1
|
Huang H, Li C, Zeng Z, Liang J. Impact of pre-examination video education in Gd-EOB-DTPA-enhanced liver MRI: A comparative study. J Med Radiat Sci 2024. [PMID: 39526319 DOI: 10.1002/jmrs.833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Accepted: 10/03/2024] [Indexed: 11/16/2024] Open
Abstract
INTRODUCTION Hepatocellular carcinoma (HCC) is a leading cause of cancer-related mortality, and early diagnosis via gadolinium ethoxybenzyl-diethylenetriamine pentaacetic acid (Gd-EOB-DTPA)-enhanced magnetic resonance imaging (MRI) significantly impacts patient outcomes. However, patient anxiety during MRI can affect image quality. This study investigates the impact of pre-examination video education on anxiety, satisfaction and image quality in Gd-EOB-DTPA-enhanced liver MRI. METHODS We prospectively enrolled 480 patients who underwent Gd-EOB-DTPA-enhanced liver MRI from January 2022 to May 2023 at our hospital. Patients were divided into study and control groups in order of odd and even days, with 240 cases in each group. Before the examination, the radiology staff provided routine verbal guidance and breathing training to the patients in the control group, while the study group was given additional video education. The state anxiety scores, satisfaction scores of the provided information and motion artefact scores of the images before and after the examination were compared between the two groups. RESULTS The state anxiety scores of both groups of patients were lower than before the examination (all P < 0.05), but the change value of the study group was significantly greater than that of the control group (P = 0.004). The satisfaction rate of the information provided before the scan in the study group was significantly higher (P < 0.001). The image quality scores of the arterial phase were similar between the two groups (P = 0.403), but the image quality of the study group in the pre-contrast, portal phase, transitional phase and hepatobiliary phase was significantly better than that of the control group (all P < 0.05). CONCLUSION Supplementing routine pre-scan care with video guidance for Gd-EOB-DTPA-enhanced liver MRI offers several benefits, including reduced patient anxiety, increased satisfaction and improved image quality. These results suggest the potential for widespread application of video-based interventions to enhance the MRI experience for patients.
Collapse
Affiliation(s)
- Hongfang Huang
- Department of Radiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Chenhui Li
- Department of Radiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Zisan Zeng
- Department of Radiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| | - Junli Liang
- Department of Radiology, The First Affiliated Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
2
|
Ren J, Lu Q, Fei X, Dong Y, D Onofrio M, Sidhu PS, Dietrich CF. Assessment of arterial-phase hyperenhancement and late-phase washout of hepatocellular carcinoma-a meta-analysis of contrast-enhanced ultrasound (CEUS) with SonoVue® and Sonazoid®. Eur Radiol 2024; 34:3795-3812. [PMID: 37989916 DOI: 10.1007/s00330-023-10371-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 08/29/2023] [Accepted: 08/31/2023] [Indexed: 11/23/2023]
Abstract
OBJECTIVES The recognition of arterial phase hyperenhancement (APHE) and washout during the late phase is key for correct diagnosis of hepatocellular carcinoma (HCC) with contrast-enhanced ultrasound (CEUS). This meta-analysis was conducted to compare SonoVue®-enhanced and Sonazoid®-enhanced ultrasound in the assessment of HCC enhancement and diagnosis. METHODS Studies were included in the analysis if they reported data for HCC enhancement in the arterial phase and late phase for SonoVue® or in the arterial phase and Kupffer phase (KP) for Sonazoid®. Forty-two studies (7502 patients) with use of SonoVue® and 30 studies (2391 patients) with use of Sonazoid® were identified. In a pooled analysis, the comparison between SonoVue® and Sonazoid® CEUS was performed using chi-square test. An inverse variance weighted random-effect model was used to estimate proportion, sensitivity, and specificity along with 95% confidence interval (CI). RESULTS In the meta-analysis, the proportion of HCC showing APHE with SonoVue®, 93% (95% CI 