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, Guangdong, China
| | - Xiang Liu
- Department of Radiology, Peking University First Hospital, Beijing, China
| | - Kexin Wang
- School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Ge Gao
- Department of Radiology, Peking University First Hospital, Beijing, China
| | - Huihui Wang
- Department of Radiology, Peking University First Hospital, Beijing, China
| | - Xiaodong Zhang
- Department of Radiology, Peking University First Hospital, Beijing, China
| | - Xiaoying Wang
- Department of Radiology, Peking University First Hospital, Beijing, China
| |
Collapse
|
8
|
Kim H, Kang SW, Kim JH, Nagar H, Sabuncu M, Margolis DJA, Kim CK. The role of AI in prostate MRI quality and interpretation: Opportunities and challenges. Eur J Radiol 2023; 165:110887. [PMID: 37245342 DOI: 10.1016/j.ejrad.2023.110887] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 05/06/2023] [Accepted: 05/20/2023] [Indexed: 05/30/2023]
Abstract
Prostate MRI plays an important role in imaging the prostate gland and surrounding tissues, particularly in the diagnosis and management of prostate cancer. With the widespread adoption of multiparametric magnetic resonance imaging in recent years, the concerns surrounding the variability of imaging quality have garnered increased attention. Several factors contribute to the inconsistency of image quality, such as acquisition parameters, scanner differences and interobserver variabilities. While efforts have been made to standardize image acquisition and interpretation via the development of systems, such as PI-RADS and PI-QUAL, the scoring systems still depend on the subjective experience and acumen of humans. Artificial intelligence (AI) has been increasingly used in many applications, including medical imaging, due to its ability to automate tasks and lower human error rates. These advantages have the potential to standardize the tasks of image interpretation and quality control of prostate MRI. Despite its potential, thorough validation is required before the implementation of AI in clinical practice. In this article, we explore the opportunities and challenges of AI, with a focus on the interpretation and quality of prostate MRI.
Collapse
Affiliation(s)
- Heejong Kim
- Department of Radiology, Weill Cornell Medical College, 525 E 68th St Box 141, New York, NY 10021, United States
| | - Shin Won Kang
- Research Institute for Future Medicine, Samsung Medical Center, Republic of Korea
| | - Jae-Hun Kim
- Department of Radiology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Republic of Korea
| | - Himanshu Nagar
- Department of Radiation Oncology, Weill Cornell Medical College, 525 E 68th St, New York, NY 10021, United States
| | - Mert Sabuncu
- Department of Radiology, Weill Cornell Medical College, 525 E 68th St Box 141, New York, NY 10021, United States
| | - Daniel J A Margolis
- Department of Radiology, Weill Cornell Medical College, 525 E 68th St Box 141, New York, NY 10021, United States.
| | - Chan Kyo Kim
- Department of Radiology and Center for Imaging Science, Samsung Medical Center, Sungkyunkwan University School of Medicine, Republic of Korea
| |
Collapse
|
9
|
Sun Z, Wang K, Kong Z, Xing Z, Chen Y, Luo N, Yu Y, Song B, Wu P, Wang X, Zhang X, Wang X. A multicenter study of artificial intelligence-aided software for detecting visible clinically significant prostate cancer on mpMRI. Insights Imaging 2023; 14:72. [PMID: 37121983 PMCID: PMC10149551 DOI: 10.1186/s13244-023-01421-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2022] [Accepted: 04/05/2023] [Indexed: 05/02/2023] Open
Abstract
BACKGROUND AI-based software may improve the performance of radiologists when detecting clinically significant prostate cancer (csPCa). This study aims to compare the performance of radiologists in detecting MRI-visible csPCa on MRI with and without AI-based software. MATERIALS AND METHODS In total, 480 multiparametric MRI (mpMRI) images were retrospectively collected from eleven different MR devices, with 349 csPCa lesions in 180 (37.5%) cases. The csPCa areas were annotated based on pathology. Sixteen radiologists from four hospitals participated in reading. Each radiologist was randomly assigned to 30 cases and diagnosed twice. Half cases were interpreted without AI, and the other half were interpreted with AI. After four weeks, the cases were read again in switched mode. The mean diagnostic performance was compared using sensitivity and specificity on lesion level and patient level. The median reading time and diagnostic confidence were assessed. RESULTS On lesion level, AI-aided improved the sensitivity from 40.1% to 59.0% (18.9% increased; 95% confidence interval (CI) [11.5, 26.1]; p < .001). On patient level, AI-aided improved the specificity from 57.7 to 71.7% (14.0% increase, 95% CI [6.4, 21.4]; p < .001) while preserving the sensitivity (88.3% vs. 93.9%, p = 0.06). AI-aided reduced the median reading time of one case by 56.3% from 423 to 185 s (238-s decrease, 95% CI [219, 260]; p < .001), and the median diagnostic confidence score was increased by 10.3% from 3.9 to 4.3 (0.4-score increase, 95% CI [0.3, 0.5]; p < .001). CONCLUSIONS AI software improves the performance of radiologists by reducing false positive detection of prostate cancer patients and also improving reading times and diagnostic confidence. CLINICAL RELEVANCE STATEMENT This study involves the process of data collection, randomization and crossover reading procedure.
Collapse
Affiliation(s)
- Zhaonan Sun
- Department of Radiology, Peking University First Hospital, No.8 Xishiku Street, Xicheng District, Beijing, 100034, China
| | - Kexin Wang
- School of Basic Medical Sciences, Capital Medical University, Beijing, China
| | - Zixuan Kong
- Department of Radiology, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Zhangli Xing
- Department of Radiology, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Yuntian Chen
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Ning Luo
- Department of Radiology, The Second Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Yang Yu
- Department of Radiology, Fujian Medical University Union Hospital, Fuzhou, Fujian, China
| | - Bin Song
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Pengsheng Wu
- Beijing Smart Tree Medical Technology Co. Ltd., Beijing, China
| | - Xiangpeng Wang
- Beijing Smart Tree Medical Technology Co. Ltd., Beijing, China
| | - Xiaodong Zhang
- Department of Radiology, Peking University First Hospital, No.8 Xishiku Street, Xicheng District, Beijing, 100034, China
| | - Xiaoying Wang
- Department of Radiology, Peking University First Hospital, No.8 Xishiku Street, Xicheng District, Beijing, 100034, China.
| |
Collapse
|
10
|
Cellina M, Cè M, Khenkina N, Sinichich P, Cervelli M, Poggi V, Boemi S, Ierardi AM, Carrafiello G. Artificial Intellgence in the Era of Precision Oncological Imaging. Technol Cancer Res Treat 2022; 21:15330338221141793. [PMID: 36426565 PMCID: PMC9703524 DOI: 10.1177/15330338221141793] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
Rapid-paced development and adaptability of artificial intelligence algorithms have secured their almost ubiquitous presence in the field of oncological imaging. Artificial intelligence models have been created for a variety of tasks, including risk stratification, automated detection, and segmentation of lesions, characterization, grading and staging, prediction of prognosis, and treatment response. Soon, artificial intelligence could become an essential part of every step of oncological workup and patient management. Integration of neural networks and deep learning into radiological artificial intelligence algorithms allow for extrapolating imaging features otherwise inaccessible to human operators and pave the way to truly personalized management of oncological patients.Although a significant proportion of currently available artificial intelligence solutions belong to basic and translational cancer imaging research, their progressive transfer to clinical routine is imminent, contributing to the development of a personalized approach in oncology. We thereby review the main applications of artificial intelligence in oncological imaging, describe the example of their successful integration into research and clinical practice, and highlight the challenges and future perspectives that will shape the field of oncological radiology.
Collapse
Affiliation(s)
- Michaela Cellina
- Radiology Department, Fatebenefratelli Hospital, Milano, Italy,Michaela Cellina, MD, Radiology Department, Fatebenefratelli Hospital, ASST Fatebenefratelli Sacco, Milano, Piazza Principessa Clotilde 3, 20121, Milano, Italy.
| | - Maurizio Cè
- Postgraduate School in Radiodiagnostics, Università degli Studi di Milano, Milan, Italy
| | - Natallia Khenkina
- Postgraduate School in Radiodiagnostics, Università degli Studi di Milano, Milan, Italy
| | - Polina Sinichich
- Postgraduate School in Radiodiagnostics, Università degli Studi di Milano, Milan, Italy
| | - Marco Cervelli
- Postgraduate School in Radiodiagnostics, Università degli Studi di Milano, Milan, Italy
| | - Vittoria Poggi
- Postgraduate School in Radiodiagnostics, Università degli Studi di Milano, Milan, Italy
| | - Sara Boemi
- Postgraduate School in Radiodiagnostics, Università degli Studi di Milano, Milan, Italy
| | | | - Gianpaolo Carrafiello
- Postgraduate School in Radiodiagnostics, Università degli Studi di Milano, Milan, Italy,Radiology Department, Fondazione IRCCS Cà Granda, Milan, Italy
| |
Collapse
|
11
|
Alfano R, Bauman GS, Gomez JA, Gaed M, Moussa M, Chin J, Pautler S, Ward AD. Prostate cancer classification using radiomics and machine learning on mp-MRI validated using co-registered histology. Eur J Radiol 2022; 156:110494. [PMID: 36095953 DOI: 10.1016/j.ejrad.2022.110494] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 07/04/2022] [Accepted: 08/16/2022] [Indexed: 11/21/2022]
Abstract
BACKGROUND Multi-parametric magnetic resonance imaging (mp-MRI) is emerging as a useful tool for prostate cancer (PCa) detection but currently has unaddressed limitations. Computer aided diagnosis (CAD) systems have been developed to address these needs, but many approaches used to generate and validate the models have inherent biases. METHOD All clinically significant PCa on histology was mapped to mp-MRI using a previously validated registration algorithm. Shape and size matched non-PCa regions were selected using a proposed sampling algorithm to eliminate biases towards shape and size. Further analysis was performed to assess biases regarding inter-zonal variability. RESULTS A 5-feature Naïve-Bayes classifier produced an area under the receiver operating characteristic curve (AUC) of 0.80 validated using leave-one-patient-out cross-validation. As mean inter-class area mismatch increased, median AUC trended towards positively biasing classifiers to producing higher AUCs. Classifiers were invariant to differences in shape between PCa and non-PCa lesions (AUC: 0.82 vs 0.82). Performance for models trained and tested only in the peripheral zone was found to be lower than in the central gland (AUC: 0.75 vs 0.95). CONCLUSION We developed a radiomics based machine learning system to classify PCa vs non-PCa tissue on mp-MRI validated on accurately co-registered mid-gland histology with a measured target registration error. Potential biases involved in model development were interrogated to provide considerations for future work in this area.
Collapse
Affiliation(s)
- Ryan Alfano
- Baines Imaging Research Laboratory, 790 Commissioners Rd E, London, ON N6A 5W9, Canada; Lawson Health Research Institute, 750 Base Line Rd E, London, ON N6C 2R5, Canada; Western University, Department of Medical Biophysics, 1151 Richmond St., London, ON N6A 3K7, Canada.
| | - Glenn S Bauman
- Western University, Department of Medical Biophysics, 1151 Richmond St., London, ON N6A 3K7, Canada; Western University, Department of Oncology, 1151 Richmond St., London, ON N6A 3K7, Canada.
| | - Jose A Gomez
- Western University, Department of Pathology and Laboratory Medicine, 1151 Richmond St., London, ON N6A 3K7, Canada.
| | - Mena Gaed
- Western University, Department of Pathology and Laboratory Medicine, 1151 Richmond St., London, ON N6A 3K7, Canada.
| | - Madeleine Moussa
- Western University, Department of Pathology and Laboratory Medicine, 1151 Richmond St., London, ON N6A 3K7, Canada.
| | - Joseph Chin
- Western University, Department of Surgery, 1151 Richmond St., London, ON N6A 3K7, Canada; Western University, Department of Oncology, 1151 Richmond St., London, ON N6A 3K7, Canada.
| | - Stephen Pautler
- Western University, Department of Surgery, 1151 Richmond St., London, ON N6A 3K7, Canada; Western University, Department of Oncology, 1151 Richmond St., London, ON N6A 3K7, Canada.
| | - Aaron D Ward
- Baines Imaging Research Laboratory, 790 Commissioners Rd E, London, ON N6A 5W9, Canada; Lawson Health Research Institute, 750 Base Line Rd E, London, ON N6C 2R5, Canada; Western University, Department of Medical Biophysics, 1151 Richmond St., London, ON N6A 3K7, Canada; Western University, Department of Oncology, 1151 Richmond St., London, ON N6A 3K7, Canada.
