1
|
Liu X, Bao Y, Sui L, Cao J, Wang Y, Yu C, Qiao G, Cong Y. Mammographically detected breast clustered microcalcifications localized by chest thin-section computed tomography. World J Surg Oncol 2024; 22:72. [PMID: 38419107 PMCID: PMC10902948 DOI: 10.1186/s12957-024-03354-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2023] [Accepted: 02/24/2024] [Indexed: 03/02/2024] Open
Abstract
BACKGROUND To explore the capability and clinical significance of chest thin-section computed tomography (CT) for localization of mammographically detected clustered microcalcifications. METHODS A total of 69 patients with 71 mammographically detected clustered microcalcifications received surgical biopsy under the guidance of mammography (MG), CT was used to localize calcifications combined with MG if calcifications can be seen on CT. Intraoperative mammography of the specimens were performed in all cases for identification of the resected microcalcifications. The clinical, imaging and pathological information of these patients were analyzed. RESULTS A total of 42 (59.15%) cases of calcifications were localized by CT + MG, 29 (40.85%) cases were guided only by the mammography. All suspicious calcifications on the mammography were successfully removed. Pathological results showed 42 cases were cancer, 23 cases were benign, and 6 cases were atypical hyperplasia. The mean age in the CT + MG group was older than that of the MG group (54.12 vs. 49.27 years; P = 0.014). The maximum diameter of clusters of microcalcifications on mammography in the CT + MG group was larger than that of the MG group [(cranio-caudal view, 1.52 vs. 0.61 mm, P = 0.000; mediolateral oblique (MLO) view, 1.53 vs. 0.62 mm, P = 0.000)]. The gray value ratio (calcified area / paraglandular; MLO, P = 0.004) and the gray value difference (calcified area - paraglandular; MLO, P = 0.005) in the CT + MG group was higher than that of the MG group. Multivariate analysis showed that the max diameter of clusters of microcalcifications (MLO view) was a significant predictive factor of localization by CT in total patients (P = 0.001). CONCLUSIONS About half of the mammographically detected clustered microcalcifications could be localized by thin-section CT. Maximum diameter of clusters of microcalcifications (MLO view) was a predictor of visibility of calcifications by CT. Chest thin-section CT may be useful for localization of calcifications in some patients, especially for calcifications that are only visible in one view on the mammography.
Collapse
Affiliation(s)
- Xinjie Liu
- Surgery Department of West Area, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, 20 Yuhuangding East Road, Yantai, Shandong, 264001, P.R. China
| | - Yuhan Bao
- Department of Breast Surgery, The Second Hospital of Shandong University, 247 Beiyuan Street, Jinan, Shandong, 250031, P.R. China
| | - Laijian Sui
- Department of Orthopedics and Arthrology, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, 20 Yuhuangding East Road, Yantai, Shandong, 264001, P.R. China
| | - Jianqiao Cao
- Department of Breast Surgery, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, 20 Yuhuangding East Road, Yantai, Shandong, 264001, P.R. China
| | - Yidan Wang
- Department of Breast Surgery, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, 20 Yuhuangding East Road, Yantai, Shandong, 264001, P.R. China
| | - Chao Yu
- Department of Breast Surgery, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, 20 Yuhuangding East Road, Yantai, Shandong, 264001, P.R. China
| | - Guangdong Qiao
- Department of Breast Surgery, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, 20 Yuhuangding East Road, Yantai, Shandong, 264001, P.R. China
| | - Yizi Cong
- Department of Breast Surgery, The Affiliated Yantai Yuhuangding Hospital of Qingdao University, 20 Yuhuangding East Road, Yantai, Shandong, 264001, P.R. China.