91-95%), was significantly higher than the proportion of HCC showing APHE with Sonazoid®, 77% (71-83%) (p < 0.0001); similarly, the proportion of HCC showing washout at late phase/KP was significantly higher with SonoVue®, 86% (83-89%), than with Sonazoid®, 76% (70-82%) (p < 0.0001). The sensitivity and specificity for the detection of APHE plus late-phase/KP washout detection in HCC were also higher with SonoVue® than with Sonazoid® (sensitivity 80% vs 52%; specificity 80% vs 73% in studies within unselected patient populations). CONCLUSION APHE and late washout in HCC are more frequently observed with SonoVue® than with Sonazoid®. This may affect the diagnostic performance of CEUS in the diagnosis of HCCs. CLINICAL RELEVANCE STATEMENT Meta-analysis data show the presence of key enhancement features for diagnosis of hepatocellular carcinoma is different between ultrasound contrast agents, and arterial hyperenhancement and late washout are more frequently observed at contrast-enhanced ultrasound with SonoVue® than with Sonazoid®. KEY POINTS • Dynamic enhancement features are key for imaging-based diagnosis of HCC. • Arterial hyperenhancement and late washout are more often observed in HCCs using SonoVue®-enhanced US than with Sonazoid®. • The existing evidence for contrast-enhanced US may need to be considered being specific to the individual contrast agent.
Collapse
Affiliation(s)
- Jie Ren
- Department of Medical Ultrasound, Laboratory of Novel Optoacoustic (Ultrasonic) Imaging, The Third Affiliated Hospital, Sun Yat-Sen University, Guangzhou, China
| | - Qiang Lu
- Department of Ultrasound, Laboratory of Ultrasound Medicine, West China Hospital of Sichuan University, Chengdu, China
| | - Xiang Fei
- Department of Ultrasound, the First Medical Center, Chinese PLA General Hospital, Beijing, China
| | - Yi Dong
- Department of Ultrasound, Xinhua Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, China
| | | | - Paul S Sidhu
- King's College London, Radiology, London, United Kingdom
| | - Christoph F Dietrich
- Department Allgemeine Innere Medizin (DAIM), Kliniken Hirslanden Beau Site, Salem and Permancence, Bern, Switzerland.
| |
Collapse
|
3
|
Zhang R, Wang Y, Li Z, Shi Y, Yu D, Huang Q, Chen F, Xiao W, Hong Y, Feng Z. Dynamic radiomics based on contrast-enhanced MRI for predicting microvascular invasion in hepatocellular carcinoma. BMC Med Imaging 2024; 24:80. [PMID: 38584254 PMCID: PMC11000376 DOI: 10.1186/s12880-024-01258-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2023] [Accepted: 03/26/2024] [Indexed: 04/09/2024] Open
Abstract
OBJECTIVE To exploit the improved prediction performance based on dynamic contrast-enhanced (DCE) MRI by using dynamic radiomics for microvascular invasion (MVI) in hepatocellular carcinoma (HCC). METHODS We retrospectively included 175 and 75 HCC patients who underwent preoperative DCE-MRI from September 2019 to August 2022 in institution 1 (development cohort) and institution 2 (validation cohort), respectively. Static radiomics features were extracted from the mask, arterial, portal venous, and equilibrium phase images and used to construct dynamic features. The static, dynamic, and dynamic-static radiomics (SR, DR, and DSR) signatures were separately constructed based on the feature selection method of LASSO and classification algorithm of logistic regression. The receiver operating characteristic (ROC) curves and the area under the curve (AUC) were plotted to evaluate and compare the predictive performance of each signature. RESULTS In the three radiomics signatures, the DSR signature performed the best. The AUCs of the SR, DR, and DSR signatures in the training set were 0.750, 0.751 and 0.805, respectively, while in the external validation set, the corresponding AUCs were 0.706, 0756 and 0.777. The DSR signature showed significant improvement over the SR signature in predicting MVI status (training cohort: P = 0.019; validation cohort: P = 0.044). After external validation, the AUC value of the SR signature decreased from 0.750 to 0.706, while the AUC value of the DR signature did not show a decline (AUCs: 0.756 vs. 0.751). CONCLUSIONS The dynamic radiomics had an improved effect on the MVI prediction in HCC, compared with the static DCE MRI-based radiomics models.