| |
Collapse
|
12
|
Jiang KW, Song Y, Hou Y, Zhi R, Zhang J, Bao ML, Li H, Yan X, Xi W, Zhang CX, Yao YF, Yang G, Zhang YD. Performance of Artificial Intelligence-Aided Diagnosis System for Clinically Significant Prostate Cancer with MRI: A Diagnostic Comparison Study. J Magn Reson Imaging 2022; 57:1352-1364. [PMID: 36222324 DOI: 10.1002/jmri.28427] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Revised: 08/28/2022] [Accepted: 08/29/2022] [Indexed: 11/11/2022] Open
Abstract
BACKGROUND The high level of expertise required for accurate interpretation of prostate MRI. PURPOSE To develop and test an artificial intelligence (AI) system for diagnosis of clinically significant prostate cancer (CsPC) with MRI. STUDY TYPE Retrospective. SUBJECTS One thousand two hundred thirty patients from derivation cohort between Jan 2012 and Oct 2019, and 169 patients from a publicly available data (U-Net: 423 for training/validation and 49 for test and TrumpeNet: 820 for training/validation and 579 for test). FIELD STRENGTH/SEQUENCE 3.0T/scanners, T2 -weighted imaging (T2 WI), diffusion-weighted imaging, and apparent diffusion coefficient map. ASSESSMENT Close-loop AI system was trained with an Unet for prostate segmentation and a TrumpetNet for CsPC detection. Performance of AI was tested in 410 internal and 169 external sets against 24 radiologists categorizing into junior, general and subspecialist group. Gleason score >6 was identified as CsPC at pathology. STATISTICAL TESTS Area under the receiver operating characteristic curve (AUC-ROC); Delong test; Meta-regression I2 analysis. RESULTS In average, for internal test, AI had lower AUC-ROC than subspecialists (0.85 vs. 0.92, P < 0.05), and was comparable to junior (0.84, P = 0.76) and general group (0.86, P = 0.35). For external test, both AI (0.86) and subspecialist (0.86) had higher AUC than junior (0.80, P < 0.05) and general reader (0.83, P < 0.05). In individual, it revealed moderate diagnostic heterogeneity in 24 readers (Mantel-Haenszel I2 = 56.8%, P < 0.01), and AI outperformed 54.2% (13/24) of readers in summary ROC analysis. In multivariate test, Gleason score, zonal location, PI-RADS score and lesion size significantly impacted the accuracy of AI; while effect of data source, MR device and parameter settings on AI performance is insignificant (P > 0.05). DATA CONCLUSION Our AI system can match and to some case exceed clinicians for the diagnosis of CsPC with prostate MRI. EVIDENCE LEVEL 3 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Ke-Wen Jiang
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China.,AI Imaging Lab, Medical Imaging College, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Yang Song
- Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai, People's Republic of China
| | - Ying Hou
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China.,AI Imaging Lab, Medical Imaging College, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Rui Zhi
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China.,AI Imaging Lab, Medical Imaging College, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Jing Zhang
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China.,AI Imaging Lab, Medical Imaging College, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Mei-Ling Bao
- Department of Pathology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Hai Li
- Department of Pathology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| | - Xu Yan
- MR Scientific Marketing, Siemens Healthcare, Shanghai, People's Republic of China
| | - Wei Xi
- Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai, People's Republic of China
| | - Cheng-Xiu Zhang
- Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai, People's Republic of China
| | - Ye-Feng Yao
- Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai, People's Republic of China
| | - Guang Yang
- Shanghai Key Laboratory of Magnetic Resonance, East China Normal University, Shanghai, People's Republic of China
| | - Yu-Dong Zhang
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China.,AI Imaging Lab, Medical Imaging College, Nanjing Medical University, Nanjing, Jiangsu, People's Republic of China
| |
Collapse
|
13
|
Labus S, Altmann MM, Huisman H, Tong A, Penzkofer T, Choi MH, Shabunin I, Winkel DJ, Xing P, Szolar DH, Shea SM, Grimm R, von Busch H, Kamen A, Herold T, Baumann C. A concurrent, deep learning-based computer-aided detection system for prostate multiparametric MRI: a performance study involving experienced and less-experienced radiologists. Eur Radiol 2022; 33:64-76. [PMID: 35900376 DOI: 10.1007/s00330-022-08978-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 06/16/2022] [Accepted: 06/21/2022] [Indexed: 11/04/2022]
Abstract
OBJECTIVES To evaluate the effect of a deep learning-based computer-aided diagnosis (DL-CAD) system on experienced and less-experienced radiologists in reading prostate mpMRI. METHODS In this retrospective, multi-reader multi-case study, a consecutive set of 184 patients examined between 01/2018 and 08/2019 were enrolled. Ground truth was combined targeted and 12-core systematic transrectal ultrasound-guided biopsy. Four radiologists, two experienced and two less-experienced, evaluated each case twice, once without (DL-CAD-) and once assisted by DL-CAD (DL-CAD+). ROC analysis, sensitivities, specificities, PPV and NPV were calculated to compare the diagnostic accuracy for the diagnosis of prostate cancer (PCa) between the two groups (DL-CAD- vs. DL-CAD+). Spearman's correlation coefficients were evaluated to assess the relationship between PI-RADS category and Gleason score (GS). Also, the median reading times were compared for the two reading groups. RESULTS In total, 172 patients were included in the final analysis. With DL-CAD assistance, the overall AUC of the less-experienced radiologists increased significantly from 0.66 to 0.80 (p = 0.001; cutoff ISUP GG ≥ 1) and from 0.68 to 0.80 (p = 0.002; cutoff ISUP GG ≥ 2). Experienced radiologists showed an AUC increase from 0.81 to 0.86 (p = 0.146; cutoff ISUP GG ≥ 1) and from 0.81 to 0.84 (p = 0.433; cutoff ISUP GG ≥ 2). Furthermore, the correlation between PI-RADS category and GS improved significantly in the DL-CAD + group (0.45 vs. 0.57; p = 0.03), while the median reading time was reduced from 157 to 150 s (p = 0.023). CONCLUSIONS DL-CAD assistance increased the mean detection performance, with the most significant benefit for the less-experienced radiologist; with the help of DL-CAD less-experienced radiologists reached performances comparable to that of experienced radiologists. KEY POINTS • DL-CAD used as a concurrent reading aid helps radiologists to distinguish between benign and cancerous lesions in prostate MRI. • With the help of DL-CAD, less-experienced radiologists may achieve detection performances comparable to that of experienced radiologists. • DL-CAD assistance increases the correlation between PI-RADS category and cancer grade.
Collapse
Affiliation(s)
- Sandra Labus
- Department of Radiology, Helios Klinikum Berlin-Buch, Schwanebecker Ch 50, 13125, Berlin, Germany.
| | - Martin M Altmann
- Department of Radiology, Helios Klinikum Berlin-Buch, Schwanebecker Ch 50, 13125, Berlin, Germany
| | - Henkjan Huisman
- Radboud University Medical Center, Nijmegen, The Netherlands
| | - Angela Tong
- Department of Radiology, New York University Grossman School of Medicine, New York, NY, USA
| | | | - Moon Hyung Choi
- Eunpyeong St. Mary's Hospital, The Catholic University of Korea, Seoul, Republic of Korea
| | | | - David J Winkel
- Department of Radiology, University Hospital of Basel, Basel, Switzerland
| | - Pengyi Xing
- Department of Radiology, Changhai Hospital, Shanghai, China
| | | | | | - Robert Grimm
- Diagnostic Imaging, Siemens Healthcare, Erlangen, Germany
| | | | - Ali Kamen
- Digital Technology and Innovation, Siemens Healthineers, Princeton, NJ, USA
| | - Thomas Herold
- Department of Radiology, Helios Klinikum Berlin-Buch, Schwanebecker Ch 50, 13125, Berlin, Germany
| | - Clemens Baumann
- Department of Radiology, Helios Klinikum Berlin-Buch, Schwanebecker Ch 50, 13125, Berlin, Germany
| |
Collapse
|
14
|
Hötker AM, Vargas HA, Donati OF. Abbreviated MR Protocols in Prostate MRI. Life (Basel) 2022; 12:life12040552. [PMID: 35455043 PMCID: PMC9029675 DOI: 10.3390/life12040552] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 03/15/2022] [Accepted: 03/17/2022] [Indexed: 11/16/2022] Open
Abstract
Prostate MRI is an integral part of the clinical work-up in biopsy-naïve patients with suspected prostate cancer, and its use has been increasing steadily over the last years. To further its general availability and the number of men benefitting from it and to reduce the costs associated with MR, several approaches have been developed to shorten examination times, e.g., by focusing on sequences that provide the most useful information, employing new technological achievements, or improving the workflow in the MR suite. This review highlights these approaches; discusses their implications, advantages, and disadvantages; and serves as a starting point whenever an abbreviated prostate MRI protocol is being considered for implementation in clinical routine.
Collapse
Affiliation(s)
- Andreas M. Hötker
- Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland;
- Correspondence:
| | - Hebert Alberto Vargas
- Memorial Sloan Kettering Cancer Center, Department of Radiology, New York, NY 10065, USA;
| | - Olivio F. Donati
- Institute of Diagnostic and Interventional Radiology, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland;
| |
Collapse
|
15
|
Ferro M, de Cobelli O, Musi G, del Giudice F, Carrieri G, Busetto GM, Falagario UG, Sciarra A, Maggi M, Crocetto F, Barone B, Caputo VF, Marchioni M, Lucarelli G, Imbimbo C, Mistretta FA, Luzzago S, Vartolomei MD, Cormio L, Autorino R, Tătaru OS. Radiomics in prostate cancer: an up-to-date review. Ther Adv Urol 2022; 14:17562872221109020. [PMID: 35814914 PMCID: PMC9260602 DOI: 10.1177/17562872221109020] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 05/30/2022] [Indexed: 12/24/2022] Open
Abstract
Prostate cancer (PCa) is the most common worldwide diagnosed malignancy in male population. The diagnosis, the identification of aggressive disease, and the post-treatment follow-up needs a more comprehensive and holistic approach. Radiomics is the extraction and interpretation of images phenotypes in a quantitative manner. Radiomics may give an advantage through advancements in imaging modalities and through the potential power of artificial intelligence techniques by translating those features into clinical outcome prediction. This article gives an overview on the current evidence of methodology and reviews the available literature on radiomics in PCa patients, highlighting its potential for personalized treatment and future applications.
Collapse
Affiliation(s)
- Matteo Ferro
- Department of Urology, European Institute of Oncology, IRCCS, Milan, Italy, via Ripamonti 435 Milano, Italy
| | - Ottavio de Cobelli
- Department of Urology, European Institute of Oncology, IRCCS, Milan, Italy; Department of Oncology and Hematology-Oncology, Università degli Studi di Milano, Milan, Italy
| | - Gennaro Musi
- Department of Urology, European Institute of Oncology, IRCCS, Milan, Italy; Department of Oncology and Hematology-Oncology, Università degli Studi di Milano, Milan, Italy
| | - Francesco del Giudice
- Department of Urology, Policlinico Umberto I, Sapienza University of Rome, Rome, Italy
| | - Giuseppe Carrieri
- Department of Urology and Organ Transplantation, University of Foggia, Foggia, Italy
| | - Gian Maria Busetto
- Department of Urology and Organ Transplantation, University of Foggia, Foggia, Italy
| | | | - Alessandro Sciarra
- Department of Urology, Policlinico Umberto I, Sapienza University of Rome, Rome, Italy
| | - Martina Maggi
- Department of Urology, Policlinico Umberto I, Sapienza University of Rome, Rome, Italy
| | - Felice Crocetto
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples ‘Federico II’, Naples, Italy
| | - Biagio Barone
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples ‘Federico II’, Naples, Italy
| | - Vincenzo Francesco Caputo
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples ‘Federico II’, Naples, Italy
| | - Michele Marchioni
- Department of Medical, Oral and Biotechnological Sciences, G. d’Annunzio, University of Chieti, Chieti, Italy; Urology Unit, ‘SS. Annunziata’ Hospital, Chieti, Italy
- Department of Urology, ASL Abruzzo 2, Chieti, Italy
| | - Giuseppe Lucarelli
- Department of Emergency and Organ Transplantation, Urology, Andrology and Kidney Transplantation Unit, University of Bari, Bari, Italy
| | - Ciro Imbimbo
- Department of Neurosciences, Reproductive Sciences and Odontostomatology, University of Naples ‘Federico II’, Naples, Italy
| | - Francesco Alessandro Mistretta
- Department of Urology, European Institute of Oncology, IRCCS, Milan, Italy
- Università degli Studi di Milano, Milan, Italy
| | - Stefano Luzzago
- Department of Urology, European Institute of Oncology, IRCCS, Milan, Italy
- Università degli Studi di Milano, Milan, Italy
| | - Mihai Dorin Vartolomei
- Department of Cell and Molecular Biology, George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mures, Târgu Mures, Romania
- Department of Urology, Medical University of Vienna, Vienna, Austria
| | - Luigi Cormio
- Urology and Renal Transplantation Unit, Department of Medical and Surgical Sciences, University of Foggia, Foggia, Italy
- Urology Unit, Bonomo Teaching Hospital, Foggia, Italy
| | | | - Octavian Sabin Tătaru
- Institution Organizing University Doctoral Studies, I.O.S.U.D., George Emil Palade University of Medicine, Pharmacy, Science, and Technology of Târgu Mures, Târgu Mures, Romania
| |
Collapse
|
16
|
Mehta P, Antonelli M, Singh S, Grondecka N, Johnston EW, Ahmed HU, Emberton M, Punwani S, Ourselin S. AutoProstate: Towards Automated Reporting of Prostate MRI for Prostate Cancer Assessment Using Deep Learning. Cancers (Basel) 2021; 13:6138. [PMID: 34885246 PMCID: PMC8656605 DOI: 10.3390/cancers13236138] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Revised: 11/30/2021] [Accepted: 12/03/2021] [Indexed: 11/21/2022] Open
Abstract
Multiparametric magnetic resonance imaging (mpMRI) of the prostate is used by radiologists to identify, score, and stage abnormalities that may correspond to clinically significant prostate cancer (CSPCa). Automatic assessment of prostate mpMRI using artificial intelligence algorithms may facilitate a reduction in missed cancers and unnecessary biopsies, an increase in inter-observer agreement between radiologists, and an improvement in reporting quality. In this work, we introduce AutoProstate, a deep learning-powered framework for automatic MRI-based prostate cancer assessment. AutoProstate comprises of three modules: Zone-Segmenter, CSPCa-Segmenter, and Report-Generator. Zone-Segmenter segments the prostatic zones on T2-weighted imaging, CSPCa-Segmenter detects and segments CSPCa lesions using biparametric MRI, and Report-Generator generates an automatic web-based report containing four sections: Patient Details, Prostate Size and PSA Density, Clinically Significant Lesion Candidates, and Findings Summary. In our experiment, AutoProstate was trained using the publicly available PROSTATEx dataset, and externally validated using the PICTURE dataset. Moreover, the performance of AutoProstate was compared to the performance of an experienced radiologist who prospectively read PICTURE dataset cases. In comparison to the radiologist, AutoProstate showed statistically significant improvements in prostate volume and prostate-specific antigen density estimation. Furthermore, AutoProstate matched the CSPCa lesion detection sensitivity of the radiologist, which is paramount, but produced more false positive detections.