| |
Collapse
|
2
|
Zhang L, Zhao H, Zhou Z, Jia M, Zhang L, Jiang J, Gao F. Improving spatial resolution with an edge-enhancement model for low-dose propagation-based X-ray phase-contrast computed tomography. OPTICS EXPRESS 2021; 29:37399-37417. [PMID: 34808812 DOI: 10.1364/oe.440664] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Accepted: 10/14/2021] [Indexed: 06/13/2023]
Abstract
Propagation-based X-ray phase-contrast computed tomography (PB-PCCT) has been increasingly popular for distinguishing low contrast tissues. Phase retrieval is an important step to quantitatively obtain the phase information before the tomographic reconstructions, while typical phase retrieval methods in PB-PCCT, such as homogenous transport of intensity equation (TIE-Hom), are essentially low-pass filters and thus improve the signal to noise ratio at the expense of the reduced spatial resolution of the reconstructed image. To improve the reconstructed spatial resolution, measured phase contrast projections with high edge enhancement and the phase projections retrieved by TIE-Hom were weighted summed and fed into an iterative tomographic algorithm within the framework of the adaptive steepest descent projections onto convex sets (ASD-POCS), which was employed for suppressing the image noise in low dose reconstructions because of the sparse-view scanning strategy or low exposure time for single phase contrast projection. The merging strategy decreases the accuracy of the linear model of PB-PCCT and would finally lead to the reconstruction failure in iterative reconstructions. Therefore, the additive median root prior is also introduced in the algorithm to partly increase the model accuracy. The reconstructed spatial resolution and noise performance can be flexibly balanced by a pair of antagonistic hyper-parameters. Validations were performed by the established phase-contrast Feldkamp-Davis-Kress, phase-retrieved Feldkamp-Davis-Kress, conventional ASD-POCS and the proposed enhanced ASD-POCS with a numerical phantom dataset and experimental biomaterial dataset. Simulation results show that the proposed algorithm outperforms the conventional ASD-POCS in spatial evaluation assessments such as root mean square error (a ratio of 9.78%), contrast to noise ratio (CNR) (a ratio of 7.46%), and also frequency evaluation assessments such as modulation transfer function (a ratio of 66.48% of MTF50% (50% MTF value)), noise power spectrum (a ratio of 35.25% of f50% (50% value of the Nyquist frequency)) and noise equivalent quanta (1-2 orders of magnitude at high frequencies). Experimental results again confirm the superiority of proposed strategy relative to the conventional one in terms of edge sharpness and CNR (an average increase of 67.35%).
Collapse
|
3
|
Zhu Y, O'Connell AM, Ma Y, Liu A, Li H, Zhang Y, Zhang X, Ye Z. Dedicated breast CT: state of the art-Part II. Clinical application and future outlook. Eur Radiol 2021; 32:2286-2300. [PMID: 34476564 DOI: 10.1007/s00330-021-08178-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 06/19/2021] [Accepted: 06/29/2021] [Indexed: 12/17/2022]
Abstract
Dedicated breast CT is being increasingly used for breast imaging. This technique provides images with no compression, removal of tissue overlap, rapid acquisition, and available simultaneous assessment of microcalcifications and contrast enhancement. In this second installment in a 2-part review, the current status of clinical applications and ongoing efforts to develop new imaging systems are discussed, with particular emphasis on how to achieve optimized practice including lesion detection and characterization, response to therapy monitoring, density assessment, intervention, and implant evaluation. The potential for future screening with breast CT is also addressed. KEY POINTS: • Dedicated breast CT is an emerging modality with enormous potential in the future of breast imaging by addressing numerous clinical needs from diagnosis to treatment. • Breast CT shows either noninferiority or superiority with mammography and numerical comparability to MRI after contrast administration in diagnostic statistics, demonstrates excellent performance in lesion characterization, density assessment, and intervention, and exhibits promise in implant evaluation, while potential application to breast cancer screening is still controversial. • New imaging modalities such as phase-contrast breast CT, spectral breast CT, and hybrid imaging are in the progress of R & D.