Collapse
Affiliation(s)
- Rui Zhang
- Department of Radiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yao Wang
- Department of Ultrasound, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Zhi Li
- Department of Radiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yushu Shi
- Department of Radiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Danping Yu
- Department of Radiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Qiang Huang
- Department of Radiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Feng Chen
- Department of Radiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Wenbo Xiao
- Department of Radiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Yuan Hong
- College of Mathematical Medicine, Zhejiang Normal University School, Jinhua, China
| | - Zhan Feng
- Department of Radiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China.
| |
Collapse
|
4
|
Deep Learning-Based Automatic Detection and Grading of Motion-Related Artifacts on Gadoxetic Acid-Enhanced Liver MRI. Invest Radiol 2023; 58:166-172. [PMID: 36070544 DOI: 10.1097/rli.0000000000000914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
OBJECTIVES The aim of this study was to develop and validate a deep learning-based algorithm (DLA) for automatic detection and grading of motion-related artifacts on arterial phase liver magnetic resonance imaging (MRI). MATERIALS AND METHODS Multistep DLA for detection and grading of motion-related artifacts, based on the modified ResNet-101 and U-net, were trained using 336 arterial phase images of gadoxetic acid-enhanced liver MRI examinations obtained in 2017 (training dataset; mean age, 68.6 years [range, 18-95]; 254 men). Motion-related artifacts were evaluated in 4 different MRI slices using a 3-tier grading system. In the validation dataset, 313 images from the same institution obtained in 2018 (internal validation dataset; mean age, 67.2 years [range, 21-87]; 228 men) and 329 from 3 different institutions (external validation dataset; mean age, 64.0 years [range, 23-90]; 214 men) were included, and the per-slice and per-examination performances for the detection of motion-related artifacts were evaluated. RESULTS The per-slice sensitivity and specificity of the DLA for detecting grade 3 motion-related artifacts were 91.5% (97/106) and 96.8% (1134/1172) in the internal validation dataset and 93.3% (265/284) and 91.6% (948/1035) in the external validation dataset. The per-examination sensitivity and specificity were 92.0% (23/25) and 99.7% (287/288) in the internal validation dataset and 90.0% (72/80) and 96.0% (239/249) in the external validation dataset, respectively. The processing time of the DLA for automatic grading of motion-related artifacts was from 4.11 to 4.22 seconds per MRI examination. CONCLUSIONS The DLA enabled automatic and instant detection and grading of motion-related artifacts on arterial phase gadoxetic acid-enhanced liver MRI.
Collapse
|
5
|
Jang EB, Kim DW, Choi SH, Hong SB, Park T, Ko Y, Ham SJ. Transient severe motion artifacts on gadoxetic acid-enhanced MRI: risk factor analysis in 2230 patients. Eur Radiol 2022; 32:8629-8638. [PMID: 35665846 DOI: 10.1007/s00330-022-08885-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Revised: 04/07/2022] [Accepted: 05/12/2022] [Indexed: 11/04/2022]
Abstract
OBJECTIVES To determine risk factors for transient severe motion (TSM) artifact on arterial phase of gadoxetic acid-enhanced MRI using a large cohort. METHODS A total of 2230 patients who underwent gadoxetic acid-enhanced MRI was consecutively included. Two readers evaluated respiratory motion artifact on arterial phase images using a 5-point grading scale. Clinical factors including demographic data, underlying disease, laboratory data, presence of ascites and pleural effusion, and previous experience of gadoxetic acid-enhanced MRI were investigated. Univariable and multivariable logistic regression analyses were performed to determine significant risk factors for TSM. Predictive value of TSM was calculated according to the number of significant risk factors. RESULTS Overall incidence of TSM was 5.0% (111/2230). In the multivariable analysis, old age (≥ 65 years; odds ratio [OR] = 2.01 [95% CI, 1.31-3.07]), high body mass index (≥ 25 kg/m2; OR = 1.76 [1.18-2.63]), chronic obstructive pulmonary disease (OR = 6.11 [2.32-16.04]), and moderate to severe pleural effusion (OR = 3.55 [1.65-7.65]) were independent significant risk factors for TSM. Presence of hepatitis B (OR = 0.66 [0.43-0.99]) and previous experience of gadoxetic acid-enhanced MRI (OR = 0.52 [0.33-0.83]) were negative risk factors for TSM. When at least one of the significant factors was present, the predictive risk was 5.7% (109/1916), whereas it was 16.3% (17/104) when at least four factors were present. CONCLUSION Knowing risk factors for transient severe motion artifact on gadoxetic acid-enhanced MRI can be clinically useful for providing diagnostic strategies more tailored to individual patients. KEY POINTS • Old age, high body mass index, chronic obstructive pulmonary disease, and moderate to severe pleural effusion were independent risk factors for transient severe motion artifact on gadoxetic acid-enhanced MRI. • Patients with hepatitis B or previous experience of gadoxetic acid-enhanced MRI were less likely to show transient severe motion artifact. • As the number of risk factors for transient severe motion artifact increased, the predicted risk for it also showed a tendency to increase.
Collapse
Affiliation(s)
- Eun Bee Jang
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Dong Wook Kim
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Sang Hyun Choi
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea.
| | - Seung Baek Hong
- Department of Radiology, Biomedical Research Institute, Pusan National University Hospital and Pusan National University School of Medicine, 179 Gudeok-ro, Seo-gu, Busan, 49241, Republic of Korea
| | - Taeyong Park
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
| | - Yousun Ko
- Biomedical Research Center, Asan Institute for Life Sciences, Asan Medical Center, Seoul, Republic of Korea
| | - Su Jung Ham
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, 88 Olympic-ro 43-gil, Songpa-gu, Seoul, 05505, Republic of Korea
| |
Collapse
|
6
|
Young Park J, Min Lee S, Sub Lee J, Chang W, Hee Yoon J. Free-breathing dynamic T1WI using compressed sensing-golden angle radial sparse parallel imaging for liver MRI in patients with limited breath-holding capability. Eur J Radiol 2022; 152:110342. [DOI: 10.1016/j.ejrad.2022.110342] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2021] [Revised: 03/22/2022] [Accepted: 05/01/2022] [Indexed: 11/03/2022]
|
7
|
Ichikawa S, Motosugi U, Wakayama T, Morisaka H, Funayama S, Tamada D, Wang K, Mandava S, Cashen TA, Onishi H. An Intra-individual Comparison between Free-breathing Dynamic MR Imaging of the Liver Using Stack-of-stars Acquisition and the Breath-holding Method Using Cartesian Sampling or View-sharing. Magn Reson Med Sci 2022; 22:221-231. [PMID: 35296587 PMCID: PMC10086403 DOI: 10.2463/mrms.mp.2021-0143] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
PURPOSE To compare the quality of dynamic imaging between stack-of-stars acquisition without breath-holding (DISCO-Star) and the breath-holding method (Cartesian LAVA and DISCO). METHODS This retrospective study was conducted between October 2019 and February 2020. Two radiologists performed visual assessments of respiratory motion or pulsation artifacts, streak artifacts, liver edge sharpness, and overall image quality using a 5-point scale for two datasets: Dataset 1 (n = 107), patients with Cartesian LAVA and DISCO-Star; Dataset 2 (n = 41), patients with DISCO and DISCO-Star at different time points. Diagnosable image quality was defined as ≥ 3 points in overall image quality. Whether the scan timing of the arterial phase (AP) was appropriate was evaluated, and results between the pulse sequences were compared. In cases of inappropriate scan timing in the DISCO-Star group, retrospective reconstruction with a high frame rate (80 phases, 3 s/phase) was added. RESULTS The overall image quality of Cartesian LAVA was better than that of DISCO-Star in AP. However, noninferiority was shown in the ratio of diagnosable images between Cartesian LAVA and DISCO-Star in AP. There was no significant difference in the ratio of appropriate scan timing between DISCO-Star and Cartesian LAVA; however, the ratio of appropriate scan timing in DISCO-Star with high frame rate reconstruction was significantly higher than that in Cartesian LAVA in both readers. Overall image quality scores between DISCO and DISCO-Star were not significantly different in AP. There was no significant difference in the ratio of appropriate scan timing between DISCO-Star with high frame rate reconstruction and DISCO in both readers. CONCLUSION The use of DISCO-Star with high frame rate reconstruction is a good solution to obtain appropriate AP scan timing compared with Cartesian LAVA. DISCO-Star showed equivalent image quality in all phases and in the ratio of appropriate AP scan timing compared with DISCO.