Collapse
Affiliation(s)
- Pritesh Mehta
- Department of Medical Physics and Biomedical Engineering, University College London, London WC1E 6BT, UK
- School of Biomedical Engineering Imaging Sciences, King’s College London, London SE1 7EH, UK; (M.A.); (S.O.)
| | - Michela Antonelli
- School of Biomedical Engineering Imaging Sciences, King’s College London, London SE1 7EH, UK; (M.A.); (S.O.)
| | - Saurabh Singh
- Centre for Medical Imaging, University College London, London WC1E 6BT, UK; (S.S.); (S.P.)
| | - Natalia Grondecka
- Department of Medical Radiology, Medical University of Lublin, 20-059 Lublin, Poland;
| | | | - Hashim U. Ahmed
- Imperial Prostate, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, London SW7 2AZ, UK;
| | - Mark Emberton
- Division of Surgery and Interventional Science, Faculty of Medical Sciences, University College London, London WC1E 6BT, UK;
| | - Shonit Punwani
- Centre for Medical Imaging, University College London, London WC1E 6BT, UK; (S.S.); (S.P.)
| | - Sébastien Ourselin
- School of Biomedical Engineering Imaging Sciences, King’s College London, London SE1 7EH, UK; (M.A.); (S.O.)
| |
Collapse
|
17
|
Hosseinzadeh M, Saha A, Brand P, Slootweg I, de Rooij M, Huisman H. Deep learning-assisted prostate cancer detection on bi-parametric MRI: minimum training data size requirements and effect of prior knowledge. Eur Radiol 2021; 32:2224-2234. [PMID: 34786615 PMCID: PMC8921042 DOI: 10.1007/s00330-021-08320-y] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 08/18/2021] [Accepted: 09/07/2021] [Indexed: 01/14/2023]
Abstract
Objectives To assess Prostate Imaging Reporting and Data System (PI-RADS)–trained deep learning (DL) algorithm performance and to investigate the effect of data size and prior knowledge on the detection of clinically significant prostate cancer (csPCa) in biopsy-naïve men with a suspicion of PCa. Methods Multi-institution data included 2734 consecutive biopsy-naïve men with elevated PSA levels (≥ 3 ng/mL) that underwent multi-parametric MRI (mpMRI). mpMRI exams were prospectively reported using PI-RADS v2 by expert radiologists. A DL framework was designed and trained on center 1 data (n = 1952) to predict PI-RADS ≥ 4 (n = 1092) lesions from bi-parametric MRI (bpMRI). Experiments included varying the number of cases and the use of automatic zonal segmentation as a DL prior. Independent center 2 cases (n = 296) that included pathology outcome (systematic and MRI targeted biopsy) were used to compute performance for radiologists and DL. The performance of detecting PI-RADS 4–5 and Gleason > 6 lesions was assessed on 782 unseen cases (486 center 1, 296 center 2) using free-response ROC (FROC) and ROC analysis. Results The DL sensitivity for detecting PI-RADS ≥ 4 lesions was 87% (193/223, 95% CI: 82–91) at an average of 1 false positive (FP) per patient, and an AUC of 0.88 (95% CI: 0.84–0.91). The DL sensitivity for the detection of Gleason > 6 lesions was 85% (79/93, 95% CI: 77–83) @ 1 FP compared to 91% (85/93, 95% CI: 84–96) @ 0.3 FP for a consensus panel of expert radiologists. Data size and prior zonal knowledge significantly affected performance (4%, \documentclass[12pt]{minimal}
\usepackage{amsmath}
\usepackage{wasysym}
\usepackage{amsfonts}
\usepackage{amssymb}
\usepackage{amsbsy}
\usepackage{mathrsfs}
\usepackage{upgreek}
\setlength{\oddsidemargin}{-69pt}
\begin{document}$$p<0.05$$\end{document}p<0.05). Conclusion PI-RADS-trained DL can accurately detect and localize Gleason > 6 lesions. DL could reach expert performance using substantially more than 2000 training cases, and DL zonal segmentation. Key Points • AI for prostate MRI analysis depends strongly on data size and prior zonal knowledge. • AI needs substantially more than 2000 training cases to achieve expert performance. Supplementary Information The online version contains supplementary material available at 10.1007/s00330-021-08320-y.
Collapse
Affiliation(s)
- Matin Hosseinzadeh
- Diagnostic Image Analysis Group, Department of Medical Imaging, Radboudumc, Nijmegen, The Netherlands
| | - Anindo Saha
- Diagnostic Image Analysis Group, Department of Medical Imaging, Radboudumc, Nijmegen, The Netherlands
| | - Patrick Brand
- Diagnostic Image Analysis Group, Department of Medical Imaging, Radboudumc, Nijmegen, The Netherlands
| | - Ilse Slootweg
- Diagnostic Image Analysis Group, Department of Medical Imaging, Radboudumc, Nijmegen, The Netherlands
| | - Maarten de Rooij
- Diagnostic Image Analysis Group, Department of Medical Imaging, Radboudumc, Nijmegen, The Netherlands
| | - Henkjan Huisman
- Diagnostic Image Analysis Group, Department of Medical Imaging, Radboudumc, Nijmegen, The Netherlands.
| |
Collapse
|
18
|
Barra D, Nicoletti G, Defeudis A, Mazzetti S, Panic J, Gatti M, Faletti R, Russo F, Regge D, Giannini V. Deep learning model for automatic prostate segmentation on bicentric T2w images with and without endorectal coil. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2021; 2021:3370-3373. [PMID: 34891962 DOI: 10.1109/embc46164.2021.9630792] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Automatic segmentation of the prostate on Magnetic Resonance Imaging (MRI) is one of the topics on which research has focused in recent years as it is a fundamental first step in the building process of a Computer aided diagnosis (CAD) system for cancer detection. Unfortunately, MRI acquired in different centers with different scanners leads to images with different characteristics. In this work, we propose an automatic algorithm for prostate segmentation, based on a U-Net applying transfer learning method in a bi-center setting. First, T2w images with and without endorectal coil from 80 patients acquired at Center A were used as training set and internal validation set. Then, T2w images without endorectal coil from 20 patients acquired at Center B were used as external validation. The reference standard for this study was manual segmentation of the prostate gland performed by an expert operator. The results showed a Dice similarity coefficient >85% in both internal and external validation datasets.Clinical Relevance- This segmentation algorithm could be integrated into a CAD system to optimize computational effort in prostate cancer detection.
Collapse
|
19
|
Giannini V, Mazzetti S, Defeudis A, Stranieri G, Calandri M, Bollito E, Bosco M, Porpiglia F, Manfredi M, De Pascale A, Veltri A, Russo F, Regge D. A Fully Automatic Artificial Intelligence System Able to Detect and Characterize Prostate Cancer Using Multiparametric MRI: Multicenter and Multi-Scanner Validation. Front Oncol 2021; 11:718155. [PMID: 34660282 PMCID: PMC8517452 DOI: 10.3389/fonc.2021.718155] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Accepted: 09/03/2021] [Indexed: 01/06/2023] Open
Abstract
In the last years, the widespread use of the prostate-specific antigen (PSA) blood examination to triage patients who will enter the diagnostic/therapeutic path for prostate cancer (PCa) has almost halved PCa-specific mortality. As a counterpart, millions of men with clinically insignificant cancer not destined to cause death are treated, with no beneficial impact on overall survival. Therefore, there is a compelling need to develop tools that can help in stratifying patients according to their risk, to support physicians in the selection of the most appropriate treatment option for each individual patient. The aim of this study was to develop and validate on multivendor data a fully automated computer-aided diagnosis (CAD) system to detect and characterize PCas according to their aggressiveness. We propose a CAD system based on artificial intelligence algorithms that a) registers all images coming from different MRI sequences, b) provides candidates suspicious to be tumor, and c) provides an aggressiveness score of each candidate based on the results of a support vector machine classifier fed with radiomics features. The dataset was composed of 131 patients (149 tumors) from two different institutions that were divided in a training set, a narrow validation set, and an external validation set. The algorithm reached an area under the receiver operating characteristic (ROC) curve in distinguishing between low and high aggressive tumors of 0.96 and 0.81 on the training and validation sets, respectively. Moreover, when the output of the classifier was divided into three classes of risk, i.e., indolent, indeterminate, and aggressive, our method did not classify any aggressive tumor as indolent, meaning that, according to our score, all aggressive tumors would undergo treatment or further investigations. Our CAD performance is superior to that of previous studies and overcomes some of their limitations, such as the need to perform manual segmentation of the tumor or the fact that analysis is limited to single-center datasets. The results of this study are promising and could pave the way to a prediction tool for personalized decision making in patients harboring PCa.