Collapse
Affiliation(s)
- Yueqiang Zhu
- Department of Radiology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Huan-Hu-Xi Road, Ti-Yuan-Bei, Hexi District, 300060, Tianjin, China
| | - Avice M O'Connell
- Department of Imaging Sciences, University of Rochester Medical Center, 601 Elmwood Avenue, Box 648, Rochester, NY, 14642, USA
| | - Yue Ma
- Department of Radiology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Huan-Hu-Xi Road, Ti-Yuan-Bei, Hexi District, 300060, Tianjin, China
| | - Aidi Liu
- Department of Radiology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Huan-Hu-Xi Road, Ti-Yuan-Bei, Hexi District, 300060, Tianjin, China
| | - Haijie Li
- Department of Radiology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Huan-Hu-Xi Road, Ti-Yuan-Bei, Hexi District, 300060, Tianjin, China
| | - Yuwei Zhang
- Department of Radiology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Huan-Hu-Xi Road, Ti-Yuan-Bei, Hexi District, 300060, Tianjin, China
| | - Xiaohua Zhang
- Koning Corporation, Lennox Tech Enterprise Center, 150 Lucius Gordon Drive, Suite 112, West Henrietta, NY, 14586, USA
| | - Zhaoxiang Ye
- Department of Radiology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Huan-Hu-Xi Road, Ti-Yuan-Bei, Hexi District, 300060, Tianjin, China.
| |
Collapse
|
4
|
Wu C, Xing Y, Zhang L, Li X, Zhu X, Zhang X, Gao H. Fourier-based interpretation and noise analysis of the moments of small-angle x-ray scattering in grating-based x-ray phase contrast imaging. OPTICS EXPRESS 2021; 29:21902-21920. [PMID: 34265967 DOI: 10.1364/oe.426129] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 06/15/2021] [Indexed: 06/13/2023]
Abstract
In grating-based x-ray phase contrast imaging, Fourier component analysis (FCA) is usually recognized as a gold standard to retrieve the contrasts including attenuation, phase and dark-field, since it is well-established on wave optics and is of high computational efficiency. Meanwhile, an alternative approach basing on the particle scattering theory is being developed and can provide similar contrasts with FCA by calculating multi-order moments of deconvolved small-angle x-ray scattering, so called as multi-order moment analysis (MMA). Although originated from quite different physics theories, the high consistency between the contrasts retrieved by FCA and MMA implies us that there may be some intrinsic connections between them, which has not been fully revealed to the best of our knowledge. In this work, we present a Fourier-based interpretation of MMA and conclude that the contrasts retrieved by MMA are actually the weighted compositions of Fourier coefficients, which means MMA delivers similar physical information as FCA. Based on the recognized cosine model, we also provide a truncated analytic MMA method, and its computational efficiency can be hundreds of times faster than the original deconvolution-based MMA method. Moreover, a noise analysis for our proposed truncated method is also conducted to further evaluate its performances. The results of numerical simulation and physical experiments support our analyses and conclusions.
Collapse
|
5
|
Yang Y, Yang Y, Liu Z, Guo L, Li S, Sun X, Shao Z, Ji M. Microcalcification-Based Tumor Malignancy Evaluation in Fresh Breast Biopsies with Hyperspectral Stimulated Raman Scattering. Anal Chem 2021; 93:6223-6231. [PMID: 33826297 DOI: 10.1021/acs.analchem.1c00522] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Precise evaluation of breast tumor malignancy based on tissue calcifications has important practical value in the disease diagnosis, as well as the understanding of tumor development. Traditional X-ray mammography provides the overall morphologies of the calcifications but lacks intrinsic chemical information. In contrast, spontaneous Raman spectroscopy offers detailed chemical analysis but lacks the spatial profiles. Here, we applied hyperspectral stimulated Raman scattering (SRS) microscopy to extract both the chemical and morphological features of the microcalcifications, based on the spectral and spatial domain analysis. A total of 211 calcification sites from 23 patients were imaged with SRS, and the results were analyzed with a support vector machine (SVM) based classification algorithm. With optimized combinations of chemical and geometrical features of microcalcifications, we were able to reach a precision of 98.21% and recall of 100.00% for classifying benign and malignant cases, significantly improved from the pure spectroscopy or imaging based methods. Our findings may provide a rapid means to accurately evaluate breast tumor malignancy based on fresh tissue biopsies.