Collapse
Affiliation(s)
- Shintaro Ichikawa
- Department of Radiology, Hamamatsu University School of Medicine.,Department of Radiology, University of Yamanashi
| | | | | | | | | | - Daiki Tamada
- Department of Radiology, University of Yamanashi
| | | | | | - Ty A Cashen
- MR Collaboration and Development, GE Healthcare
| | | |
Collapse
|
8
|
Kim DW, Choi SH, Park T, Kim SY, Lee SS, Byun JH. Transient Severe Motion Artifact on Arterial Phase in Gadoxetic Acid-Enhanced Liver Magnetic Resonance Imaging: A Systematic Review and Meta-analysis. Invest Radiol 2022; 57:62-70. [PMID: 34224484 DOI: 10.1097/rli.0000000000000806] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
OBJECTIVES The aims of this study were to determine the incidence of transient severe motion artifact (TSM) on arterial phase gadoxetic acid-enhanced magnetic resonance imaging of the liver and to investigate the causes of heterogeneity in the published literature. MATERIALS AND METHODS Original studies reporting the incidence of TSM were identified in searches of PubMed, Embase, and Cochrane Library databases. The pooled incidence of TSM was calculated using random-effects meta-analysis of single proportions. Subgroup analyses were conducted to explore causes of heterogeneity. RESULTS A total of 24 studies were finally included (single arterial phase, 19 studies with 3065 subjects; multiple arterial phases, 8 studies with 2274 subjects). Studies using single arterial phase imaging reported individual TSM rates varying from 4.8% to 26.7% and a pooled incidence of TSM of 13.0% (95% confidence interval, 10.3%-16.2%), which showed substantial study heterogeneity. The pooled incidence of TSM in the studies using multiple arterial phase imaging was 3.2% (95% confidence interval, 1.9%-5.2%), which was significantly less than in those studies using single arterial phase imaging (P < 0.001). In the subgroup analysis, the geographical region of studies and the definition of TSM were found to be causes of heterogeneity. The incidence of TSM was higher in studies with Western populations from Europe or North America than in those with Eastern (Asia/Pacific) populations (16.0% vs 8.8%, P = 0.005). Regarding the definition of TSM, the incidence of TSM was higher when a 4-point scale was used for its categorization than when a 5-point scale was used (20.0% vs 11.0%, P = 0.008), and a definition considering motion artifact on phases other than arterial phase imaging lowered the incidence of TSM compared with it being defined only on arterial phase imaging (11.3% vs 20.3%, P = 0.018). CONCLUSIONS The incidence of TSM on arterial phase images varied across studies and was associated with the geographical region of studies and the definition of TSM. Careful interpretation of results reporting TSM might therefore be needed.