Collapse
Affiliation(s)
- Valentina Giannini
- Department of Radiology, Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy.,Department of Surgical Sciences, University of Turin, Turin, Italy
| | - Simone Mazzetti
- Department of Radiology, Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy.,Department of Surgical Sciences, University of Turin, Turin, Italy
| | - Arianna Defeudis
- Department of Radiology, Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy.,Department of Surgical Sciences, University of Turin, Turin, Italy
| | - Giuseppe Stranieri
- Radiology Unit, Azienda Ospedaliera Universitaria (AOU) San Luigi Gonzaga, Orbassano, Italy
| | - Marco Calandri
- Radiology Unit, Azienda Ospedaliera Universitaria (AOU) San Luigi Gonzaga, Orbassano, Italy.,Department of Oncology, University of Turin, Turin, Italy
| | - Enrico Bollito
- Department of Pathology, San Luigi Gonzaga Hospital, University of Turin, Orbassano, Italy
| | - Martino Bosco
- Department of Pathology, San Lazzaro Hospital, Alba, Italy
| | - Francesco Porpiglia
- Department of Urology, San Luigi Gonzaga Hospital, University of Turin, Orbassano, Italy
| | - Matteo Manfredi
- Department of Urology, San Luigi Gonzaga Hospital, University of Turin, Orbassano, Italy
| | - Agostino De Pascale
- Radiology Unit, Azienda Ospedaliera Universitaria (AOU) San Luigi Gonzaga, Orbassano, Italy
| | - Andrea Veltri
- Radiology Unit, Azienda Ospedaliera Universitaria (AOU) San Luigi Gonzaga, Orbassano, Italy.,Department of Oncology, University of Turin, Turin, Italy
| | - Filippo Russo
- Department of Radiology, Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy
| | - Daniele Regge
- Department of Radiology, Candiolo Cancer Institute, FPO-IRCCS, Candiolo, Italy.,Department of Surgical Sciences, University of Turin, Turin, Italy
| |
Collapse
|
20
|
Hoar D, Lee PQ, Guida A, Patterson S, Bowen CV, Merrimen J, Wang C, Rendon R, Beyea SD, Clarke SE. Combined Transfer Learning and Test-Time Augmentation Improves Convolutional Neural Network-Based Semantic Segmentation of Prostate Cancer from Multi-Parametric MR Images. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2021; 210:106375. [PMID: 34500139 DOI: 10.1016/j.cmpb.2021.106375] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2020] [Accepted: 08/22/2021] [Indexed: 06/13/2023]
Abstract
PURPOSE Multiparametric MRI (mp-MRI) is a widely used tool for diagnosing and staging prostate cancer. The purpose of this study was to evaluate whether transfer learning, unsupervised pre-training and test-time augmentation significantly improved the performance of a convolutional neural network (CNN) for pixel-by-pixel prediction of cancer vs. non-cancer using mp-MRI datasets. METHODS 154 subjects undergoing mp-MRI were prospectively recruited, 16 of whom subsequently underwent radical prostatectomy. Logistic regression, random forest and CNN models were trained on mp-MRI data using histopathology as the gold standard. Transfer learning, unsupervised pre-training and test-time augmentation were used to boost CNN performance. Models were evaluated using Dice score and area under the receiver operating curve (AUROC) with leave-one-subject-out cross validation. Permutation feature importance testing was performed to evaluate the relative value of each MR contrast to CNN model performance. Statistical significance (p<0.05) was determined using the paired Wilcoxon signed rank test with Benjamini-Hochberg correction for multiple comparisons. RESULTS Baseline CNN outperformed logistic regression and random forest models. Transfer learning and unsupervised pre-training did not significantly improve CNN performance over baseline; however, test-time augmentation resulted in significantly higher Dice scores over both baseline CNN and CNN plus either of transfer learning or unsupervised pre-training. The best performing model was CNN with transfer learning and test-time augmentation (Dice score of 0.59 and AUROC of 0.93). The most important contrast was apparent diffusion coefficient (ADC), followed by Ktrans and T2, although each contributed significantly to classifier performance. CONCLUSIONS The addition of transfer learning and test-time augmentation resulted in significant improvement in CNN segmentation performance in a small set of prostate cancer mp-MRI data. Results suggest that these techniques may be more broadly useful for the optimization of deep learning algorithms applied to the problem of semantic segmentation in biomedical image datasets. However, further work is needed to improve the generalizability of the specific model presented herein.
Collapse
Affiliation(s)
- David Hoar
- Department of Electrical and Computer Engineering, Dalhousie University, Halifax, NS, Canada
| | - Peter Q Lee
- Faculty of Computer Science, Dalhousie University, Halifax, NS, Canada
| | - Alessandro Guida
- Biomedical Translational Imaging Centre, Nova Scotia Health Authority and IWK Health Centre, Halifax, NS, Canada
| | - Steven Patterson
- Biomedical Translational Imaging Centre, Nova Scotia Health Authority and IWK Health Centre, Halifax, NS, Canada
| | - Chris V Bowen
- Biomedical Translational Imaging Centre, Nova Scotia Health Authority and IWK Health Centre, Halifax, NS, Canada; Department of Diagnostic Radiology, Dalhousie University, Halifax, NS, Canada
| | | | - Cheng Wang
- Department of Pathology, Dalhousie University, Halifax, NS, Canada
| | - Ricardo Rendon
- Department of Urology, Dalhousie University, Halifax, NS, Canada
| | - Steven D Beyea
- Biomedical Translational Imaging Centre, Nova Scotia Health Authority and IWK Health Centre, Halifax, NS, Canada; Department of Diagnostic Radiology, Dalhousie University, Halifax, NS, Canada
| | - Sharon E Clarke
- Biomedical Translational Imaging Centre, Nova Scotia Health Authority and IWK Health Centre, Halifax, NS, Canada; Department of Diagnostic Radiology, Dalhousie University, Halifax, NS, Canada.
| |
Collapse
|
21
|
Winkel DJ, Tong A, Lou B, Kamen A, Comaniciu D, Disselhorst JA, Rodríguez-Ruiz A, Huisman H, Szolar D, Shabunin I, Choi MH, Xing P, Penzkofer T, Grimm R, von Busch H, Boll DT. A Novel Deep Learning Based Computer-Aided Diagnosis System Improves the Accuracy and Efficiency of Radiologists in Reading Biparametric Magnetic Resonance Images of the Prostate: Results of a Multireader, Multicase Study. Invest Radiol 2021; 56:605-613. [PMID: 33787537 DOI: 10.1097/rli.0000000000000780] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
OBJECTIVE The aim of this study was to evaluate the effect of a deep learning based computer-aided diagnosis (DL-CAD) system on radiologists' interpretation accuracy and efficiency in reading biparametric prostate magnetic resonance imaging scans. MATERIALS AND METHODS We selected 100 consecutive prostate magnetic resonance imaging cases from a publicly available data set (PROSTATEx Challenge) with and without histopathologically confirmed prostate cancer. Seven board-certified radiologists were tasked to read each case twice in 2 reading blocks (with and without the assistance of a DL-CAD), with a separation between the 2 reading sessions of at least 2 weeks. Reading tasks were to localize and classify lesions according to Prostate Imaging Reporting and Data System (PI-RADS) v2.0 and to assign a radiologist's level of suspicion score (scale from 1-5 in 0.5 increments; 1, benign; 5, malignant). Ground truth was established by consensus readings of 3 experienced radiologists. The detection performance (receiver operating characteristic curves), variability (Fleiss κ), and average reading time without DL-CAD assistance were evaluated. RESULTS The average accuracy of radiologists in terms of area under the curve in detecting clinically significant cases (PI-RADS ≥4) was 0.84 (95% confidence interval [CI], 0.79-0.89), whereas the same using DL-CAD was 0.88 (95% CI, 0.83-0.94) with an improvement of 4.4% (95% CI, 1.1%-7.7%; P = 0.010). Interreader concordance (in terms of Fleiss κ) increased from 0.22 to 0.36 (P = 0.003). Accuracy of radiologists in detecting cases with PI-RADS ≥3 was improved by 2.9% (P = 0.10). The median reading time in the unaided/aided scenario was reduced by 21% from 103 to 81 seconds (P < 0.001). CONCLUSIONS Using a DL-CAD system increased the diagnostic accuracy in detecting highly suspicious prostate lesions and reduced both the interreader variability and the reading time.
Collapse
Affiliation(s)
- David J Winkel
- From the Department of Radiology, University Hospital of Basel, Basel, Basel-Stadt, Switzerland
| | - Angela Tong
- Department of Radiology, NYU Langone Health, New York, NY
| | - Bin Lou
- Siemens Healthineers, Digital Technology and Innovation, Princeton, NJ
| | - Ali Kamen
- Siemens Healthineers, Digital Technology and Innovation, Princeton, NJ
| | - Dorin Comaniciu
- Siemens Healthineers, Digital Technology and Innovation, Princeton, NJ
| | | | | | - Henkjan Huisman
- Department of Radiology, Radboud University Medical Center, Nijmegen, the Netherlands
| | | | | | - Moon Hyung Choi
- Eunpyeong St Mary's Hospital, Catholic University of Korea, Seoul, Republic of Korea
| | - Pengyi Xing
- Radiology Department, Changhai Hospital of Shanghai, Shanghai, China
| | | | - Robert Grimm
- Siemens Healthineers Diagnostic Imaging, Erlangen, Germany
| | | | - Daniel T Boll
- From the Department of Radiology, University Hospital of Basel, Basel, Basel-Stadt, Switzerland
| |
Collapse
|
22
|
Retter A, Gong F, Syer T, Singh S, Adeleke S, Punwani S. Emerging methods for prostate cancer imaging: evaluating cancer structure and metabolic alterations more clearly. Mol Oncol 2021; 15:2565-2579. [PMID: 34328279 PMCID: PMC8486595 DOI: 10.1002/1878-0261.13071] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 07/09/2021] [Accepted: 07/29/2021] [Indexed: 12/24/2022] Open
Abstract
Imaging plays a fundamental role in all aspects of the cancer management pathway. However, conventional imaging techniques are largely reliant on morphological and size descriptors that have well-known limitations, particularly when considering targeted-therapy response monitoring. Thus, new imaging methods have been developed to characterise cancer and are now routinely implemented, such as diffusion-weighted imaging, dynamic contrast enhancement, positron emission technology (PET) and magnetic resonance spectroscopy. However, despite the improvement these techniques have enabled, limitations still remain. Novel imaging methods are now emerging, intent on further interrogating cancers. These techniques are at different stages of maturity along the biomarker pathway and aim to further evaluate the cancer microstructure (vascular, extracellular and restricted diffusion for cytometry in tumours) magnetic resonance imaging (MRI), luminal water fraction imaging] as well as the metabolic alterations associated with cancers (novel PET tracers, hyperpolarised MRI). Finally, the use of machine learning has shown powerful potential applications. By using prostate cancer as an exemplar, this Review aims to showcase these potentially potent imaging techniques and what stage we are at in their application to conventional clinical practice.
Collapse
Affiliation(s)
| | | | - Tom Syer
- UCL Centre for Medical ImagingLondonUK
| | | | | | | |
Collapse
|
23
|
Syer T, Mehta P, Antonelli M, Mallett S, Atkinson D, Ourselin S, Punwani S. Artificial Intelligence Compared to Radiologists for the Initial Diagnosis of Prostate Cancer on Magnetic Resonance Imaging: A Systematic Review and Recommendations for Future Studies. Cancers (Basel) 2021; 13:3318. [PMID: 34282762 PMCID: PMC8268820 DOI: 10.3390/cancers13133318] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2021] [Revised: 06/24/2021] [Accepted: 06/30/2021] [Indexed: 11/16/2022] Open
Abstract
Computer-aided diagnosis (CAD) of prostate cancer on multiparametric magnetic resonance imaging (mpMRI), using artificial intelligence (AI), may reduce missed cancers and unnecessary biopsies, increase inter-observer agreement between radiologists, and alleviate pressures caused by rising case incidence and a shortage of specialist radiologists to read prostate mpMRI. However, well-designed evaluation studies are required to prove efficacy above current clinical practice. A systematic search of the MEDLINE, EMBASE, and arXiv electronic databases was conducted for studies that compared CAD for prostate cancer detection or classification on MRI against radiologist interpretation and a histopathological reference standard, in treatment-naïve men with a clinical suspicion of prostate cancer. Twenty-seven studies were included in the final analysis. Due to substantial heterogeneities in the included studies, a narrative synthesis is presented. Several studies reported superior diagnostic accuracy for CAD over radiologist interpretation on small, internal patient datasets, though this was not observed in the few studies that performed evaluation using external patient data. Our review found insufficient evidence to suggest the clinical deployment of artificial intelligence algorithms at present. Further work is needed to develop and enforce methodological standards, promote access to large diverse datasets, and conduct prospective evaluations before clinical adoption can be considered.
Collapse
Affiliation(s)
- Tom Syer
- Centre for Medical Imaging, Division of Medicine, Bloomsbury Campus, University College London, London WC1E 6DH, UK; (T.S.); (S.M.); (D.A.)
| | - Pritesh Mehta
- Department of Medical Physics and Biomedical Engineering, Faculty of Engineering Sciences, Bloomsbury Campus, University College London, London WC1E 6DH, UK;
| | - Michela Antonelli
- School of Biomedical Engineering & Imaging Sciences, Faculty of Life Sciences and Medicine, St Thomas’ Campus, King’s College London, London SE1 7EH, UK; (M.A.); (S.O.)
| | - Sue Mallett
- Centre for Medical Imaging, Division of Medicine, Bloomsbury Campus, University College London, London WC1E 6DH, UK; (T.S.); (S.M.); (D.A.)
| | - David Atkinson
- Centre for Medical Imaging, Division of Medicine, Bloomsbury Campus, University College London, London WC1E 6DH, UK; (T.S.); (S.M.); (D.A.)
| | - Sébastien Ourselin
- School of Biomedical Engineering & Imaging Sciences, Faculty of Life Sciences and Medicine, St Thomas’ Campus, King’s College London, London SE1 7EH, UK; (M.A.); (S.O.)
| | - Shonit Punwani
- Centre for Medical Imaging, Division of Medicine, Bloomsbury Campus, University College London, London WC1E 6DH, UK; (T.S.); (S.M.); (D.A.)
| |
Collapse
|
24
|
Mehta P, Antonelli M, Ahmed HU, Emberton M, Punwani S, Ourselin S. Computer-aided diagnosis of prostate cancer using multiparametric MRI and clinical features: A patient-level classification framework. Med Image Anal 2021; 73:102153. [PMID: 34246848 DOI: 10.1016/j.media.2021.102153] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 04/03/2021] [Accepted: 06/28/2021] [Indexed: 01/07/2023]
Abstract
Computer-aided diagnosis (CAD) of prostate cancer (PCa) using multiparametric magnetic resonance imaging (mpMRI) is actively being investigated as a means to provide clinical decision support to radiologists. Typically, these systems are trained using lesion annotations. However, lesion annotations are expensive to obtain and inadequate for characterizing certain tumor types e.g. diffuse tumors and MRI invisible tumors. In this work, we introduce a novel patient-level classification framework, denoted PCF, that is trained using patient-level labels only. In PCF, features are extracted from three-dimensional mpMRI and derived parameter maps using convolutional neural networks and subsequently, combined with clinical features by a multi-classifier support vector machine scheme. The output of PCF is a probability value that indicates whether a patient is harboring clinically significant PCa (Gleason score ≥3+4) or not. PCF achieved mean area under the receiver operating characteristic curves of 0.79 and 0.86 on the PICTURE and PROSTATEx datasets respectively, using five-fold cross-validation. Clinical evaluation over a temporally separated PICTURE dataset cohort demonstrated comparable sensitivity and specificity to an experienced radiologist. We envision PCF finding most utility as a second reader during routine diagnosis or as a triage tool to identify low-risk patients who do not require a clinical read.