Collapse
Affiliation(s)
- Yifan Yang
- State Key Laboratory of Surface Physics and Department of Physics, Human Phenome Institute, Multiscale Research Institute of Complex Systems, Academy for Engineering and Technology, Key Laboratory of Micro and Nano Photonic Structures, Ministry of Education, Fudan University, Shanghai 200433, China
| | - Yinlong Yang
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Zhijie Liu
- State Key Laboratory of Surface Physics and Department of Physics, Human Phenome Institute, Multiscale Research Institute of Complex Systems, Academy for Engineering and Technology, Key Laboratory of Micro and Nano Photonic Structures, Ministry of Education, Fudan University, Shanghai 200433, China
| | - Li Guo
- State Key Laboratory of Surface Physics and Department of Physics, Human Phenome Institute, Multiscale Research Institute of Complex Systems, Academy for Engineering and Technology, Key Laboratory of Micro and Nano Photonic Structures, Ministry of Education, Fudan University, Shanghai 200433, China
| | - Shiping Li
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Xiangjie Sun
- Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China.,Department of Pathology, Fudan University Shanghai Cancer Center, Shanghai 200032, China
| | - Zhiming Shao
- Department of Breast Surgery, Fudan University Shanghai Cancer Center, Shanghai 200032, China.,Department of Oncology, Shanghai Medical College, Fudan University, Shanghai 200032, China
| | - Minbiao Ji
- State Key Laboratory of Surface Physics and Department of Physics, Human Phenome Institute, Multiscale Research Institute of Complex Systems, Academy for Engineering and Technology, Key Laboratory of Micro and Nano Photonic Structures, Ministry of Education, Fudan University, Shanghai 200433, China
| |
Collapse
|
6
|
Andrejewski J, De Marco F, Willer K, Noichl W, Gustschin A, Koehler T, Meyer P, Kriner F, Fischer F, Braun C, Fingerle AA, Herzen J, Pfeiffer F, Pfeiffer D. Whole-body x-ray dark-field radiography of a human cadaver. Eur Radiol Exp 2021; 5:6. [PMID: 33495889 PMCID: PMC7835263 DOI: 10.1186/s41747-020-00201-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2020] [Accepted: 12/03/2020] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Grating-based x-ray dark-field and phase-contrast imaging allow extracting information about refraction and small-angle scatter, beyond conventional attenuation. A step towards clinical translation has recently been achieved, allowing further investigation on humans. METHODS After the ethics committee approval, we scanned the full body of a human cadaver in anterior-posterior orientation. Six measurements were stitched together to form the whole-body image. All radiographs were taken at a three-grating large-object x-ray dark-field scanner, each lasting about 40 s. Signal intensities of different anatomical regions were assessed. The magnitude of visibility reduction caused by beam hardening instead of small-angle scatter was analysed using different phantom materials. Maximal effective dose was 0.3 mSv for the abdomen. RESULTS Combined attenuation and dark-field radiography are technically possible throughout a whole human body. High signal levels were found in several bony structures, foreign materials, and the lung. Signal levels were 0.25 ± 0.13 (mean ± standard deviation) for the lungs, 0.08 ± 0.06 for the bones, 0.023 ± 0.019 for soft tissue, and 0.30 ± 0.02 for an antibiotic bead chain. We found that phantom materials, which do not produce small-angle scatter, can generate a strong visibility reduction signal. CONCLUSION We acquired a whole-body x-ray dark-field radiograph of a human body in few minutes with an effective dose in a clinical acceptable range. Our findings suggest that the observed visibility reduction in the bone and metal is dominated by beam hardening and that the true dark-field signal in the lung is therefore much higher than that of the bone.
