1
|
Zhong YQ, Zhu XX, Huang XT, Luo YJ, Huang CS, Xu QC, Yin XY. Prediction of clinically relevant postoperative pancreatic fistula after pancreatoduodenectomy based on multifrequency magnetic resonance elastography. J Gastrointest Surg 2025; 29:101886. [PMID: 39547592 DOI: 10.1016/j.gassur.2024.101886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 11/06/2024] [Accepted: 11/08/2024] [Indexed: 11/17/2024]
Abstract
BACKGROUND Clinically relevant postoperative pancreatic fistula (CR-POPF) is the major complication of pancreatoduodenectomy, and the pancreatic texture is one of the potential affecting factors. Multifrequency magnetic resonance elastography (MRE) is a novel technique for measuring tissue stiffness, but its value in predicting CR-POPF preoperatively has not been well documented. METHODS A total of 70 patients who underwent multifrequency MRE before pancreatoduodenectomy between July 2021 and April 2024 were retrospectively recruited into the study. The parameters of MRE, shear wave speed (c) and phase angle (φ), and clinical data were collected. Logistic regression and the receiver operating characteristic curve analyses were used to assess the performance of multifrequency MRE in predicting CR-POPF. RESULTS CR-POPF was developed in 14 of 70 patients (20%), all categorized as grade B. The CR-POPF group had significantly lower c (1.339 ± 0.210 m/s) and longer hospital stays (21 [IQR, 15.50-37.75] days) than the no-CR-POPF group. The MRE parameters, c and φ, were moderately correlated with pancreas stiffness (eta2 for φ = 0.189 and eta2 for c = 0.106). Dilated major pancreatic duct (MPD ≥ 3 mm) and higher c were independently associated with a lower risk of CR-POPF in univariant and multivariant analyses (odds ratio [OR] for c, 0.041 [95% CI, 0.002-0.879]; OR for dilated MPD, 0.129 [95% CI, 0.022-0.768]). The area under the curve (AUC) of the predictive model based on c and MPD diameter was 0.786, which was better than the fistula risk score (FRS) (AUC = 0.587) and alternative FRS (AUC = 0.556) in our center, with the DeLong test P = .028 and P = .002, respectively. CONCLUSION The MRE parameters were associated with pancreatic stiffness, and c was an independent predictor of CR-POPF after pancreatoduodenectomy.
Collapse
Affiliation(s)
- Yu-Qing Zhong
- Department of Pancreatobiliary Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xiao-Xu Zhu
- Department of Pancreatobiliary Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China; Department of Burn and Plastic Surgery, Guangzhou Red Cross Hospital, Jinan University, Guangdong, China
| | - Xi-Tai Huang
- Department of Pancreatobiliary Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Yan-Ji Luo
- Department of Radiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Chen-Song Huang
- Department of Pancreatobiliary Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Qiong-Cong Xu
- Department of Pancreatobiliary Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China
| | - Xiao-Yu Yin
- Department of Pancreatobiliary Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, China.
| |
Collapse
|
2
|
Liu G, Shen Z, Chong H, Zhou J, Zhang T, Wang Y, Ma D, Yang Y, Chen Y, Wang H, Sack I, Guo J, Li R, Yan F. Three-Dimensional Multifrequency MR Elastography for Microvascular Invasion and Prognosis Assessment in Hepatocellular Carcinoma. J Magn Reson Imaging 2024; 60:2626-2640. [PMID: 38344910 DOI: 10.1002/jmri.29276] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2023] [Revised: 01/21/2024] [Accepted: 01/22/2024] [Indexed: 11/15/2024] Open
Abstract
BACKGROUND Pretreatment identification of microvascular invasion (MVI) in hepatocellular carcinoma (HCC) is important when selecting treatment strategies. PURPOSE To improve models for predicting MVI and recurrence-free survival (RFS) by developing nomograms containing three-dimensional (3D) MR elastography (MRE). STUDY TYPE Prospective. POPULATION 188 patients with HCC, divided into a training cohort (n = 150) and a validation cohort (n = 38). In the training cohort, 106/150 patients completed a 2-year follow-up. FIELD STRENGTH/SEQUENCE 1.5T 3D multifrequency MRE with a single-shot spin-echo echo planar imaging sequence, and 3.0T multiparametric MRI (mp-MRI), consisting of diffusion-weighted echo planar imaging, T2-weighted fast spin echo, in-phase out-of-phase T1-weighted fast spoiled gradient-recalled dual-echo and dynamic contrast-enhanced gradient echo sequences. ASSESSMENT Multivariable analysis was used to identify the independent predictors for MVI and RFS. Nomograms were constructed for visualization. Models for predicting MVI and RFS were built using mp-MRI parameters and a combination of mp-MRI and 3D MRE predictors. STATISTICAL TESTS Student's t-test, Mann-Whitney U test, chi-squared or Fisher's exact tests, multivariable analysis, area under the receiver operating characteristic curve (AUC), DeLong test, Kaplan-Meier analysis and log rank tests. P < 0.05 was considered significant. RESULTS Tumor c and liver c were independent predictors of MVI and RFS, respectively. Adding tumor c significantly improved the diagnostic performance of mp-MRI (AUC increased from 0.70 to 0.87) for MVI detection. Of the 106 patients in the training cohort who completed the 2-year follow up, 34 experienced recurrence. RFS was shorter for patients with MVI-positive histology than MVI-negative histology (27.1 months vs. >40 months). The MVI predicted by the 3D MRE model yielded similar results (26.9 months vs. >40 months). The MVI and RFS nomograms of the histologic-MVI and model-predicted MVI-positive showed good predictive performance. DATA CONCLUSION Biomechanical properties of 3D MRE were biomarkers for MVI and RFS. MVI and RFS nomograms were established. LEVEL OF EVIDENCE 2 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Guixue Liu
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhehan Shen
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huanhuan Chong
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiahao Zhou
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Tianyi Zhang
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yikun Wang
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Di Ma
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuchen Yang
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yongjun Chen
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huafeng Wang
- Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ingolf Sack
- Department of Radiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Jing Guo
- Department of Radiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Ruokun Li
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fuhua Yan
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
- College of Health Science and Technology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
3
|
Meyer T, Castelein J, Schattenfroh J, Sophie Morr A, Vieira da Silva R, Tzschätzsch H, Reiter R, Guo J, Sack I. Magnetic resonance elastography in a nutshell: Tomographic imaging of soft tissue viscoelasticity for detecting and staging disease with a focus on inflammation. PROGRESS IN NUCLEAR MAGNETIC RESONANCE SPECTROSCOPY 2024; 144-145:1-14. [PMID: 39645347 DOI: 10.1016/j.pnmrs.2024.05.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 05/24/2024] [Accepted: 05/27/2024] [Indexed: 12/09/2024]
Abstract
Magnetic resonance elastography (MRE) is an emerging clinical imaging modality for characterizing the viscoelastic properties of soft biological tissues. MRE shows great promise in the noninvasive diagnosis of various diseases, especially those associated with soft tissue changes involving the extracellular matrix, cell density, or fluid turnover including altered blood perfusion - all hallmarks of inflammation from early events to cancer development. This review covers the fundamental principles of measuring tissue viscoelasticity by MRE, which are based on the stimulation and encoding of shear waves and their conversion into parameter maps of mechanical properties by inverse problem solutions of the wave equation. Technical challenges posed by real-world biological tissue properties such as viscosity, heterogeneity, anisotropy, and nonlinear elastic behavior of tissues are discussed. Applications of MRE measurement in both humans and animal models are presented, with emphasis on the detection, characterization, and staging of diseases related to the cascade of biomechanical property changes from early to chronic inflammation in the liver and brain. Overall, MRE provides valuable insights into the biophysics of soft tissues for imaging-based detection and staging of inflammation-associated tissue changes.