Collapse
Affiliation(s)
- Pritesh Mehta
- Department of Medical Physics and Biomedical Engineering, University College London, UK.
| | - Michela Antonelli
- Biomedical Engineering & Imaging Sciences School, King's College London, UK
| | - Hashim U Ahmed
- Imperial Prostate, Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, UK
| | - Mark Emberton
- Division of Surgery and Interventional Science, University College London, UK
| | - Shonit Punwani
- Centre for Medical Imaging, University College London, UK
| | - Sébastien Ourselin
- Biomedical Engineering & Imaging Sciences School, King's College London, UK
| |
Collapse
|
25
|
Giannini V, Mazzetti S, Cappello G, Doronzio VM, Vassallo L, Russo F, Giacobbe A, Muto G, Regge D. Computer-Aided Diagnosis Improves the Detection of Clinically Significant Prostate Cancer on Multiparametric-MRI: A Multi-Observer Performance Study Involving Inexperienced Readers. Diagnostics (Basel) 2021; 11:973. [PMID: 34071215 PMCID: PMC8227686 DOI: 10.3390/diagnostics11060973] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/17/2021] [Accepted: 05/26/2021] [Indexed: 11/17/2022] Open
Abstract
Recently, Computer Aided Diagnosis (CAD) systems have been proposed to help radiologists in detecting and characterizing Prostate Cancer (PCa). However, few studies evaluated the performances of these systems in a clinical setting, especially when used by non-experienced readers. The main aim of this study is to assess the diagnostic performance of non-experienced readers when reporting assisted by the likelihood map generated by a CAD system, and to compare the results with the unassisted interpretation. Three resident radiologists were asked to review multiparametric-MRI of patients with and without PCa, both unassisted and assisted by a CAD system. In both reading sessions, residents recorded all positive cases, and sensitivity, specificity, negative and positive predictive values were computed and compared. The dataset comprised 90 patients (45 with at least one clinically significant biopsy-confirmed PCa). Sensitivity significantly increased in the CAD assisted mode for patients with at least one clinically significant lesion (GS > 6) (68.7% vs. 78.1%, p = 0.018). Overall specificity was not statistically different between unassisted and assisted sessions (94.8% vs. 89.6, p = 0.072). The use of the CAD system significantly increases the per-patient sensitivity of inexperienced readers in the detection of clinically significant PCa, without negatively affecting specificity, while significantly reducing overall reporting time.
Collapse
Affiliation(s)
- Valentina Giannini
- Department of Surgical Sciences, University of Turin, 10126 Turin, Italy
- Department of Radiology, Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Italy; (G.C.); (V.M.D.); (L.V.); (F.R.); (D.R.)
| | - Simone Mazzetti
- Department of Surgical Sciences, University of Turin, 10126 Turin, Italy
- Department of Radiology, Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Italy; (G.C.); (V.M.D.); (L.V.); (F.R.); (D.R.)
| | - Giovanni Cappello
- Department of Radiology, Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Italy; (G.C.); (V.M.D.); (L.V.); (F.R.); (D.R.)
| | - Valeria Maria Doronzio
- Department of Radiology, Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Italy; (G.C.); (V.M.D.); (L.V.); (F.R.); (D.R.)
| | - Lorenzo Vassallo
- Department of Radiology, Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Italy; (G.C.); (V.M.D.); (L.V.); (F.R.); (D.R.)
| | - Filippo Russo
- Department of Radiology, Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Italy; (G.C.); (V.M.D.); (L.V.); (F.R.); (D.R.)
| | | | - Giovanni Muto
- Department of Urology, Humanitas University, 10153 Turin, Italy;
| | - Daniele Regge
- Department of Surgical Sciences, University of Turin, 10126 Turin, Italy
- Department of Radiology, Candiolo Cancer Institute, FPO-IRCCS, 10060 Candiolo, Italy; (G.C.); (V.M.D.); (L.V.); (F.R.); (D.R.)
| |
Collapse
|
26
|
ESUR/ESUI position paper: developing artificial intelligence for precision diagnosis of prostate cancer using magnetic resonance imaging. Eur Radiol 2021; 31:9567-9578. [PMID: 33991226 PMCID: PMC8589789 DOI: 10.1007/s00330-021-08021-6] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 03/19/2021] [Accepted: 04/27/2021] [Indexed: 11/06/2022]
Abstract
Abstract Artificial intelligence developments are essential to the successful deployment of community-wide, MRI-driven prostate cancer diagnosis. AI systems should ensure that the main benefits of biopsy avoidance are delivered while maintaining consistent high specificities, at a range of disease prevalences. Since all current artificial intelligence / computer-aided detection systems for prostate cancer detection are experimental, multiple developmental efforts are still needed to bring the vision to fruition. Initial work needs to focus on developing systems as diagnostic supporting aids so their results can be integrated into the radiologists’ workflow including gland and target outlining tasks for fusion biopsies. Developing AI systems as clinical decision-making tools will require greater efforts. The latter encompass larger multicentric, multivendor datasets where the different needs of patients stratified by diagnostic settings, disease prevalence, patient preference, and clinical setting are considered. AI-based, robust, standard operating procedures will increase the confidence of patients and payers, thus enabling the wider adoption of the MRI-directed approach for prostate cancer diagnosis. Key Points • AI systems need to ensure that the benefits of biopsy avoidance are delivered with consistent high specificities, at a range of disease prevalence. • Initial work has focused on developing systems as diagnostic supporting aids for outlining tasks, so they can be integrated into the radiologists’ workflow to support MRI-directed biopsies. • Decision support tools require a larger body of work including multicentric, multivendor studies where the clinical needs, disease prevalence, patient preferences, and clinical setting are additionally defined.
Collapse
|
27
|
Cheung HMC, Rubin D. Challenges and opportunities for artificial intelligence in oncological imaging. Clin Radiol 2021; 76:728-736. [PMID: 33902889 DOI: 10.1016/j.crad.2021.03.009] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2020] [Accepted: 03/15/2021] [Indexed: 02/08/2023]
Abstract
Imaging plays a key role in oncology, including the diagnosis and detection of cancer, determining clinical management, assessing treatment response, and complications of treatment or disease. The current use of clinical oncology is predominantly qualitative in nature with some relatively crude size-based measurements of tumours for assessment of disease progression or treatment response; however, it is increasingly understood that there may be significantly more information about oncological disease that can be obtained from imaging that is not currently utilized. Artificial intelligence (AI) has the potential to harness quantitative techniques to improve oncological imaging. These may include improving the efficiency or accuracy of traditional roles of imaging such as diagnosis or detection. These may also include new roles for imaging such as risk-stratifying patients for different types of therapy or determining biological tumour subtypes. This review article outlines several major areas in oncological imaging where there may be opportunities for AI technology. These include (1) screening and detection of cancer, (2) diagnosis and risk stratification, (3) tumour segmentation, (4) precision oncology, and (5) predicting prognosis and assessing treatment response. This review will also address some of the potential barriers to AI research in oncological imaging.
Collapse
Affiliation(s)
- H M C Cheung
- Department of Medical Imaging, Sunnybrook Health Sciences Centre, University of Toronto, Canada
| | - D Rubin
- Department of Radiology, Stanford University, CA, USA.
| |
Collapse
|
28
|
Vasey B, Ursprung S, Beddoe B, Taylor EH, Marlow N, Bilbro N, Watkinson P, McCulloch P. Association of Clinician Diagnostic Performance With Machine Learning-Based Decision Support Systems: A Systematic Review. JAMA Netw Open 2021; 4:e211276. [PMID: 33704476 PMCID: PMC7953308 DOI: 10.1001/jamanetworkopen.2021.1276] [Citation(s) in RCA: 66] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
IMPORTANCE An increasing number of machine learning (ML)-based clinical decision support systems (CDSSs) are described in the medical literature, but this research focuses almost entirely on comparing CDSS directly with clinicians (human vs computer). Little is known about the outcomes of these systems when used as adjuncts to human decision-making (human vs human with computer). OBJECTIVES To conduct a systematic review to investigate the association between the interactive use of ML-based diagnostic CDSSs and clinician performance and to examine the extent of the CDSSs' human factors evaluation. EVIDENCE REVIEW A search of MEDLINE, Embase, PsycINFO, and grey literature was conducted for the period between January 1, 2010, and May 31, 2019. Peer-reviewed studies published in English comparing human clinician performance with and without interactive use of an ML-based diagnostic CDSSs were included. All metrics used to assess human performance were considered as outcomes. The risk of bias was assessed using Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2) and Risk of Bias in Non-Randomised Studies-Intervention (ROBINS-I). Narrative summaries were produced for the main outcomes. Given the heterogeneity of medical conditions, outcomes of interest, and evaluation metrics, no meta-analysis was performed. FINDINGS A total of 8112 studies were initially retrieved and 5154 abstracts were screened; of these, 37 studies met the inclusion criteria. The median number of participating clinicians was 4 (interquartile range, 3-8). Of the 107 results that reported statistical significance, 54 (50%) were increased by the use of CDSSs, 4 (4%) were decreased, and 49 (46%) showed no change or an unclear change. In the subgroup of studies carried out in representative clinical settings, no association between the use of ML-based diagnostic CDSSs and improved clinician performance could be observed. Interobserver agreement was the commonly reported outcome whose change was the most strongly associated with CDSS use. Four studies (11%) reported on user feedback, and, in all but 1 case, clinicians decided to override at least some of the algorithms' recommendations. Twenty-eight studies (76%) were rated as having a high risk of bias in at least 1 of the 4 QUADAS-2 core domains, and 6 studies (16%) were considered to be at serious or critical risk of bias using ROBINS-I. CONCLUSIONS AND RELEVANCE This systematic review found only sparse evidence that the use of ML-based CDSSs is associated with improved clinician diagnostic performance. Most studies had a low number of participants, were at high or unclear risk of bias, and showed little or no consideration for human factors. Caution should be exercised when estimating the current potential of ML to improve human diagnostic performance, and more comprehensive evaluation should be conducted before deploying ML-based CDSSs in clinical settings. The results highlight the importance of considering supported human decisions as end points rather than merely the stand-alone CDSSs outputs.
Collapse
Affiliation(s)
- Baptiste Vasey
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, United Kingdom
| | - Stephan Ursprung
- Department of Radiology, University of Cambridge, Cambridge, United Kingdom
| | - Benjamin Beddoe
- Faculty of Medicine, Imperial College London, London, United Kingdom
| | - Elliott H. Taylor
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, United Kingdom
| | - Neale Marlow
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, United Kingdom
- Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - Nicole Bilbro
- Department of Surgery, Maimonides Medical Center, Brooklyn, New York
| | - Peter Watkinson
- Critical Care Research Group, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom
| | - Peter McCulloch
- Nuffield Department of Surgical Sciences, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
29
|
Winkel DJ, Wetterauer C, Matthias MO, Lou B, Shi B, Kamen A, Comaniciu D, Seifert HH, Rentsch CA, Boll DT. Autonomous Detection and Classification of PI-RADS Lesions in an MRI Screening Population Incorporating Multicenter-Labeled Deep Learning and Biparametric Imaging: Proof of Concept. Diagnostics (Basel) 2020; 10:diagnostics10110951. [PMID: 33202680 PMCID: PMC7697194 DOI: 10.3390/diagnostics10110951] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 10/27/2020] [Accepted: 11/11/2020] [Indexed: 12/12/2022] Open
Abstract
Background: Opportunistic prostate cancer (PCa) screening is a controversial topic. Magnetic resonance imaging (MRI) has proven to detect prostate cancer with a high sensitivity and specificity, leading to the idea to perform an image-guided prostate cancer (PCa) screening; Methods: We evaluated a prospectively enrolled cohort of 49 healthy men participating in a dedicated image-guided PCa screening trial employing a biparametric MRI (bpMRI) protocol consisting of T2-weighted (T2w) and diffusion weighted imaging (DWI) sequences. Datasets were analyzed both by human readers and by a fully automated artificial intelligence (AI) software using deep learning (DL). Agreement between the algorithm and the reports—serving as the ground truth—was compared on a per-case and per-lesion level using metrics of diagnostic accuracy and k statistics; Results: The DL method yielded an 87% sensitivity (33/38) and 50% specificity (5/10) with a k of 0.42. 12/28 (43%) Prostate Imaging Reporting and Data System (PI-RADS) 3, 16/22 (73%) PI-RADS 4, and 5/5 (100%) PI-RADS 5 lesions were detected compared to the ground truth. Targeted biopsy revealed PCa in six participants, all correctly diagnosed by both the human readers and AI. Conclusions: The results of our study show that in our AI-assisted, image-guided prostate cancer screening the software solution was able to identify highly suspicious lesions and has the potential to effectively guide the targeted-biopsy workflow.