Collapse
Affiliation(s)
- Jana Andrejewski
- Chair of Biomedical Physics, Department of Physics and Munich School of BioEngineering, Technical University of Munich, 85748, Garching, Germany.
| | - Fabio De Marco
- Chair of Biomedical Physics, Department of Physics and Munich School of BioEngineering, Technical University of Munich, 85748, Garching, Germany
| | - Konstantin Willer
- Chair of Biomedical Physics, Department of Physics and Munich School of BioEngineering, Technical University of Munich, 85748, Garching, Germany
| | - Wolfgang Noichl
- Chair of Biomedical Physics, Department of Physics and Munich School of BioEngineering, Technical University of Munich, 85748, Garching, Germany
| | - Alex Gustschin
- Chair of Biomedical Physics, Department of Physics and Munich School of BioEngineering, Technical University of Munich, 85748, Garching, Germany
| | | | - Pascal Meyer
- Institute of Microstructure Technology, Karlsruhe Institute of Technology, 76344, Eggenstein-Leopoldshafen, Germany
| | - Fabian Kriner
- Institut für Rechtsmedizin, Ludwig-Maximilians-Universität München, 80336, Munich, Germany
| | - Florian Fischer
- Institut für Rechtsmedizin, Ludwig-Maximilians-Universität München, 80336, Munich, Germany
| | - Christian Braun
- Institut für Rechtsmedizin, Ludwig-Maximilians-Universität München, 80336, Munich, Germany
| | - Alexander A Fingerle
- Department of Diagnostic and Interventional Radiology, Technical University of Munich, 81675, Munich, Germany
| | - Julia Herzen
- Chair of Biomedical Physics, Department of Physics and Munich School of BioEngineering, Technical University of Munich, 85748, Garching, Germany
| | - Franz Pfeiffer
- Chair of Biomedical Physics, Department of Physics and Munich School of BioEngineering, Technical University of Munich, 85748, Garching, Germany.,Department of Diagnostic and Interventional Radiology, Technical University of Munich, 81675, Munich, Germany
| | - Daniela Pfeiffer
- Department of Diagnostic and Interventional Radiology, Technical University of Munich, 81675, Munich, Germany
| |
Collapse
|
7
|
Molecular Aspects and Prognostic Significance of Microcalcifications in Human Pathology: A Narrative Review. Int J Mol Sci 2020; 22:ijms22010120. [PMID: 33374380 PMCID: PMC7795544 DOI: 10.3390/ijms22010120] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Revised: 12/17/2020] [Accepted: 12/23/2020] [Indexed: 12/17/2022] Open
Abstract
The presence of calcium deposits in human lesions is largely used as imaging biomarkers of human diseases such as breast cancer. Indeed, the presence of micro- or macrocalcifications is frequently associated with the development of both benign and malignant lesions. Nevertheless, the molecular mechanisms involved in the formation of these calcium deposits, as well as the prognostic significance of their presence in human tissues, have not been completely elucidated. Therefore, a better characterization of the biological process related to the formation of calcifications in different tissues and organs, as well as the understanding of the prognostic significance of the presence of these calcium deposits into human tissues could significantly improve the management of patients characterized by microcalcifications associated lesions. Starting from these considerations, this narrative review highlights the most recent histopathological and molecular data concerning the formation of calcifications in breast, thyroid, lung, and ovarian diseases. Evidence reported here could deeply change the current point of view concerning the role of ectopic calcifications in the progression of human diseases and also in the patients’ management. In fact, the presence of calcifications can suggest an unfavorable prognosis due to dysregulation of normal tissues homeostasis.