Collapse
Affiliation(s)
- Tom Meyer
- Department of Radiology, Charité - Universitätsmedizin Berlin, Germany
| | - Johannes Castelein
- Department of Radiology & Nuclear Medicine and Molecular Imaging, University Medical Center Groningen, Netherlands; Department for Biomedical Sciences, Faculty of Health and Medical Sciences, University of Copenhagen, Denmark
| | | | - Anna Sophie Morr
- Department of Radiology, Charité - Universitätsmedizin Berlin, Germany
| | - Rafaela Vieira da Silva
- Experimental and Clinical Research Center, a cooperation between the Max Delbrück Center for Molecular Medicine in the Helmholtz Association and Charité - Universitätsmedizin Berlin, Germany
| | - Heiko Tzschätzsch
- Institute of Medical Informatics, Charité - Universitätsmedizin Berlin, Germany
| | - Rolf Reiter
- Department of Radiology, Charité - Universitätsmedizin Berlin, Germany
| | - Jing Guo
- Department of Radiology, Charité - Universitätsmedizin Berlin, Germany
| | - Ingolf Sack
- Department of Radiology, Charité - Universitätsmedizin Berlin, Germany.
| |
Collapse
|
4
|
Neelsen C, Elgeti T, Meyer T, Grittner U, Mödl L, Furth C, Geisel D, Hamm B, Sack I, Marticorena Garcia SR. Multifrequency Magnetic Resonance Elastography Detects Small Abdominal Lymph Node Metastasis by High Stiffness. Invest Radiol 2024; 59:787-793. [PMID: 38948965 DOI: 10.1097/rli.0000000000001089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/02/2024]
Abstract
OBJECTIVES Response Evaluation Criteria in Solid Tumors (RECIST) 1.1 is a clinical and research standard for evaluating malignant tumors and lymph node metastasis. However, quantitative analysis of nodal status is limited to measurement of short axis diameter (SAD), and metastatic lymph nodes below 10 mm in SAD are often not detected. The purpose of this study was to evaluate the value of multifrequency magnetic resonance elastography (MRE) when added to RECIST 1.1 for detection of lymph node metastasis. MATERIALS AND METHODS Twenty-five benign and 82 metastatic lymph nodes were prospectively examined by multifrequency MRE at 1.5 T using tomoelastography postprocessing at 30, 40, 50, and 60 Hz (total scan time of 4 minutes). Shear wave speed as a surrogate of soft tissue stiffness was provided in m/s. Positron emission tomography-computed tomography was used as reference standard for identification of abdominal lymph node metastasis from histologically confirmed primary tumors. The diagnostic performance of MRE was compared with that of SAD according to RECIST 1.1 and evaluated by receiver operating characteristic curve analysis using generalized linear mixed models and binary logistic mixed models. Sensitivity, specificity, and predictive values were calculated for different cutoffs. RESULTS Metastatic lymph nodes (1.90 ± 0.57 m/s) were stiffer than benign lymph nodes (0.98 ± 0.20 m/s, P < 0.001). An area under the curve of 0.95 for a cutoff of 1.32 m/s was calculated. Using a conservative approach with 1.0 specificity, we found sensitivity (SAD/MRE/MRE + SAD, 0.56/0.84/0.88), negative predictive values (0.41/0.66/0.71), and overall accuracy (0.66/0.88/0.91) to be improved using MRE and even higher for combined MRE and SAD. CONCLUSIONS Multifrequency MRE improves metastatic abdominal lymph node detection by 25% based on higher tissue stiffness-even for lymph nodes with an SAD ≤10 mm. Stiffness information is quick to obtain and would be a promising supplement to RECIST.
Collapse
Affiliation(s)
- Christian Neelsen
- From the Department of Radiology, Campus Mitte, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany (C.N., T.E., T.M., B.H., I.S., S.R.M.G.); Division of Radiology, German Cancer Research Center, Heidelberg, Germany (C.N.); Department of Nuclear Medicine, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany (T.E., C.F.); Institute for Biometry and Clinical Epidemiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany (U.G., L.M.); and Department of Radiology, Campus Virchow Klinikum, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany (D.G., B.H.)
| | | | | | | | | | | | | | | | | | | |
Collapse
|
5
|
Atamaniuk V, Hańczyk Ł, Chen J, Pozaruk A, Obrzut M, Gutkowski K, Domka W, Cholewa M, Ehman RL, Obrzut B. 3D vector MR elastography applications in small organs. Magn Reson Imaging 2024; 112:54-62. [PMID: 38909764 PMCID: PMC11334951 DOI: 10.1016/j.mri.2024.06.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Revised: 05/15/2024] [Accepted: 06/20/2024] [Indexed: 06/25/2024]
Abstract
BACKGROUND Magnetic resonance elastography (MRE) is a rapidly developing medical imaging technique that allows for quantitative assessment of the biomechanical properties of the tissue. MRE is now regarded as the most accurate noninvasive test for detecting and staging liver fibrosis. A two-dimensional (2D MRE) acquisition version is currently deployed at >2000 locations worldwide. 2D MRE allows for the evaluation of the magnitude of the complex shear modulus, also referred to as stiffness. The development of 3D vector MRE has enabled researchers to assess the biomechanical properties of small organs where wave propagation cannot be adequately analyzed with the 2D MRE imaging approach used in the liver. In 3D vector MRE, the shear waves are imaged and processed throughout a 3D volume and processed with an algorithm that accounts for wave propagation in any direction. Additionally, the motion is also imaged in x, y, and z directions at each voxel, allowing for more advanced processing to be applied. PURPOSE This review describes the technical principles of 3D vector MRE, surveys its clinical applications in small organs, and discusses potential clinical significance of 3D vector MRE. CONCLUSION 3D vector MRE is a promising tool for characterizing the biomechanical properties of small organs such as the uterus, pancreas, thyroid, prostate, and salivary glands. However, its potential has not yet been fully explored.