Collapse
Affiliation(s)
- David J. Winkel
- Department of Radiology, University Hospital of Basel, 4051 Basel, Basel-Stadt, Switzerland;
- Siemens Healthineers, Medical Imaging Technologies Princeton, Princeton, NJ 08540, USA; (B.L.); (B.S.); (A.K.); (D.C.)
- Correspondence: ; Tel.: +41-61-328-65-22; Fax: +41-61-265-43-54
| | - Christian Wetterauer
- Department of Urology, University Hospital of Basel, 4051 Basel, Basel-Stadt, Switzerland; (C.W.); (M.O.M.); (H.-H.S.); (C.A.R.)
| | - Marc Oliver Matthias
- Department of Urology, University Hospital of Basel, 4051 Basel, Basel-Stadt, Switzerland; (C.W.); (M.O.M.); (H.-H.S.); (C.A.R.)
| | - Bin Lou
- Siemens Healthineers, Medical Imaging Technologies Princeton, Princeton, NJ 08540, USA; (B.L.); (B.S.); (A.K.); (D.C.)
| | - Bibo Shi
- Siemens Healthineers, Medical Imaging Technologies Princeton, Princeton, NJ 08540, USA; (B.L.); (B.S.); (A.K.); (D.C.)
| | - Ali Kamen
- Siemens Healthineers, Medical Imaging Technologies Princeton, Princeton, NJ 08540, USA; (B.L.); (B.S.); (A.K.); (D.C.)
| | - Dorin Comaniciu
- Siemens Healthineers, Medical Imaging Technologies Princeton, Princeton, NJ 08540, USA; (B.L.); (B.S.); (A.K.); (D.C.)
| | - Hans-Helge Seifert
- Department of Urology, University Hospital of Basel, 4051 Basel, Basel-Stadt, Switzerland; (C.W.); (M.O.M.); (H.-H.S.); (C.A.R.)
| | - Cyrill A. Rentsch
- Department of Urology, University Hospital of Basel, 4051 Basel, Basel-Stadt, Switzerland; (C.W.); (M.O.M.); (H.-H.S.); (C.A.R.)
| | - Daniel T. Boll
- Department of Radiology, University Hospital of Basel, 4051 Basel, Basel-Stadt, Switzerland;
| |
Collapse
|
30
|
Ferriero M, Anceschi U, Bove AM, Bertini L, Flammia RS, Zeccolini G, DE Concilio B, Tuderti G, Mastroianni R, Misuraca L, Brassetti A, Guaglianone S, Gallucci M, Celia A, Simone G. Fusion US/MRI prostate biopsy using a computer aided diagnostic (CAD) system. Minerva Urol Nephrol 2020; 73:616-624. [PMID: 33179868 DOI: 10.23736/s2724-6051.20.04008-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND The aim of this study was to investigate the impact of computer aided diagnostic (CAD) system on the detection rate of prostate cancer (PCa) in a series of fusion prostate biopsy (FPB). METHODS Two prospective transperineal FPB series (with or without CAD assistance) were analyzed and PCa detection rates compared with per-patient and per-target analyses. The χ2 and Mann-Whitney test were used to compare categorical and continuous variables, respectively. Univariable and multivariable regression analyses were applied to identify predictors of any and clinically significant (cs) PCa detection. Subgroup analyses were performed after stratifying for PI-RADS Score and lesion location. RESULTS Out of 183 FPB, 89 were performed with CAD assistance. At per-patient analysis the detection rate of any PCa and of cs PCa were 56.3% and 30.6%, respectively; the aid of CAD was negligible for either any PCa or csPCa detection rates (P=0.45 and P=0.99, respectively). Conversely in a per-target analysis, CAD-assisted biopsy had significantly higher positive predictive value (PPV) for any PCa versus MRI-only group (58% vs. 37.8%, P=0.001). PI-RADS Score was the only independent predictor of any and csPCa, either in per-patient or per-target multivariable regression analysis (all P<0.029). In a subgroup per-patient analysis of anterior/transitional zone lesions, csPCa detection rate was significantly higher in the CAD cohort (54.5%vs.11.1%, respectively; P=0.028), and CAD assistance was the only predictor of csPCa detection (P=0.013). CONCLUSIONS CAD assistance for FPB seems to improve detection of csPCa located in anterior/transitional zone. Enhanced identification and improved contouring of lesions may justify higher diagnostic performance.
Collapse
Affiliation(s)
| | - Umberto Anceschi
- Department of Urology, Regina Elena National Cancer Institute, Rome, Italy
| | - Alfredo M Bove
- Department of Urology, Regina Elena National Cancer Institute, Rome, Italy
| | - Luca Bertini
- Department of Radiology, Regina Elena National Cancer Institute, Rome, Italy
| | - Rocco S Flammia
- Department of Urology, Umberto I Polyclinic, Sapienza University, Rome, Italy
| | - Guglielmo Zeccolini
- Department of Urology, San Bassiano Hospital, Bassano del Grappa, Vicenza, Italy
| | | | - Gabriele Tuderti
- Department of Urology, Regina Elena National Cancer Institute, Rome, Italy
| | | | - Leonardo Misuraca
- Department of Urology, Regina Elena National Cancer Institute, Rome, Italy
| | - Aldo Brassetti
- Department of Urology, Regina Elena National Cancer Institute, Rome, Italy
| | | | - Michele Gallucci
- Department of Urology, Umberto I Polyclinic, Sapienza University, Rome, Italy
| | - Antonio Celia
- Department of Urology, San Bassiano Hospital, Bassano del Grappa, Vicenza, Italy
| | - Giuseppe Simone
- Department of Urology, Regina Elena National Cancer Institute, Rome, Italy
| |
Collapse
|
31
|
Udayakumar N, Porter KK. How Fast Can We Go: Abbreviated Prostate MR Protocols. Curr Urol Rep 2020; 21:59. [PMID: 33135121 DOI: 10.1007/s11934-020-01008-8] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/15/2020] [Indexed: 12/27/2022]
Abstract
PURPOSE OF REVIEW Multiparametric MRI (mpMRI), composed of T2WI, DWI, and DCE sequences, is effective in identifying prostate cancer (PCa), but length and cost preclude its application as a PCa screening tool. Here we review abbreviated MRI protocols that shorten or omit conventional mpMRI components to reduce scan time and expense without forgoing diagnostic accuracy. RECENT FINDINGS The DCE sequence, which plays a limited diagnostic role in PI-RADS, is eliminated in variations of the biparametric MRI (bpMRI). T2WI, the lengthiest sequence, is truncated by only acquiring the axial plane or utilizing 3D acquisition with subsequent 2D reconstruction. DW-EPISMS further accelerates DWI acquisition. The fastest protocol described to date consists of just DW-EPISMS and axial-only 2D T2WI and runs less than 5 min. Abbreviated protocols can mitigate scan expense and increase scan access, allowing prostate MRI to become an efficient PCa screening tool.
Collapse
Affiliation(s)
- Neha Udayakumar
- University of Alabama at Birmingham School of Medicine, 1720 2nd Ave S, Birmingham, AL, 35249, USA
| | - Kristin K Porter
- Department of Radiology, University of Alabama at Birmingham, 619 19th Street S, JT N374, Birmingham, AL, 35249, USA.
| |
Collapse
|
32
|
Panic J, Defeudis A, Mazzetti S, Rosati S, Giannetto G, Vassallo L, Regge D, Balestra G, Giannini V. A Convolutional Neural Network based system for Colorectal cancer segmentation on MRI images. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2020; 2020:1675-1678. [PMID: 33018318 DOI: 10.1109/embc44109.2020.9175804] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The aim of the study is to present a new Convolutional Neural Network (CNN) based system for the automatic segmentation of the colorectal cancer. The algorithm implemented consists of several steps: a pre-processing to normalize and highlights the tumoral area, the classification based on CNNs, and a post-processing aimed at reducing false positive elements. The classification is performed using three CNNs: each of them classifies the same regions of interest acquired from three different MR sequences. The final segmentation mask is obtained by a majority voting. Performances were evaluated using a semi-automatic segmentation revised by an experienced radiologist as reference standard. The system obtained Dice Similarity Coefficient (DSC) of 0.60, Precision (Pr) of 0.76 and Recall (Re) of 0.55 on the testing set. After applying the leave-one-out validation, we obtained a median DSC=0.58, Pr=0.74, Re=0.54. The promising results obtained by this system, if validated on a larger dataset, could strongly improve personalized medicine.
Collapse
|
33
|
Wildeboer RR, van Sloun RJG, Wijkstra H, Mischi M. Artificial intelligence in multiparametric prostate cancer imaging with focus on deep-learning methods. COMPUTER METHODS AND PROGRAMS IN BIOMEDICINE 2020; 189:105316. [PMID: 31951873 DOI: 10.1016/j.cmpb.2020.105316] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 12/09/2019] [Accepted: 01/04/2020] [Indexed: 05/16/2023]
Abstract
Prostate cancer represents today the most typical example of a pathology whose diagnosis requires multiparametric imaging, a strategy where multiple imaging techniques are combined to reach an acceptable diagnostic performance. However, the reviewing, weighing and coupling of multiple images not only places additional burden on the radiologist, it also complicates the reviewing process. Prostate cancer imaging has therefore been an important target for the development of computer-aided diagnostic (CAD) tools. In this survey, we discuss the advances in CAD for prostate cancer over the last decades with special attention to the deep-learning techniques that have been designed in the last few years. Moreover, we elaborate and compare the methods employed to deliver the CAD output to the operator for further medical decision making.
Collapse
Affiliation(s)
- Rogier R Wildeboer
- Lab of Biomedical Diagnostics, Department of Electrical Engineering, Eindhoven University of Technology, De Zaale, 5600 MB, Eindhoven, the Netherlands.
| | - Ruud J G van Sloun
- Lab of Biomedical Diagnostics, Department of Electrical Engineering, Eindhoven University of Technology, De Zaale, 5600 MB, Eindhoven, the Netherlands.
| | - Hessel Wijkstra
- Lab of Biomedical Diagnostics, Department of Electrical Engineering, Eindhoven University of Technology, De Zaale, 5600 MB, Eindhoven, the Netherlands; Department of Urology, Amsterdam University Medical Centers, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, the Netherlands
| | - Massimo Mischi
- Lab of Biomedical Diagnostics, Department of Electrical Engineering, Eindhoven University of Technology, De Zaale, 5600 MB, Eindhoven, the Netherlands
| |
Collapse
|
34
|
O'Connor L, Wang A, Walker SM, Yerram N, Pinto PA, Turkbey B. Use of multiparametric magnetic resonance imaging (mpMRI) in localized prostate cancer. Expert Rev Med Devices 2020; 17:435-442. [PMID: 32275845 DOI: 10.1080/17434440.2020.1755257] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Introduction: Prostate magnetic resonance imaging (MRI) is commonly used for localized disease mainly to detect intraprostatic lesions and to guide biopsies. Despite its documented success in clinical practice, limitations still exist for prostate MRI. In this review, we discuss common clinical uses of prostate MRI, its limitations, and potential solutions for those limitations.Areas covered: Current uses of prostate MRI and challenges discussed. Literature search in PubMed was completed using the keywords "prostate MRI, prostate cancer."Expert opinion: Prostate MRI is a useful method for localization, biopsy, and treatment guidance of prostate cancer. Certain limitations of prostate MRI such as false negatives due to spatial resolution and relatively low repeatability between different radiologists can potentially be solved by investing more on education training and artificial intelligence technology.