Collapse
|
8
|
Ruby L, Shim S, Berger N, Marcon M, Frauenfelder T, Boss A. Diagnostic value of a spiral breast computed tomography system equipped with photon counting detector technology in patients with implants: An observational study of our initial experiences. Medicine (Baltimore) 2020; 99:e20797. [PMID: 32791669 PMCID: PMC7387031 DOI: 10.1097/md.0000000000020797] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
To evaluate the value of a breast computed tomography (CT) (B-CT) in assessing breast density, pathologies and implant integrity in women with breast implants.This retrospective study was approved by the local ethics committee. B-CT images of 21 women with implants (silicone/saline; 20 bilateral, 1 unilateral) who underwent opportunistic screening or diagnostic bilateral B-CT were included. Breast density, implant integrity, extensive capsular fibrosis, soft tissue lesions and micro-/macrocalcifications were rated. In 18 of the 21 women, an additional ultrasound and in two patients breast magnetic resonance imaging was available for comparison. The average dose was calculated for each breast using verified Monte Carlo simulations on 3D image data sets.Breast density was nearly completely fatty (ACR a) in two patients, scattered fibroglandular (ACR b) in five, heterogeneously dense (ACR c) in ten and very dense (ACR d) in four women. In three women showed a unilateral positive Linguine sign indicative of an inner capsule rupture. Extensive capsular fibrosis was found in three women. In three women, soft tissue lesions were depicted, which revealed to be cysts (n = 2) and lymph nodes (n = 1) on subsequent sonography. Diffuse, non-clustered microcalcifications were found in nine women. Eleven women showed cutaneous or intramammary macrocalcifications. Average dose was 6.45 mGy (range 5.81-7.28 mGy).In women with implants, B-CT presents a promising modality for evaluating breast density, implant integrity, extensive capsular fibrosis, soft tissue lesions and micro-/macrocalcifications without the need of breast compression utilizing a lower dose compared to doses reported for conventional four-view mammography.
Collapse
|
9
|
Zan G, Vine DJ, Yun W, Lewis SJY, Wang Q, Wang G. Quantitative analysis of a micro array anode structured target for hard x-ray grating interferometry. Phys Med Biol 2020; 65:035008. [PMID: 31874460 PMCID: PMC7067380 DOI: 10.1088/1361-6560/ab6578] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
Talbot-Lau interferometry (TLI) provides additional contrast modes for x-ray imaging that are complementary to conventional absorption radiography. TLI is particularly interesting because it is one of the few practical methods for realizing phase contrast with x-rays that is compatible with large-spot high power x-ray sources. A novel micro array anode structured target (MAAST) x-ray source offers several advantages for TLI over the conventional combination of an extended x-ray source coupled with an absorption grating including higher flux and larger field of view, and these advantages become more pronounced for x-ray energies in excess of 30 keV. A Monte Carlo simulation was performed to determine the optimal parameters for a MAAST source for use with TLI. It was found that the both spatial distribution of x-ray production and the number of x-ray produced in the MAAST have a strong dependence on the incidence angle of the electron beam.
Collapse
Affiliation(s)
- Guibin Zan
- National Synchrotron Radiation Laboratory, University of Science and Technology of China, Hefei 230029, People's Republic of China. Sigray, Inc. 5750 Imhoff Drive, Concord, CA 94520, United States of America. Department of Biomedical Engineering, Rensselaer Polytechnic Institute, Troy, NY 12180, United States of America
| | | | | | | | | | | |
Collapse
|
10
|
Pacilè S, Dullin C, Baran P, Tonutti M, Perske C, Fischer U, Albers J, Arfelli F, Dreossi D, Pavlov K, Maksimenko A, Mayo SC, Nesterets YI, Taba ST, Lewis S, Brennan PC, Gureyev TE, Tromba G, Wienbeck S. Free propagation phase-contrast breast CT provides higher image quality than cone-beam breast-CT at low radiation doses: a feasibility study on human mastectomies. Sci Rep 2019; 9:13762. [PMID: 31551475 PMCID: PMC6760215 DOI: 10.1038/s41598-019-50075-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 08/22/2019] [Indexed: 12/09/2022] Open
Abstract
In this study we demonstrate the first direct comparison between synchrotron x-ray propagation-based CT (PB-CT) and cone-beam breast-CT (CB-CT) on human mastectomy specimens (N = 12) including different benign and malignant lesions. The image quality and diagnostic power of the obtained data sets were compared and judged by two independent expert radiologists. Two cases are presented in detail in this paper including a comparison with the corresponding histological evaluation. Results indicate that with PB-CT it is possible to increase the level of contrast-to-noise ratio (CNR) keeping the same level of dose used for the CB-CT or achieve the same level of CNR reached by CB-CT at a lower level of dose. In other words, PB-CT can achieve a higher diagnostic potential compared to the commercial breast-CT system while also delivering a considerably lower mean glandular dose. Therefore, we believe that PB-CT technique, if translated to a clinical setting, could have a significant impact in improving breast cancer diagnosis.