Collapse
Affiliation(s)
- Vitaliy Atamaniuk
- Institute of Physics, College of Natural Sciences, University of Rzeszow, Profesora Stanisława Pigonia str. 1, 35-310 Rzeszow, Poland; Doctoral School of the University of Rzeszow, University of Rzeszow, Rejtana 16C, 35-959 Rzeszow, Poland.
| | - Łukasz Hańczyk
- Clinical Regional Hospital, No. 2 in Rzeszów, Lwowska 60, 35-301 Rzeszow, Poland
| | - Jun Chen
- Department of Radiology, the Affiliated Hospital of Nanjing University Medical School, Nanjing, Jiangsu, China; Resoundant Inc, Rochester, MN, USA; Department of Radiology, Mayo Clinic, Rochester, MN, USA.
| | - Andrii Pozaruk
- Institute of Physics, College of Natural Sciences, University of Rzeszow, Profesora Stanisława Pigonia str. 1, 35-310 Rzeszow, Poland; Institute of Medical Sciences, Medical College, University of Rzeszów, Rejtana 16 C, 35-959 Rzeszow, Poland
| | - Marzanna Obrzut
- Institute of Health Sciences, Medical College, University of Rzeszów, Rejtana 16 C, 35-959 Rzeszow, Poland
| | - Krzysztof Gutkowski
- Institute of Medical Sciences, Medical College, University of Rzeszów, Rejtana 16 C, 35-959 Rzeszow, Poland
| | - Wojciech Domka
- Department of Otorhinolaryngology, Institute of Medical Sciences, Medical College, University of Rzeszów, Rejtana 16 C, 35-959 Rzeszow, Poland
| | - Marian Cholewa
- Institute of Physics, College of Natural Sciences, University of Rzeszow, Profesora Stanisława Pigonia str. 1, 35-310 Rzeszow, Poland
| | | | - Bogdan Obrzut
- Department of Obstetrics and Gynecology, Institute of Medical Sciences, Medical College, University of Rzeszów, Rejtana 16 C, 35-959 Rzeszow, Poland
| |
Collapse
|
6
|
Khayat S, Choudhary K, Claude Nshimiyimana J, Gurav J, Hneini A, Nazir A, Chaito H, Wojtara M, Uwishema O. Pancreatic cancer: from early detection to personalized treatment approaches. Ann Med Surg (Lond) 2024; 86:2866-2872. [PMID: 38694319 PMCID: PMC11060269 DOI: 10.1097/ms9.0000000000002011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2023] [Accepted: 03/19/2024] [Indexed: 05/04/2024] Open
Abstract
Pancreatic cancer is notorious for its persistently poor prognosis and health outcomes, so some of the questions that may be begged are "Why is it mostly diagnosed at end stage?", "What could we possibly do with the advancing technology in today's world to detect early pancreatic cancer and intervene?", and "Are there any implementation of the existing novel imaging technologies?". Well, to start with, this is in part because the majority of patients presented would already have reached a locally advanced or metastatic stage at the time of diagnosis due to its highly aggressive characteristics and lack of symptoms. Due to this striking disparity in survival, advancements in early detection and intervention are likely to significantly increase patients' survival. Presently, screening is frequently used in high-risk individuals in order to obtain an early pancreatic cancer diagnosis. Having a thorough understanding of the pathogenesis and risk factors of pancreatic cancer may enable us to identify individuals at high risk, diagnose the disease early, and begin treatment promptly. In this review, the authors outline the clinical hurdles to early pancreatic cancer detection, describe high-risk populations, and discuss current screening initiatives for high-risk individuals. The ultimate goal of this current review is to study the roles of both traditional and novel imaging modalities for early pancreatic cancer detection. A lot of the novel imaging techniques mentioned seem promising, but they need to be put to the test on a large scale and may need to be combined with other non-invasive biomarkers before they can be widely used.
Collapse
Affiliation(s)
| | | | | | | | - Asmaa Hneini
- Faculty of Medicine, Beirut Arab University, Beirut, Lebanon
| | - Abubakar Nazir
- Oli Health Magazine Organization, Research and Education, Kigali, Rwanda
- Department of Medicine, King Edward Medical University, Lahore, Pakistan
| | - Hassan Chaito
- Faculty of Medicine, Beirut Arab University, Beirut, Lebanon
| | - Magda Wojtara
- Oli Health Magazine Organization, Research and Education, Kigali, Rwanda
| | - Olivier Uwishema
- Oli Health Magazine Organization, Research and Education, Kigali, Rwanda
- Faculty of Medicine, Karadeniz Technical University, Trabzon, Turkey
| |
Collapse
|
7
|
Wassenaar NPM, van Schelt AS, Schrauben EM, Kop MPM, Nio CY, Wilmink JW, Besselink MGH, van Laarhoven HWM, Stoker J, Nederveen AJ, Runge JH. MR Elastography of the Pancreas: Bowel Preparation and Repeatability Assessment in Pancreatic Cancer Patients and Healthy Controls. J Magn Reson Imaging 2024; 59:1582-1592. [PMID: 37485870 DOI: 10.1002/jmri.28918] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 07/05/2023] [Accepted: 07/07/2023] [Indexed: 07/25/2023] Open
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) stromal viscoelasticity can be measured using MR elastography (MRE). Bowel preparation regimens could affect MRE quality and knowledge on repeatability is crucial for clinical implementation. PURPOSE To assess effects of four bowel preparation regimens on MRE quality and to evaluate repeatability and differentiate patients from healthy controls. STUDY TYPE Prospective. POPULATION 15 controls (41 ± 16 years; 47% female), 16 PDAC patients (one excluded, 66 ± 12 years; 40% female) with 15 age-/sex-matched controls (65 ± 11 years; 40% female). Final sample size was 25 controls and 15 PDAC. FIELD STRENGTH/SEQUENCE 3-T, spin-echo echo-planar-imaging, turbo spin-echo, and fast field echo gradient-echo. ASSESSMENT Four different regimens were used: fasting; scopolaminebutyl; drinking 0.5 L water; combination of 0.5 L water and scopolaminebutyl. MRE signal-to-noise ratio (SNR) was compared between all regimens. MRE repeatability (test-retest) and differences in shear wave speed (SWS) and phase angle (ϕ) were assessed in PDAC and controls. Regions-of-interest were defined for tumor, nontumorous (n = 8) tissue in PDAC, and whole pancreas in controls. Two radiologists delineated tumors twice for evaluation of intraobserver and interobserver variability. STATISTICAL TESTS Repeated measures analysis of variance, coefficients of variation (CoVs), Bland-Altman analysis, (un)paired t-test, Mann-Whitney U-test, and Wilcoxon signed-rank test. P-value<0.05 was considered statistically significant. RESULTS Preparation regimens did not significantly influence MRE-SNR. Therefore, the least burdensome preparation (fasting only) was continued. CoVs for tumor SWS were: intrasession (12.8%) and intersession (21.7%), and intraobserver (7.9%) and interobserver (10.3%) comparisons. For controls, CoVs were intrasession (4.6%) and intersession (6.4%). Average SWS for tumor, nontumor, and healthy tissue were: 1.74 ± 0.58, 1.38 ± 0.27, and 1.18 ± 0.16 m/sec (ϕ: 1.02 ± 0.17, 0.91 ± 0.07, and 0.85 ± 0.08 rad), respectively. Significant differences were found between all groups, except for ϕ between healthy-nontumor (P = 0.094). DATA CONCLUSION The proposed bowel preparation regimens may not influence MRE quality. MRE may be able to differentiate between healthy tissue-tumor and tumor-nontumor. LEVEL OF EVIDENCE 2 TECHNICAL EFFICACY STAGE: 2.