Collapse
Affiliation(s)
- Dong Wook Kim
- From the Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | | | | | | | | | | |
Collapse
|
9
|
Meng XP, Wang YC, Zhou JY, Yu Q, Lu CQ, Xia C, Tang TY, Xu J, Sun K, Xiao W, Ju S. Comparison of MRI and CT for the Prediction of Microvascular Invasion in Solitary Hepatocellular Carcinoma Based on a Non-Radiomics and Radiomics Method: Which Imaging Modality Is Better? J Magn Reson Imaging 2021; 54:526-536. [PMID: 33622022 DOI: 10.1002/jmri.27575] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2020] [Revised: 02/06/2021] [Accepted: 02/08/2021] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Computed tomography (CT) and magnetic resonance imaging (MRI) are both capable of predicting microvascular invasion (MVI) in hepatocellular carcinoma (HCC). However, which modality is better is unknown. PURPOSE To intraindividually compare CT and MRI for predicting MVI in solitary HCC and investigate the added value of radiomics analyses. STUDY TYPE Retrospective. SUBJECTS Included were 402 consecutive patients with HCC (training set:validation set = 300:102). FIELD STRENGTH/SEQUENCE T2-weighted, diffusion-weighted, and contrast-enhanced T1-weighted imaging MRI at 3.0T and contrast-enhanced CT. ASSESSMENT CT- and MR-based radiomics signatures (RS) were constructed using the least absolute shrinkage and selection operator regression. CT- and MR-based radiologic (R) and radiologic-radiomics (RR) models were developed by univariate and multivariate logistic regression. The performance of the RS/models was compared between two modalities. To investigate the added value of RS, the performance of the R models was compared with the RR models in HCC of all sizes and 2-5 cm in size. STATISTICAL TESTS Model performance was quantified by the area under the receiver operating characteristic curve (AUC) and compared using the Delong test. RESULTS Histopathologic MVI was identified in 161 patients (training set:validation set = 130:31). MRI-based RS/models tended to have a marginally higher AUC than CT-based RS/models (AUCs of CT vs. MRI, P: RS, 0.801 vs. 0.804, 0.96; R model, 0.809 vs. 0.832, 0.09; RR model, 0.835 vs. 0.872, 0.54). The improvement of RR models over R models in all sizes was not significant (P = 0.21 at CT and 0.09 at MRI), whereas the improvement in 2-5 cm was significant at MRI (P < 0.05) but not at CT (P = 0.16). DATA CONCLUSION CT and MRI had a comparable predictive performance for MVI in solitary HCC. The RS of MRI only had significant added value for predicting MVI in HCC of 2-5 cm. LEVEL OF EVIDENCE 3 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Xiang-Pan Meng
- Department of Radiology, Jiangsu Key Laboratory of Molecular and Functional Imaging, Zhongda Hospital, Medical School of Southeast University, Nanjing, China
| | - Yuan-Cheng Wang
- Department of Radiology, Jiangsu Key Laboratory of Molecular and Functional Imaging, Zhongda Hospital, Medical School of Southeast University, Nanjing, China
| | - Jia-Ying Zhou
- Department of Radiology, Jiangsu Key Laboratory of Molecular and Functional Imaging, Zhongda Hospital, Medical School of Southeast University, Nanjing, China
| | - Qian Yu
- Department of Radiology, Jiangsu Key Laboratory of Molecular and Functional Imaging, Zhongda Hospital, Medical School of Southeast University, Nanjing, China
| | - Chun-Qiang Lu
- Department of Radiology, Jiangsu Key Laboratory of Molecular and Functional Imaging, Zhongda Hospital, Medical School of Southeast University, Nanjing, China
| | - Cong Xia
- Department of Radiology, Jiangsu Key Laboratory of Molecular and Functional Imaging, Zhongda Hospital, Medical School of Southeast University, Nanjing, China
| | - Tian-Yu Tang
- Department of Radiology, Jiangsu Key Laboratory of Molecular and Functional Imaging, Zhongda Hospital, Medical School of Southeast University, Nanjing, China
| | - Jiajia Xu
- Department of Pathology, Zhongda Hospital, Medical School of Southeast University, Nanjing, China
| | - Ke Sun
- Department of Pathology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Wenbo Xiao
- Department of Radiology, the First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou, China
| | - Shenghong Ju
- Department of Radiology, Jiangsu Key Laboratory of Molecular and Functional Imaging, Zhongda Hospital, Medical School of Southeast University, Nanjing, China
| |
Collapse
|