Collapse
Affiliation(s)
- S Pacilè
- Elettra Sincrotrone Trieste S.C.p.A., Basovizza, Italy. .,Department of Engineering and Architecture, University of Trieste, Trieste, Italy.
| | - C Dullin
- Elettra Sincrotrone Trieste S.C.p.A., Basovizza, Italy.,Institute for Diagnostic and Interventional Radiology, University Medical Center Goettingen, Goettingen, Germany.,Translational Molecular Imaging, Max-Plank-Institute for Experimental Medicine, Goettingen, Germany
| | - P Baran
- ARC Centre of Excellence in Advanced Molecular Imaging, School of Physics, The University of Melbourne, Parkville, Australia
| | - M Tonutti
- Department of Radiology, Academic Hospital of Trieste, Trieste, Italy
| | - C Perske
- Institute for Pathology, University Medical Center Goettingen, Goettingen, Germany
| | - U Fischer
- Diagnostic Breast Center Goettingen, Goettingen, Germany
| | - J Albers
- Institute for Diagnostic and Interventional Radiology, University Medical Center Goettingen, Goettingen, Germany
| | - F Arfelli
- Department of Physics, University of Trieste, Trieste, Italy
| | - D Dreossi
- Elettra Sincrotrone Trieste S.C.p.A., Basovizza, Italy
| | - K Pavlov
- School of Physical and Chemical Sciences, University of Canterbury, Christchurch, New Zealand.,School of Science and Technology, University of New England, Armidale, Australia.,School of Physics and Astronomy, Monash University, Clayton, Australia
| | | | - S C Mayo
- Commonwealth Scientific and Industrial Research Organisation, Clayton, Australia
| | - Y I Nesterets
- Commonwealth Scientific and Industrial Research Organisation, Clayton, Australia.,School of Science and Technology, University of New England, Armidale, Australia
| | - S Tavakoli Taba
- The University of Sydney, BREAST, Faculty of Health Sciences, Lidcombe, New South Wales, Australia
| | - S Lewis
- The University of Sydney, BREAST, Faculty of Health Sciences, Lidcombe, New South Wales, Australia
| | - P C Brennan
- The University of Sydney, BREAST, Faculty of Health Sciences, Lidcombe, New South Wales, Australia
| | - T E Gureyev
- ARC Centre of Excellence in Advanced Molecular Imaging, School of Physics, The University of Melbourne, Parkville, Australia.,School of Science and Technology, University of New England, Armidale, Australia.,School of Physics and Astronomy, Monash University, Clayton, Australia.,The University of Sydney, BREAST, Faculty of Health Sciences, Lidcombe, New South Wales, Australia
| | - G Tromba
- Elettra Sincrotrone Trieste S.C.p.A., Basovizza, Italy
| | - S Wienbeck
- Institute for Diagnostic and Interventional Radiology, University Medical Center Goettingen, Goettingen, Germany
| |
Collapse
|
11
|
Li X, Gao H, Chen Z, Zhang L, Zhu X, Wang S, Peng W. A comparative study of information retrieval in grating-based x-ray phase-contrast imaging. ACTA ACUST UNITED AC 2019; 64:125010. [DOI: 10.1088/1361-6560/ab0d5a] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
|
12
|