Collapse
Affiliation(s)
- Nienke P M Wassenaar
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Imaging and Biomarkers, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Anne-Sophie van Schelt
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Imaging and Biomarkers, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Eric M Schrauben
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Marnix P M Kop
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - C Yung Nio
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Johanna W Wilmink
- Imaging and Biomarkers, Cancer Center Amsterdam, Amsterdam, The Netherlands
- Department of Medical Oncology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Marc G H Besselink
- Imaging and Biomarkers, Cancer Center Amsterdam, Amsterdam, The Netherlands
- Department of Surgery, Cancer Center Amsterdam, Amsterdam University Medical Center, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Gastroenterology, Endocrinology, Metabolism, Amsterdam, The Netherlands
| | - Hanneke W M van Laarhoven
- Imaging and Biomarkers, Cancer Center Amsterdam, Amsterdam, The Netherlands
- Department of Medical Oncology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Jaap Stoker
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Amsterdam Gastroenterology, Endocrinology, Metabolism, Amsterdam, The Netherlands
| | - Aart J Nederveen
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Jurgen H Runge
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Department of Radiology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| |
Collapse
|
8
|
Nguyen HD, Lin CC. Viscoelastic stiffening of gelatin hydrogels for dynamic culture of pancreatic cancer spheroids. Acta Biomater 2024; 177:203-215. [PMID: 38354874 PMCID: PMC10958777 DOI: 10.1016/j.actbio.2024.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 01/24/2024] [Accepted: 02/06/2024] [Indexed: 02/16/2024]
Abstract
The tumor microenvironment (TME) in pancreatic adenocarcinoma (PDAC) is a complex milieu of cellular and non-cellular components. Pancreatic cancer cells (PCC) and cancer-associated fibroblasts (CAF) are two major cell types in PDAC TME, whereas the non-cellular components are enriched with extracellular matrices (ECM) that contribute to high stiffness and fast stress-relaxation. Previous studies have suggested that higher matrix rigidity promoted aggressive phenotypes of tumors, including PDAC. However, the effects of dynamic viscoelastic matrix properties on cancer cell fate remain largely unexplored. The focus of this work was to understand the effects of such dynamic matrix properties on PDAC cell behaviors, particularly in the context of PCC/CAF co-culture. To this end, we engineered gelatin-norbornene (GelNB) based hydrogels with a built-in mechanism for simultaneously increasing matrix elastic modulus and viscoelasticity. Two GelNB-based macromers, namely GelNB-hydroxyphenylacetic acid (GelNB-HPA) and GelNB-boronic acid (GelNB-BA), were modularly mixed and crosslinked with 4-arm poly(ethylene glycol)-thiol (PEG4SH) to form elastic hydrogels. Treating the hybrid hydrogels with tyrosinase not only increased the elastic moduli of the gels (due to HPA dimerization) but also concurrently produced 1,2-diols that formed reversible boronic acid-diol bonding with the BA groups on GelNB-BA. We employed patient-derived CAF and a PCC cell line COLO-357 to demonstrate the effect of increasing matrix stiffness and viscoelasticity on CAF and PCC cell fate. Our results indicated that in the stiffened environment, PCC underwent epithelial-mesenchymal transition. In the co-culture PCC and CAF spheroid, CAF enhanced PCC spreading and stimulated collagen 1 production. Through mRNA-sequencing, we further showed that stiffened matrices, regardless of the degree of stress-relaxation, heightened the malignant phenotype of PDAC cells. STATEMENT OF SIGNIFICANCE: The pancreatic cancer microenvironment is a complex milieu composed of various cell types and extracellular matrices. It has been suggested that stiffer matrices could promote aggressive behavior in pancreatic cancer, but the effect of dynamic stiffening and matrix stress-relaxation on cancer cell fate remains largely undefined. This study aimed to explore the impact of dynamic changes in matrix viscoelasticity on pancreatic ductal adenocarcinoma (PDAC) cell behavior by developing a hydrogel system capable of simultaneously increasing stiffness and stress-relaxation on demand. This is achieved by crosslinking two gelatin-based macromers through orthogonal thiol-norbornene photochemistry and post-gelation stiffening with mushroom tyrosinase. The results revealed that higher matrix stiffness, regardless of the degree of stress relaxation, exacerbated the malignant characteristics of PDAC cells.
Collapse
Affiliation(s)
- Han D Nguyen
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA
| | - Chien-Chi Lin
- Weldon School of Biomedical Engineering, Purdue University, West Lafayette, IN, USA; Department of Biomedical Engineering, Purdue School of Engineering & Technology, Indiana University-Purdue University Indianapolis, Indianapolis, IN, USA.