Collapse
Affiliation(s)
- Luke O'Connor
- Urologic Oncology Branch, NCI, NIH, Bethesda, MD, USA
| | - Alex Wang
- Urologic Oncology Branch, NCI, NIH, Bethesda, MD, USA
| | | | - Nitin Yerram
- Urologic Oncology Branch, NCI, NIH, Bethesda, MD, USA
| | - Peter A Pinto
- Urologic Oncology Branch, NCI, NIH, Bethesda, MD, USA
| | - Baris Turkbey
- Molecular Imaging Program, NCI, NIH, Bethesda, MD, USA
| |
Collapse
|
35
|
High spatiotemporal resolution dynamic contrast-enhanced MRI improves the image-based discrimination of histopathology risk groups of peripheral zone prostate cancer: a supervised machine learning approach. Eur Radiol 2020; 30:4828-4837. [DOI: 10.1007/s00330-020-06849-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/21/2020] [Accepted: 03/31/2020] [Indexed: 12/15/2022]
|
36
|
Stabile A, Giganti F, Kasivisvanathan V, Giannarini G, Moore CM, Padhani AR, Panebianco V, Rosenkrantz AB, Salomon G, Turkbey B, Villeirs G, Barentsz JO. Factors Influencing Variability in the Performance of Multiparametric Magnetic Resonance Imaging in Detecting Clinically Significant Prostate Cancer: A Systematic Literature Review. Eur Urol Oncol 2020; 3:145-167. [DOI: 10.1016/j.euo.2020.02.005] [Citation(s) in RCA: 49] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Revised: 02/08/2020] [Accepted: 02/20/2020] [Indexed: 01/19/2023]
|
37
|
Nelson CR, Ekberg J, Fridell K. Prostate Cancer Detection in Screening Using Magnetic Resonance Imaging and Artificial Intelligence. ACTA ACUST UNITED AC 2020. [DOI: 10.2174/1874061802006010001] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Background:
Prostate cancer is a leading cause of death among men who do not participate in a screening programme. MRI forms a possible alternative for prostate analysis of a higher level of sensitivity than the PSA test or biopsy. Magnetic resonance is a non-invasive method and magnetic resonance tomography produces a large amount of data. If a screening programme were implemented, a dramatic increase in radiologist workload and patient waiting time will follow. Computer Aided-Diagnose (CAD) could assist radiologists to decrease reading times and cost, and increase diagnostic effectiveness. CAD mimics radiologist and imaging guidelines to detect prostate cancer.
Aim:
The purpose of this study was to analyse and describe current research in MRI prostate examination with the aid of CAD. The aim was to determine if CAD systems form a reliable method for use in prostate screening.
Methods:
This study was conducted as a systematic literature review of current scientific articles. Selection of articles was carried out using the “Preferred Reporting Items for Systematic Reviews and for Meta-Analysis” (PRISMA). Summaries were created from reviewed articles and were then categorised into relevant data for results.
Results:
CAD has shown that its capability concerning sensitivity or specificity is higher than a radiologist. A CAD system can reach a peak sensitivity of 100% and two CAD systems showed a specificity of 100%. CAD systems are highly specialised and chiefly focus on the peripheral zone, which could mean missing cancer in the transition zone. CAD systems can segment the prostate with the same effectiveness as a radiologist.
Conclusion:
When CAD analysed clinically-significant tumours with a Gleason score greater than 6, CAD outperformed radiologists. However, their focus on the peripheral zone would require the use of more than one CAD system to analyse the entire prostate.
Collapse
|
38
|
Zhu L, Gao G, Liu Y, Han C, Liu J, Zhang X, Wang X. Feasibility of integrating computer-aided diagnosis with structured reports of prostate multiparametric MRI. Clin Imaging 2019; 60:123-130. [PMID: 31874336 DOI: 10.1016/j.clinimag.2019.12.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 12/02/2019] [Accepted: 12/11/2019] [Indexed: 01/05/2023]
Abstract
OBJECTIVES To evaluate the feasibility of integrating computer-aided diagnosis (CAD) with structured reports of prostate multiparametric MRI (mpMRI). METHODS This retrospective study enrolled 153 patients who underwent prostate mpMRI for the purpose of targeted biopsy; patients were divided into a group with clinically significant prostate cancer (csPCa, Gleason score ≥ 3 + 4, n = 89) and a group with non-csPCa (n = 64). Ten inexperienced radiologists retrospectively evaluated these cases (single reader per case) twice using structured reports, and they were blinded to the pathologic results. Initially, the readers interpreted mpMRI without CAD. Six weeks later, they evaluated the same cases again with CAD assistance. At each time of image interpretation, lesions detected by the readers were marked on the prostate vector map in structured reports, and a PI-RADS score was given to each lesion. Diagnostic efficacy and reading time were evaluated for the two reading sessions. RESULTS With the assistance of CAD, the overall diagnostic efficacy was improved, i.e., the AUC increased from 0.83 to 0.89 (p = 0.018). Specifically, per-patient sensitivity (84.3% vs. 93.3%) and per-lesion sensitivity (76.7% vs. 88.8%) were significantly improved (all p < 0.05). Per-patient specificity with CAD (65.6%) was higher than that without CAD (56.3%), but statistical significance was not reached (p = 0.238). The reading time for each case decreased from 10.9 min to 7.8 min (p < 0.001). CONCLUSIONS It is feasible to integrate CAD with structured reports of prostate mpMRI. This reading paradigm can improve the diagnostic sensitivity of csPCa detection and reduce reading time among inexperienced radiologists.
Collapse
Affiliation(s)
- Lina Zhu
- Department of Radiology, Peking University First Hospital, No. 8 Xishiku Street, Xicheng District, Beijing 100034, China
| | - Ge Gao
- Department of Radiology, Peking University First Hospital, No. 8 Xishiku Street, Xicheng District, Beijing 100034, China
| | - Yi Liu
- Department of Radiology, Peking University First Hospital, No. 8 Xishiku Street, Xicheng District, Beijing 100034, China
| | - Chao Han
- Department of Radiology, Peking University First Hospital, No. 8 Xishiku Street, Xicheng District, Beijing 100034, China
| | - Jing Liu
- Department of Radiology, Peking University First Hospital, No. 8 Xishiku Street, Xicheng District, Beijing 100034, China
| | - Xiaodong Zhang
- Department of Radiology, Peking University First Hospital, No. 8 Xishiku Street, Xicheng District, Beijing 100034, China
| | - Xiaoying Wang
- Department of Radiology, Peking University First Hospital, No. 8 Xishiku Street, Xicheng District, Beijing 100034, China.
| |
Collapse
|
39
|
Padhani AR, Turkbey B. Detecting Prostate Cancer with Deep Learning for MRI: A Small Step Forward. Radiology 2019; 293:618-619. [PMID: 31596184 DOI: 10.1148/radiol.2019192012] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Anwar R Padhani
- From the Paul Strickland Scanner Centre, Mount Vernon Cancer Centre, Rickmansworth Road, Northwood, Middlesex HA6 2RN, England (A.R.P.); and Molecular Imaging Program, National Cancer Institute, National Institutes of Health, Bethesda, Md (B.T.)
| | - Baris Turkbey
- From the Paul Strickland Scanner Centre, Mount Vernon Cancer Centre, Rickmansworth Road, Northwood, Middlesex HA6 2RN, England (A.R.P.); and Molecular Imaging Program, National Cancer Institute, National Institutes of Health, Bethesda, Md (B.T.)
| |
Collapse
|
40
|
Abstract
PURPOSE OF REVIEW The use of MRI in the early detection of prostate cancer (PCa) is increasing rapidly. In the last couple of years, there have been a number of key publications that have led to its adoption in the UK and European guidelines. RECENT FINDINGS PROMIS showed that standard biopsy missed up to half of clinically significant disease, compared with 5 mm template mapping biopsy. Three studies then compared the standard transrectal ultrasound (TRUS) pathway with an MRI with or without targeted biopsy pathway. These showed that MRI-targeted biopsies detect more clinically significant disease and reduce overdetection of indolent disease whilst allowing between one-third to one half of men to avoid an immediate biopsy. Cost-effectiveness data show that using MRI to determine who gets a biopsy and how that biopsy is done is a cost-neutral approach when men at lowest risk do not undergo biopsy. SUMMARY Prostate MRI is a useful and cost-effective tool for early detection of PCa that minimizes the impact of overdetection and overtreatment whilst maximizing the detection of PCa, which could benefit from treatment. The next challenge is to ensure that centres offering MRI are able to offer high-quality MRI acquisition and reporting.
Collapse
|
41
|
Bi WL, Hosny A, Schabath MB, Giger ML, Birkbak NJ, Mehrtash A, Allison T, Arnaout O, Abbosh C, Dunn IF, Mak RH, Tamimi RM, Tempany CM, Swanton C, Hoffmann U, Schwartz LH, Gillies RJ, Huang RY, Aerts HJWL. Artificial intelligence in cancer imaging: Clinical challenges and applications. CA Cancer J Clin 2019; 69:127-157. [PMID: 30720861 PMCID: PMC6403009 DOI: 10.3322/caac.21552] [Citation(s) in RCA: 775] [Impact Index Per Article: 129.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Judgement, as one of the core tenets of medicine, relies upon the integration of multilayered data with nuanced decision making. Cancer offers a unique context for medical decisions given not only its variegated forms with evolution of disease but also the need to take into account the individual condition of patients, their ability to receive treatment, and their responses to treatment. Challenges remain in the accurate detection, characterization, and monitoring of cancers despite improved technologies. Radiographic assessment of disease most commonly relies upon visual evaluations, the interpretations of which may be augmented by advanced computational analyses. In particular, artificial intelligence (AI) promises to make great strides in the qualitative interpretation of cancer imaging by expert clinicians, including volumetric delineation of tumors over time, extrapolation of the tumor genotype and biological course from its radiographic phenotype, prediction of clinical outcome, and assessment of the impact of disease and treatment on adjacent organs. AI may automate processes in the initial interpretation of images and shift the clinical workflow of radiographic detection, management decisions on whether or not to administer an intervention, and subsequent observation to a yet to be envisioned paradigm. Here, the authors review the current state of AI as applied to medical imaging of cancer and describe advances in 4 tumor types (lung, brain, breast, and prostate) to illustrate how common clinical problems are being addressed. Although most studies evaluating AI applications in oncology to date have not been vigorously validated for reproducibility and generalizability, the results do highlight increasingly concerted efforts in pushing AI technology to clinical use and to impact future directions in cancer care.