Aliwaini S, Lubbad AM, Shourfa A, Hamada HAA, Ayesh B, Abu Tayem HEM, Abu Mustafa A, Abu Rouk F, Redwan MM, Al-Najjar M. Overexpression of TBX3 transcription factor as a potential diagnostic marker for breast cancer. Mol Clin Oncol 2019; 10:105-112. [PMID: 30655984 DOI: 10.3892/mco.2018.1761] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2018] [Accepted: 10/26/2018] [Indexed: 11/06/2022] Open
Abstract
The T-box 3 (TBX3) transcription factor has been shown to serve multiple roles in normal development. Recent findings have revealed that TBX3 is overexpressed in different types of carcinomas, including breast, cervical, ovarian, melanoma, pancreatic, lung, liver, bladder, head and neck. Therefore, the present study investigated the significance of TBX3 as a diagnostic marker of breast cancer. To achieve this aim, breast cancer samples and their adjacent normal tissues were collected from 51 breast cancer patients from the European Gaza hospital during 2015-2016. Sections from each sample were immune-stained by anti-TBX3 and suitable secondary and tertiary antibodies. TBX3 levels were evaluated in cancerous and normal samples. Clinicopathological data for each patient were documented. The correlation between TBX3 levels and the clinicopathological parameters were statistically tested. The results revealed that TBX3 is significantly overexpressed in breast cancer tissues when compared with normal tissues. Furthermore, TBX3 was mainly a cytoplasmic protein in normal and breast cancer tissues. Notably, TBX3 levels exhibited a sensitivity of 78.4%, specificity of 79.6%, accuracy of 79% and area under the curve of 0.791 (0.700-0.882) at a cut-off value=9 as breast cancer marker. However, no significant associations were observed between TBX3 levels and other breast cancer markers including oestrogen receptor, progesterone receptor, human epidermal growth factor receptor 2, cancer antigen 15-3 and breast cancer stages. Altogether, these results suggested that TBX3 overexpression may be a potential biomarker for breast cancer.
Collapse
Affiliation(s)
- Saeb Aliwaini
- Department of Biological Sciences and Biotechnology, Faculty of Sciences, Islamic University of Gaza, 108 Gaza, Palestine
| | - Abdel Monem Lubbad
- Department of Pathology, Faculty of Medicine, Islamic University of Gaza, 108 Gaza, Palestine
| | - Ahmed Shourfa
- Department of Oncology, European Gaza Hospital, 7049 Gaza, Palestine
| | | | - Basim Ayesh
- Department of Laboratory Medical Sciences, Alaqsa University, 4051 Gaza, Palestine
| | - Husam Eddeen M Abu Tayem
- Department of Biological Sciences and Biotechnology, Faculty of Sciences, Islamic University of Gaza, 108 Gaza, Palestine
| | - Ayman Abu Mustafa
- Nursing Department, Palestine College of Nursing, 7049 Gaza, Palestine
| | - Fayek Abu Rouk
- Department of Oncology, European Gaza Hospital, 7049 Gaza, Palestine
| | - Moen M Redwan
- Department of Pathology, Alshefa Hospital, 1016 Gaza, Palestine
| | - Mohamed Al-Najjar
- Department of Oncology, European Gaza Hospital, 7049 Gaza, Palestine
| |
Collapse
|
13
|
Boss A. Editorial comment: cone-beam and phase contrast CT: new horizons in breast imaging? Eur Radiol 2018; 28:3729-3730. [DOI: 10.1007/s00330-018-5456-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2018] [Accepted: 03/28/2018] [Indexed: 10/14/2022]
|