| |
Collapse
|
9
|
Zhu L, Sun Z, Dai M, Wu H, Wang X, Xu J, Xue H, Jin Z, Nickel MD, Guo J, Sack I. Tomoelastography and Pancreatic Extracellular Volume Fraction Derived From MRI for Predicting Clinically Relevant Postoperative Pancreatic Fistula. J Magn Reson Imaging 2024; 59:1074-1082. [PMID: 37209387 DOI: 10.1002/jmri.28788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 05/02/2023] [Accepted: 05/04/2023] [Indexed: 05/22/2023] Open
Abstract
BACKGROUND Pancreatic stiffness and extracellular volume fraction (ECV) are potential imaging biomarkers for pancreatic fibrosis. Clinically relevant postoperative fistula (CR-POPF) is one of the most severe complications after pancreaticoduodenectomy. Which imaging biomarker performs better for predicting the risk of CR-POPF remains unknown. PURPOSE To evaluate the diagnostic performance of ECV and tomoelastography-derived pancreatic stiffness for predicting the risk of CR-POPF in patients undergoing pancreaticoduodenectomy. STUDY TYPE Prospective. POPULATION Eighty patients who underwent multiparametric pancreatic MRI before pancreaticoduodenectomy, among whom 16 developed CR-POPF and 64 did not. FIELD STRENGTH/SEQUENCE 3 T/tomoelastography and precontrast and postcontrast T1 mapping of the pancreas. ASSESSMENT Pancreatic stiffness was measured on the tomographic c-map, and pancreatic ECV was calculated from precontrast and postcontrast T1 maps. Pancreatic stiffness and ECV were compared with histological fibrosis grading (F0-F3). The optimal cutoff values for predicting CR-POPF were determined, and the correlation between CR-POPF and imaging parameters was evaluated. STATISTICAL TESTS The Spearman's rank correlation and multivariate linear regression analysis was conducted. The receiver operating characteristic curve analysis and logistic regression analysis was performed. A double-sided P < 0.05 indicated a statistically significant difference. RESULTS Pancreatic stiffness and ECV both showed a significantly positive correlation with histological pancreatic fibrosis (r = 0.73 and 0.56, respectively). Patients with advanced pancreatic fibrosis had significantly higher pancreatic stiffness and ECV compared to those with no/mild fibrosis. Pancreatic stiffness and ECV were also correlated with each other (r = 0.58). Lower pancreatic stiffness (<1.38 m/sec), lower ECV (<0.28), nondilated main pancreatic duct (<3 mm) and pathological diagnosis other than pancreatic ductal adenocarcinoma were associated with higher risk of CR-POPF at univariate analysis, and pancreatic stiffness was independently associated with CR-POPF at multivariate analysis (odds ratio: 18.59, 95% confidence interval: 4.45, 77.69). DATA CONCLUSION Pancreatic stiffness and ECV were associated with histological fibrosis grading, and pancreatic stiffness was an independent predictor for CR-POPF. LEVEL OF EVIDENCE 1 TECHNICAL EFFICACY STAGE: 5.
Collapse
Affiliation(s)
- Liang Zhu
- Department of Radiology, Peking Union Medical College Hospital, Beijing, China
| | - Zhaoyong Sun
- Department of Radiology, Peking Union Medical College Hospital, Beijing, China
| | - Menghua Dai
- Department of General Surgery, Peking Union Medical College Hospital, Beijing, China
| | - Huanwen Wu
- Department of Pathology, Peking Union Medical College Hospital, Beijing, China
| | - Xuan Wang
- Department of Radiology, Peking Union Medical College Hospital, Beijing, China
| | - Jia Xu
- Department of Radiology, Peking Union Medical College Hospital, Beijing, China
| | - Huadan Xue
- Department of Radiology, Peking Union Medical College Hospital, Beijing, China
| | - Zhengyu Jin
- Department of Radiology, Peking Union Medical College Hospital, Beijing, China
| | | | - Jing Guo
- Department of Radiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| | - Ingolf Sack
- Department of Radiology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
| |
Collapse
|
10
|
van Schelt AS, Gottwald LM, Wassenaar NPM, Runge JH, Sinkus R, Stoker J, Nederveen AJ, Schrauben EM. Single Breath-Hold MR Elastography for Fast Biomechanical Probing of Pancreatic Stiffness. J Magn Reson Imaging 2024; 59:688-698. [PMID: 37194646 DOI: 10.1002/jmri.28773] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/18/2023] Open
Abstract
BACKGROUND Pancreatic ductal adenocarcinoma (PDAC) stromal disposition is thought to influence chemotherapy efficacy and increase tissue stiffness, which could be quantified noninvasively via MR elastography (MRE). Current methods cause position-based errors in pancreas location over time, hampering accuracy. It would be beneficial to have a single breath-hold acquisition. PURPOSE To develop and test a single breath-hold three-dimensional MRE technique utilizing prospective undersampling and a compressed sensing reconstruction (CS-MRE). STUDY TYPE Prospective. POPULATION A total of 30 healthy volunteers (HV) (31 ± 9 years; 33% male) and five patients with PDAC (69 ± 5 years; 80% male). FIELD STRENGTH/SEQUENCE 3-T, GRE Ristretto MRE. ASSESSMENT First, optimization of multi breath-hold MRE was done in 10 HV using four combinations of vibration frequency, number of measured wave-phase offsets, and TE and looking at MRE quality measures in the pancreas head. Second, viscoelastic parameters delineated in the pancreas head or tumor of CS-MRE were compared against (I) 2D and (II) 3D four breath-hold acquisitions in HV (N = 20) and PDAC patients. Intrasession repeatability was assessed for CS-MRE in a subgroup of healthy volunteers (N = 15). STATISTICAL TESTS Tests include repeated measures analysis of variance (ANOVA), Bland-Altman analysis, and coefficients of variation (CoVs). A P-value <.05 was considered statistically significant. RESULTS Optimization of the four breath-hold acquisitions resulted in 40 Hz vibration frequency, five wave-phases, and echo time (TE) = 6.9 msec as the preferred method (4BH-MRE). CS-MRE quantitative results did not differ from 4BH-MRE. Shear wave speed (SWS) and phase angle differed significantly between HV and PDAC patients using 4BH-MRE or CS-MRE. The limits of agreement for SWS were [-0.09, 0.10] m/second and the within-subject CoV was 4.8% for CS-MRE. DATA CONCLUSION CS-MRE might allow a single breath-hold MRE acquisition with comparable SWS and phase angle as 4BH-MRE, and it may still enable to differentiate between HV and PDAC. LEVEL OF EVIDENCE 2 Technical Efficacy Stage: 2.