Collapse
Affiliation(s)
- Wenya Linda Bi
- Assistant Professor of Neurosurgery, Department of Neurosurgery, Brigham and Women’s Hospital, Dana‐Farber Cancer InstituteHarvard Medical SchoolBostonMA
| | - Ahmed Hosny
- Research Scientist, Department of Radiation Oncology, Brigham and Women’s Hospital, Dana‐Farber Cancer InstituteHarvard Medical SchoolBostonMA
| | - Matthew B. Schabath
- Associate Member, Department of Cancer EpidemiologyH. Lee Moffitt Cancer Center and Research InstituteTampaFL
| | - Maryellen L. Giger
- Professor of Radiology, Department of RadiologyUniversity of ChicagoChicagoIL
| | - Nicolai J. Birkbak
- Research Associate, The Francis Crick InstituteLondonUnited Kingdom
- Research Associate, University College London Cancer InstituteLondonUnited Kingdom
| | - Alireza Mehrtash
- Research Assistant, Department of Radiology, Brigham and Women’s Hospital, Dana‐Farber Cancer InstituteHarvard Medical SchoolBostonMA
- Research Assistant, Department of Electrical and Computer EngineeringUniversity of British ColumbiaVancouverBCCanada
| | - Tavis Allison
- Research Assistant, Department of RadiologyColumbia University College of Physicians and SurgeonsNew YorkNY
- Research Assistant, Department of RadiologyNew York Presbyterian HospitalNew YorkNY
| | - Omar Arnaout
- Assistant Professor of Neurosurgery, Department of Neurosurgery, Brigham and Women’s Hospital, Dana‐Farber Cancer InstituteHarvard Medical SchoolBostonMA
| | - Christopher Abbosh
- Research Fellow, The Francis Crick InstituteLondonUnited Kingdom
- Research Fellow, University College London Cancer InstituteLondonUnited Kingdom
| | - Ian F. Dunn
- Associate Professor of Neurosurgery, Department of Neurosurgery, Brigham and Women’s Hospital, Dana‐Farber Cancer InstituteHarvard Medical SchoolBostonMA
| | - Raymond H. Mak
- Associate Professor, Department of Radiation Oncology, Brigham and Women’s Hospital, Dana‐Farber Cancer InstituteHarvard Medical SchoolBostonMA
| | - Rulla M. Tamimi
- Associate Professor, Department of MedicineBrigham and Women’s Hospital, Dana‐Farber Cancer Institute, Harvard Medical SchoolBostonMA
| | - Clare M. Tempany
- Professor of Radiology, Department of Radiology, Brigham and Women’s Hospital, Dana‐Farber Cancer InstituteHarvard Medical SchoolBostonMA
| | - Charles Swanton
- Professor, The Francis Crick InstituteLondonUnited Kingdom
- Professor, University College London Cancer InstituteLondonUnited Kingdom
| | - Udo Hoffmann
- Professor of Radiology, Department of RadiologyMassachusetts General Hospital and Harvard Medical SchoolBostonMA
| | - Lawrence H. Schwartz
- Professor of Radiology, Department of RadiologyColumbia University College of Physicians and SurgeonsNew YorkNY
- Chair, Department of RadiologyNew York Presbyterian HospitalNew YorkNY
| | - Robert J. Gillies
- Professor of Radiology, Department of Cancer PhysiologyH. Lee Moffitt Cancer Center and Research InstituteTampaFL
| | - Raymond Y. Huang
- Assistant Professor, Department of Radiology, Brigham and Women’s Hospital, Dana‐Farber Cancer InstituteHarvard Medical SchoolBostonMA
| | - Hugo J. W. L. Aerts
- Associate Professor, Departments of Radiation Oncology and Radiology, Brigham and Women’s Hospital, Dana‐Farber Cancer InstituteHarvard Medical SchoolBostonMA
- Professor in AI in Medicine, Radiology and Nuclear Medicine, GROWMaastricht University Medical Centre (MUMC+)MaastrichtThe Netherlands
| |
Collapse
|
42
|
Winkel DJ, Heye TJ, Benz MR, Glessgen CG, Wetterauer C, Bubendorf L, Block TK, Boll DT. Compressed Sensing Radial Sampling MRI of Prostate Perfusion: Utility for Detection of Prostate Cancer. Radiology 2019; 290:702-708. [PMID: 30599102 DOI: 10.1148/radiol.2018180556] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Purpose To investigate the diagnostic performance of a dual-parameter approach by combining either volumetric interpolated breath-hold examination (VIBE)- or golden-angle radial sparse parallel (GRASP)-derived dynamic contrast agent-enhanced (DCE) MRI with established diffusion-weighted imaging (DWI) compared with traditional single-parameter evaluations on the basis of DWI alone. Materials and Methods Ninety-four male participants (66 years ± 7 [standard deviation]) were prospectively evaluated at 3.0-T MRI for clinical suspicion of prostate cancer. Included were 101 peripheral zone prostate cancer lesions. Histopathologic confirmation at MRI transrectal US fusion biopsy was matched with normal contralateral prostate parenchyma. MRI was performed with diffusion weighting and DCE by using GRASP (temporal resolution, 2.5 seconds) or VIBE (temporal resolution, 10 seconds). Perfusion (influx forward volume transfer constant [Ktrans] and rate constant [Kep]) and apparent diffusion coefficient (ADC) parameters were determined by tumor volume analysis. Areas under the receiver operating characteristic curve were compared for both sequences. Results Evaluated were 101 prostate cancer lesions (GRASP, 61 lesions; VIBE, 40 lesions). In a combined analysis, diffusion and perfusion parameters ADC with Ktrans or Kep acquired with GRASP had higher diagnostic performance compared with diffusion characteristics alone (area under the curve, 0.97 ± 0.02 [standard error] vs 0.93 ± 0.03; P < .006 and .021, respectively), whereas ADC with perfusion parameters acquired with VIBE had no additional benefit (area under the curve, 0.94 ± 0.03 vs 0.93 ± 0.04; P = .18and .50, respectively, for combination of ADC with Ktrans and Kep). Conclusion If used in a dual-parameter model, incorporating diffusion and perfusion characteristics, the golden-angle radial sparse parallel acquisition technique improves the diagnostic performance of multiparametric MRI examinations of the prostate. This effect could not be observed combining diffusing with perfusion parameters acquired with volumetric interpolated breath-hold examination. © RSNA, 2018.
Collapse
Affiliation(s)
- David J Winkel
- From the Department of Radiology (D.J.W., T.J.H., M.R.B., C.G.G., D.T.B.), Department of Urology (C.W.), and Institute of Pathology (L.B.), University Hospital of Basel, 4031 Basel, Switzerland; and Center for Advanced Imaging Innovation and Research, Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY (T.K.B.)
| | - Tobias J Heye
- From the Department of Radiology (D.J.W., T.J.H., M.R.B., C.G.G., D.T.B.), Department of Urology (C.W.), and Institute of Pathology (L.B.), University Hospital of Basel, 4031 Basel, Switzerland; and Center for Advanced Imaging Innovation and Research, Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY (T.K.B.)
| | - Matthias R Benz
- From the Department of Radiology (D.J.W., T.J.H., M.R.B., C.G.G., D.T.B.), Department of Urology (C.W.), and Institute of Pathology (L.B.), University Hospital of Basel, 4031 Basel, Switzerland; and Center for Advanced Imaging Innovation and Research, Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY (T.K.B.)
| | - Carl G Glessgen
- From the Department of Radiology (D.J.W., T.J.H., M.R.B., C.G.G., D.T.B.), Department of Urology (C.W.), and Institute of Pathology (L.B.), University Hospital of Basel, 4031 Basel, Switzerland; and Center for Advanced Imaging Innovation and Research, Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY (T.K.B.)
| | - Christian Wetterauer
- From the Department of Radiology (D.J.W., T.J.H., M.R.B., C.G.G., D.T.B.), Department of Urology (C.W.), and Institute of Pathology (L.B.), University Hospital of Basel, 4031 Basel, Switzerland; and Center for Advanced Imaging Innovation and Research, Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY (T.K.B.)
| | - Lukas Bubendorf
- From the Department of Radiology (D.J.W., T.J.H., M.R.B., C.G.G., D.T.B.), Department of Urology (C.W.), and Institute of Pathology (L.B.), University Hospital of Basel, 4031 Basel, Switzerland; and Center for Advanced Imaging Innovation and Research, Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY (T.K.B.)
| | - Tobias K Block
- From the Department of Radiology (D.J.W., T.J.H., M.R.B., C.G.G., D.T.B.), Department of Urology (C.W.), and Institute of Pathology (L.B.), University Hospital of Basel, 4031 Basel, Switzerland; and Center for Advanced Imaging Innovation and Research, Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY (T.K.B.)
| | - Daniel T Boll
- From the Department of Radiology (D.J.W., T.J.H., M.R.B., C.G.G., D.T.B.), Department of Urology (C.W.), and Institute of Pathology (L.B.), University Hospital of Basel, 4031 Basel, Switzerland; and Center for Advanced Imaging Innovation and Research, Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University School of Medicine, New York, NY (T.K.B.)
| |
Collapse
|
43
|
Mazzetti S, Giannini V, Russo F, Regge D. Computer-aided diagnosis of prostate cancer using multi-parametric MRI: comparison between PUN and Tofts models. Phys Med Biol 2018; 63:095004. [PMID: 29570456 DOI: 10.1088/1361-6560/aab956] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Computer-aided diagnosis (CAD) systems are increasingly being used in clinical settings to report multi-parametric magnetic resonance imaging (mp-MRI) of the prostate. Usually, CAD systems automatically highlight cancer-suspicious regions to the radiologist, reducing reader variability and interpretation errors. Nevertheless, implementing this software requires the selection of which mp-MRI parameters can best discriminate between malignant and non-malignant regions. To exploit functional information, some parameters are derived from dynamic contrast-enhanced (DCE) acquisitions. In particular, much CAD software employs pharmacokinetic features, such as K trans and k ep, derived from the Tofts model, to estimate a likelihood map of malignancy. However, non-pharmacokinetic models can be also used to describe DCE-MRI curves, without any requirement for prior knowledge or measurement of the arterial input function, which could potentially lead to large errors in parameter estimation. In this work, we implemented an empirical function derived from the phenomenological universalities (PUN) class to fit DCE-MRI. The parameters of the PUN model are used in combination with T2-weighted and diffusion-weighted acquisitions to feed a support vector machine classifier to produce a voxel-wise malignancy likelihood map of the prostate. The results were all compared to those for a CAD system based on Tofts pharmacokinetic features to describe DCE-MRI curves, using different quality aspects of image segmentation, while also evaluating the number and size of false positive (FP) candidate regions. This study included 61 patients with 70 biopsy-proven prostate cancers (PCa). The metrics used to evaluate segmentation quality between the two CAD systems were not statistically different, although the PUN-based CAD reported a lower number of FP, with reduced size compared to the Tofts-based CAD. In conclusion, the CAD software based on PUN parameters is a feasible means with which to detect PCa, without affecting segmentation quality, and hence it could be successfully applied in clinical settings, improving the automated diagnosis process and reducing computational complexity.
Collapse
Affiliation(s)
- S Mazzetti
- Department of Surgical Sciences, University of Torino, 10124 Turin, Italy. Department of Radiology, Candiolo Cancer Institute-FPO, IRCCS, 10060 Candiolo, Turin, Italy
| | | | | | | |
Collapse
|
44
|
Thon A, Teichgräber U, Tennstedt-Schenk C, Hadjidemetriou S, Winzler S, Malich A, Papageorgiou I. Computer aided detection in prostate cancer diagnostics: A promising alternative to biopsy? A retrospective study from 104 lesions with histological ground truth. PLoS One 2017; 12:e0185995. [PMID: 29023572 PMCID: PMC5638330 DOI: 10.1371/journal.pone.0185995] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2017] [Accepted: 09/22/2017] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Prostate cancer (PCa) diagnosis by means of multiparametric magnetic resonance imaging (mpMRI) is a current challenge for the development of computer-aided detection (CAD) tools. An innovative CAD-software (Watson Elementary™) was proposed to achieve high sensitivity and specificity, as well as to allege a correlate to Gleason grade. AIM/OBJECTIVE To assess the performance of Watson Elementary™ in automated PCa diagnosis in our hospital´s database of MRI-guided prostate biopsies. METHODS The evaluation was retrospective for 104 lesions (47 PCa, 57 benign) from 79, 64.61±6.64 year old patients using 3T T2-weighted imaging, Apparent Diffusion Coefficient (ADC) maps and dynamic contrast enhancement series. Watson Elementary™ utilizes signal intensity, diffusion properties and kinetic profile to compute a proportional Gleason grade predictor, termed Malignancy Attention Index (MAI). The analysis focused on (i) the CAD sensitivity and specificity to classify suspect lesions and (ii) the MAI correlation with the histopathological ground truth. RESULTS The software revealed a sensitivity of 46.80% for PCa classification. The specificity for PCa was found to be 75.43% with a positive predictive value of 61.11%, a negative predictive value of 63.23% and a false discovery rate of 38.89%. CAD classified PCa and benign lesions with equal probability (P 0.06, χ2 test). Accordingly, receiver operating characteristic analysis suggests a poor predictive value for MAI with an area under curve of 0.65 (P 0.02), which is not superior to the performance of board certified observers. Moreover, MAI revealed no significant correlation with Gleason grade (P 0.60, Pearson´s correlation). CONCLUSION The tested CAD software for mpMRI analysis was a weak PCa biomarker in this dataset. Targeted prostate biopsy and histology remains the gold standard for prostate cancer diagnosis.
Collapse
Affiliation(s)
- Anika Thon
- Institute of Diagnostic and Interventional Radiology, Department of Experimental Radiology, Jena University Hospital, Friedrich-Schiller University, Jena, Germany
- Institute of Radiology, Suedharz Hospital Nordhausen gGmbH, Nordhausen, Germany
| | - Ulf Teichgräber
- Institute of Diagnostic and Interventional Radiology, Department of Experimental Radiology, Jena University Hospital, Friedrich-Schiller University, Jena, Germany
| | | | - Stathis Hadjidemetriou
- Department of Electrical Engineering and Informatics, Cyprus University of Technology, Limassol, Cyprus
| | - Sven Winzler
- Institute of Radiology, Suedharz Hospital Nordhausen gGmbH, Nordhausen, Germany
| | - Ansgar Malich
- Institute of Radiology, Suedharz Hospital Nordhausen gGmbH, Nordhausen, Germany
| | - Ismini Papageorgiou
- Institute of Radiology, Suedharz Hospital Nordhausen gGmbH, Nordhausen, Germany
- * E-mail:
| |
Collapse
|
45
|
Abstract
Multi-parametric magnetic resonance imaging (mp-MRI) has an increasingly important role in the diagnosis of prostate cancer. Due to the large amount of data and variations in mp-MRI, tumor detection can be affected by multiple factors, such as the observer's clinical experience, image quality, and appearance of the lesions. In order to improve the quantitative assessment of the disease and reduce the reporting time, various computer-aided diagnosis (CAD) systems have been designed to help radiologists identify lesions. This manuscript presents an overview of the literature regarding prostate CAD using mp-MRI, while focusing on the studies of the most recent five years. Current prostate CAD technologies and their utilization are discussed in this review.
Collapse
|