Collapse
Affiliation(s)
- Anne-Sophie van Schelt
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Imaging and Biomarkers, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Lukas M Gottwald
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Nienke P M Wassenaar
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Imaging and Biomarkers, Cancer Center Amsterdam, Amsterdam, The Netherlands
| | - Jurgen H Runge
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Department of Radiology, Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Ralph Sinkus
- Imaging Sciences and Biomedical Engineering, Kings College London, London, UK
- Department of Radiology, Université de Paris, Paris, France
| | - Jaap Stoker
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
- Endocrinology, Amsterdam Gastroenterology, Amsterdam, The Netherlands
| | - Aart J Nederveen
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Eric M Schrauben
- Department of Radiology and Nuclear Medicine, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
11
|
Madela F, Ferndale L, Aldous C. Diagnostic Differentiation between Pancreatitis and Pancreatic Cancer: A Scoping Review. Diagnostics (Basel) 2024; 14:290. [PMID: 38337806 PMCID: PMC10855106 DOI: 10.3390/diagnostics14030290] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 01/25/2024] [Accepted: 01/26/2024] [Indexed: 02/12/2024] Open
Abstract
Pancreatitis, encompassing acute and chronic forms, and pancreatic cancer pose significant challenges to the exocrine tissue of the pancreas. Recurrence rates and complications following acute pancreatitis episodes can lead to long-term risks, including diabetes mellitus. Chronic pancreatitis can develop in approximately 15% of cases, regardless of the initial episode's severity. Alcohol-induced pancreatitis, idiopathic causes, cigarette smoking, and hereditary pancreatitis contribute to the progression to chronic pancreatitis. Chronic pancreatitis is associated with an increased risk of pancreatic cancer, with older age at onset and smoking identified as risk factors. This scoping review aims to synthesise recent publications (2017-2022) on the diagnostic differentiation between pancreatitis and pancreatic cancer while identifying knowledge gaps in the field. The review focuses on biomarkers and imaging techniques in individuals with pancreatitis and pancreatic cancer. Promising biomarkers such as faecal elastase-1 and specific chemokines offer non-invasive ways to assess pancreatic insufficiency and detect early biomarkers for chronic pancreatitis. Imaging techniques, including computed tomography (CT), magnetic resonance imaging (MRI), endoscopic ultrasound (EUS), and positron emission tomography (PET), aid in differentiating between chronic pancreatitis and pancreatic cancer. However, accurately distinguishing between the two conditions remains a challenge, particularly when a mass is present in the head of the pancreas. Several knowledge gaps persist despite advancements in understanding the association between pancreatitis and pancreatic cancer, including the correlation between histopathological grading systems, non-invasive imaging techniques, and biomarkers in chronic pancreatitis to determine the risk of progression to pancreatic cancer, as well as differentiating between the two conditions. Further research is necessary to enhance our understanding of these aspects, which can ultimately improve the diagnosis and management of pancreatitis and pancreatic cancer.
Collapse
Affiliation(s)
- Fusi Madela
- Department of Surgery, School of Clinical Medicine, College of Health Sciences, University of KwaZulu-Natal, Durban 4000, South Africa; (L.F.)
| | | | | |
Collapse
|
12
|
Fukukura Y, Kanki A. Quantitative Magnetic Resonance Imaging for the Pancreas: Current Status. Invest Radiol 2024; 59:69-77. [PMID: 37433065 DOI: 10.1097/rli.0000000000001002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/13/2023]
Abstract
ABSTRACT Magnetic resonance imaging (MRI) is important for evaluating pancreatic disorders, and anatomical landmarks play a major role in the interpretation of results. Quantitative MRI is an effective diagnostic modality for various pathologic conditions, as it allows the investigation of various physical parameters. Recent advancements in quantitative MRI techniques have significantly improved the accuracy of pancreatic MRI. Consequently, this method has become an essential tool for the diagnosis, treatment, and monitoring of pancreatic diseases. This comprehensive review article presents the currently available evidence on the clinical utility of quantitative MRI of the pancreas.
Collapse
Affiliation(s)
- Yoshihiko Fukukura
- From the Department of Radiology, Kawasaki Medical School, Kurashiki City, Okayama, Japan
| | | |
Collapse
|
13
|
Cong P, Yu YN, Wang XM, Zhang YF. Thickness of the Hyperechoic Capsule-like Rim Around Pancreatic Lesions Measured by Ultrasound for Differentiating Between Type 1 Autoimmune Pancreatitis and Pancreatic Adenocarcinoma. IRANIAN JOURNAL OF RADIOLOGY 2023; 20. [DOI: 10.5812/ijradiol-137889] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 11/15/2023] [Accepted: 11/20/2023] [Indexed: 01/02/2025]
Abstract
Background: Autoimmune pancreatitis (AIP) is often misdiagnosed as pancreatic adenocarcinoma (PAC), resulting in unnecessary surgical interventions. On computed tomography (CT) scans, the capsule-like rim is an essential radiological characteristic for differentiating AIP from PAC. It presents as a hypoattenuating halo surrounding the pancreas. However, this characteristic is infrequently observed in ultrasonography. Objectives: The aim of this study was to assess the accuracy of the thickness measurement of the capsule-like structure surrounding lesions during ultrasonography in order to distinguish between AIP and PAC. Patients and Methods: This case-control study was conducted on 19 patients with type 1 AIP (AIP1) as the case group and 37 patients with PAC as the controls. The ultrasound images of these patients were obtained from our institute's database. The thickest part of the hyperechoic capsule-like structure around lesions was identified and measured on the workstation retrospectively. The difference in the thickness of the capsule-like structure between AIP1 and PAC was compared in all lesions and mass lesions, respectively. The optimal cut-off thickness was determined by the maximum Youden index (calculated as sensitivity + specificity - 1). A P-value of < 0.05 (or < 0.05/3 after applying the Bonferroni correction) was considered statistically significant. Results: All lesions appeared hypoechoic, and there were no significant differences in gender, age, abdominal pain symptoms, jaundice, or weight loss between the case and control groups (P > 0.05). However, there was a significant difference regarding the involved pancreatic location (P = 0.008). Among the lesions, 46 were mass lesions. The hyperechoic capsule-like rim was thicker in the case group compared to the control group for all lesions (mean = 0.40 ± 0.12 vs. 0.32 ± 0.09 cm, P = 0.006) and also for mass lesions (mean = 0.41 ± 0.13 vs. 0.31 ± 0.09 cm, P = 0.006). The cut-off thickness for AIP1 was estimated at 0.41 cm, according to the maximum Youden index in both all lesions and mass lesions. The sensitivity, specificity, accuracy, positive predictive value, negative predictive value, and odds ratio for all lesions were 0.58, 0.86, 0.77, 0.69, 0.80, and 8.80 (95% confidence interval [CI]: 2.37 – 32.64), respectively. In mass lesions, the corresponding values were 0.58, 0.88, 0.80, 0.64, 0.86, and 10.50 (95% CI: 2.23 – 49.52), respectively. Conclusion: Patients with a hyperechoic capsule-like rim thickness of ≥0.41 cm during ultrasonography are more likely to have AIP1. This finding holds valuable clinical significance in differentiating between AIP1 and PAC.
Collapse
|
14
|
Sauer F, Grosser S, Shahryari M, Hayn A, Guo J, Braun J, Briest S, Wolf B, Aktas B, Horn L, Sack I, Käs JA. Changes in Tissue Fluidity Predict Tumor Aggressiveness In Vivo. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303523. [PMID: 37553780 PMCID: PMC10502644 DOI: 10.1002/advs.202303523] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Indexed: 08/10/2023]
Abstract
Cancer progression is caused by genetic changes and associated with various alterations in cell properties, which also affect a tumor's mechanical state. While an increased stiffness has been well known for long for solid tumors, it has limited prognostic power. It is hypothesized that cancer progression is accompanied by tissue fluidization, where portions of the tissue can change position across different length scales. Supported by tabletop magnetic resonance elastography (MRE) on stroma mimicking collagen gels and microscopic analysis of live cells inside patient derived tumor explants, an overview is provided of how cancer associated mechanisms, including cellular unjamming, proliferation, microenvironment composition, and remodeling can alter a tissue's fluidity and stiffness. In vivo, state-of-the-art multifrequency MRE can distinguish tumors from their surrounding host tissue by their rheological fingerprints. Most importantly, a meta-analysis on the currently available clinical studies is conducted and universal trends are identified. The results and conclusions are condensed into a gedankenexperiment about how a tumor can grow and eventually metastasize into its environment from a physics perspective to deduce corresponding mechanical properties. Based on stiffness, fluidity, spatial heterogeneity, and texture of the tumor front a roadmap for a prognosis of a tumor's aggressiveness and metastatic potential is presented.
Collapse
Affiliation(s)
- Frank Sauer
- Soft Matter Physics DivisionPeter‐Debye‐Institute for Soft Matter Physics04103LeipzigGermany
| | - Steffen Grosser
- Soft Matter Physics DivisionPeter‐Debye‐Institute for Soft Matter Physics04103LeipzigGermany
- Institute for Bioengineering of CataloniaThe Barcelona Institute for Science and Technology (BIST)Barcelona08028Spain
| | - Mehrgan Shahryari
- Department of RadiologyCharité‐Universitätsmedizin10117BerlinGermany
| | - Alexander Hayn
- Department of HepatologyLeipzig University Hospital04103LeipzigGermany
| | - Jing Guo
- Department of RadiologyCharité‐Universitätsmedizin10117BerlinGermany
| | - Jürgen Braun
- Institute of Medical InformaticsCharité‐Universitätsmedizin10117BerlinGermany
| | - Susanne Briest
- Department of GynecologyLeipzig University Hospital04103LeipzigGermany
| | - Benjamin Wolf
- Department of GynecologyLeipzig University Hospital04103LeipzigGermany
| | - Bahriye Aktas
- Department of GynecologyLeipzig University Hospital04103LeipzigGermany
| | - Lars‐Christian Horn
- Division of Breast, Urogenital and Perinatal PathologyLeipzig University Hospital04103LeipzigGermany
| | - Ingolf Sack
- Department of RadiologyCharité‐Universitätsmedizin10117BerlinGermany
| | - Josef A. Käs
- Soft Matter Physics DivisionPeter‐Debye‐Institute for Soft Matter Physics04103LeipzigGermany
| |
Collapse
|
15
|
Abstract
ABSTRACT The mechanical traits of cancer include abnormally high solid stress as well as drastic and spatially heterogeneous changes in intrinsic mechanical tissue properties. Whereas solid stress elicits mechanosensory signals promoting tumor progression, mechanical heterogeneity is conducive to cell unjamming and metastatic spread. This reductionist view of tumorigenesis and malignant transformation provides a generalized framework for understanding the physical principles of tumor aggressiveness and harnessing them as novel in vivo imaging markers. Magnetic resonance elastography is an emerging imaging technology for depicting the viscoelastic properties of biological soft tissues and clinically characterizing tumors in terms of their biomechanical properties. This review article presents recent technical developments, basic results, and clinical applications of magnetic resonance elastography in patients with malignant tumors.
Collapse
Affiliation(s)
- Jing Guo
- From the Department of Radiology
| | | | | | | |
Collapse
|
16
|
Kattner N. Immune cell infiltration in the pancreas of type 1, type 2 and type 3c diabetes. Ther Adv Endocrinol Metab 2023; 14:20420188231185958. [PMID: 37529508 PMCID: PMC10387691 DOI: 10.1177/20420188231185958] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2022] [Accepted: 06/16/2023] [Indexed: 08/03/2023] Open
Abstract
The different types of diabetes differ in disease pathogenesis but share the impairment or loss of β-cell function leading to chronic hyperglycaemia. While immune cells are present throughout the whole pancreas in normality, their number and activation is increased in diabetes. Different patterns and composition of inflammation could be observed in type 1, type 2 and type 3c diabetes. Immune cells, pancreatic stellate cells and fibrosis were present in the islet microenvironment and could add to β-cell dysfunction and therefore development and progression of diabetes. First studies investigating the use of anti-inflammatory drugs demonstrate their ability to rescue remaining β-cell function and their potential benefit in diabetes treatment. This article provides an overview of immune cell infiltrates in different types of diabetes, highlights the knowledge of their impact on β-cell function and introduces the potential of immunomodulatory strategies.
Collapse
Affiliation(s)
- Nicole Kattner
- Translational and Clinical Research Institute, Newcastle University, Medical School, Framlington Place, Newcastle upon Tyne, UK
| |
Collapse
|
17
|
Tornel-Avelar AI, Velarde Ruiz-Velasco JA, Pelaez-Luna M. Pancreatic cancer, autoimmune or chronic pancreatitis, beyond tissue diagnosis: Collateral imaging and clinical characteristics may differentiate them. World J Gastrointest Oncol 2023; 15:925-942. [PMID: 37389107 PMCID: PMC10302998 DOI: 10.4251/wjgo.v15.i6.925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 04/21/2023] [Accepted: 04/28/2023] [Indexed: 06/14/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is one of the most lethal malignancies and is developing into the 2nd leading cause of cancer-related death. Often, the clinical and radiological presentation of PDAC may be mirrored by other inflammatory pancreatic masses, such as autoimmune pancreatitis (AIP) and mass-forming chronic pancreatitis (MFCP), making its diagnosis challenging. Differentiating AIP and MFCP from PDAC is vital due to significant therapeutic and prognostic implications. Current diagnostic criteria and tools allow the precise differentiation of benign from malignant masses; however, the diagnostic accuracy is imperfect. Major pancreatic resections have been performed in AIP cases under initial suspicion of PDAC after a diagnostic approach failed to provide an accurate diagnosis. It is not unusual that after a thorough diagnostic evaluation, the clinician is confronted with a pancreatic mass with uncertain diagnosis. In those cases, a re-evaluation must be entertained, preferably by an experienced multispecialty team including radiologists, pathologists, gastroenterologists, and surgeons, looking for disease-specific clinical, imaging, and histological hallmarks or collateral evidence that could favor a specific diagnosis. Our aim is to describe current diagnostic limitations that hinder our ability to reach an accurate diagnosis among AIP, PDAC, and MFCP and to highlight those disease-specific clinical, radiological, serological, and histological characteristics that could support the presence of any of these three disorders when facing a pancreatic mass with uncertain diagnosis after an initial diagnostic approach has been unsuccessful.
Collapse
Affiliation(s)
- Ana I Tornel-Avelar
- Department of Gastroenterology, Hospital Civil of Guadalajara “Fray Antonio Alcalde”, Guadalajara 44340, Jalisco, Mexico
| | | | - Mario Pelaez-Luna
- Research Division School of Medicine/Department of Gastroenterology, Universidad Nacional Autonoma de México/National Institute of Medical Sciences and Nutrition “Salvador Zubiran”, Tlalpan 14000, Mexico City, Mexico
| |
Collapse
|
18
|
Gregori A, Bergonzini C, Capula M, Mantini G, Khojasteh-Leylakoohi F, Comandatore A, Khalili-Tanha G, Khooei A, Morelli L, Avan A, Danen EH, Schmidt T, Giovannetti E. Prognostic Significance of Integrin Subunit Alpha 2 (ITGA2) and Role of Mechanical Cues in Resistance to Gemcitabine in Pancreatic Ductal Adenocarcinoma (PDAC). Cancers (Basel) 2023; 15:cancers15030628. [PMID: 36765586 PMCID: PMC9913151 DOI: 10.3390/cancers15030628] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 01/16/2023] [Accepted: 01/17/2023] [Indexed: 01/20/2023] Open
Abstract
INTRODUCTION PDAC is an extremely aggressive tumor with a poor prognosis and remarkable therapeutic resistance. The dense extracellular matrix (ECM) which characterizes PDAC progression is considered a fundamental determinant of chemoresistance, with major contributions from mechanical factors. This study combined biomechanical and pharmacological approaches to evaluate the role of the cell-adhesion molecule ITGA2, a key regulator of ECM, in PDAC resistance to gemcitabine. METHODS The prognostic value of ITGA2 was analysed in publicly available databases and tissue-microarrays of two cohorts of radically resected and metastatic patients treated with gemcitabine. PANC-1 and its gemcitabine-resistant clone (PANC-1R) were analysed by RNA-sequencing and label-free proteomics. The role of ITGA2 in migration, proliferation, and apoptosis was investigated using hydrogel-coated wells, siRNA-mediated knockdown and overexpression, while collagen-embedded spheroids assessed invasion and ECM remodeling. RESULTS High ITGA2 expression correlated with shorter progression-free and overall survival, supporting its impact on prognosis and the lack of efficacy of gemcitabine treatment. These findings were corroborated by transcriptomic and proteomic analyses showing that ITGA2 was upregulated in the PANC-1R clone. The aggressive behavior of these cells was significantly reduced by ITGA2 silencing both in vitro and in vivo, while PANC-1 cells growing under conditions resembling PDAC stiffness acquired resistance to gemcitabine, associated to increased ITGA2 expression. Collagen-embedded spheroids of PANC-1R showed a significant matrix remodeling and spreading potential via increased expression of CXCR4 and MMP2. Additionally, overexpression of ITGA2 in MiaPaCa-2 cells triggered gemcitabine resistance and increased proliferation, both in vitro and in vivo, associated to upregulation of phospho-AKT. CONCLUSIONS ITGA2 emerged as a new prognostic factor, highlighting the relevance of stroma mechanical properties as potential therapeutic targets to counteract gemcitabine resistance in PDAC.
Collapse
Affiliation(s)
- Alessandro Gregori
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit, 1081 HV Amsterdam, The Netherlands
- Department of Cancer Biology and Immunology, Cancer Center Amsterdam, 1081 HV Amsterdam, The Netherlands
| | - Cecilia Bergonzini
- Leiden Academic Center for Drug Research, Leiden University, 2333 CC Leiden, The Netherlands
| | - Mjriam Capula
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit, 1081 HV Amsterdam, The Netherlands
- Institute of Life Sciences, Sant’Anna School of Advanced Studies, 56127 Pisa, Italy
- Cancer Pharmacology Lab, Fondazione Pisana per La Scienza, 56017 San Giuliano, Italy
| | - Giulia Mantini
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit, 1081 HV Amsterdam, The Netherlands
- Department of Cancer Biology and Immunology, Cancer Center Amsterdam, 1081 HV Amsterdam, The Netherlands
- Cancer Pharmacology Lab, Fondazione Pisana per La Scienza, 56017 San Giuliano, Italy
| | | | - Annalisa Comandatore
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit, 1081 HV Amsterdam, The Netherlands
- Department of Cancer Biology and Immunology, Cancer Center Amsterdam, 1081 HV Amsterdam, The Netherlands
- General Surgery Unit, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56100 Pisa, Italy
| | - Ghazaleh Khalili-Tanha
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad 91886-17871, Iran
| | - Alireza Khooei
- Department of Pathology, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad 91886-17871, Iran
| | - Luca Morelli
- General Surgery Unit, Department of Translational Research and New Technologies in Medicine and Surgery, University of Pisa, 56100 Pisa, Italy
| | - Amir Avan
- Metabolic Syndrome Research Center, Mashhad University of Medical Sciences, Mashhad 91886-17871, Iran
- Medical Genetics Research Center, Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad 91886-17871, Iran
| | - Erik H. Danen
- Leiden Academic Center for Drug Research, Leiden University, 2333 CC Leiden, The Netherlands
| | - Thomas Schmidt
- Physics of Life Processes, Huygens-Kamerlingh Onnes Laboratory, Leiden University, 2333 CA Leiden, The Netherlands
| | - Elisa Giovannetti
- Department of Medical Oncology, Cancer Center Amsterdam, Amsterdam UMC, Vrije Universiteit, 1081 HV Amsterdam, The Netherlands
- Department of Cancer Biology and Immunology, Cancer Center Amsterdam, 1081 HV Amsterdam, The Netherlands
- Cancer Pharmacology Lab, Fondazione Pisana per La Scienza, 56017 San Giuliano, Italy
- Correspondence:
| |
Collapse
|
19
|
Song Q, Shi Y, Gao F, Yin M, Yang R, Liu Y, Zhong S, Hong Y. Feasibility and Reproducibility of Multifrequency Magnetic Resonance Elastography in Healthy and Diseased Pancreases. J Magn Reson Imaging 2022; 56:1769-1780. [PMID: 35332973 PMCID: PMC9509497 DOI: 10.1002/jmri.28158] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Revised: 03/02/2022] [Accepted: 03/04/2022] [Indexed: 01/04/2023] Open
Abstract
BACKGROUND The feasibility and reproducibility of multifrequency MR elastography (MRE) for diagnosing pancreatic ductal adenocarcinoma (PDAC) have not been reported. PURPOSE To determine the feasibility and reproducibility of multifrequency MRE for assessing pancreatic stiffness in healthy and diseased pancreases. STUDY TYPE Prospective. SUBJECTS A total of 40 healthy volunteers and 10 patients with PDAC were prospectively recruited between March 2018 and October 2021. FIELD STRENGTH/SEQUENCE A 3.0-T pancreatic MRE at frequencies in the order of 30, 40, 60, 80, and 100 Hz. ASSESSMENT Body mass index (BMI) and wave distance of the healthy pancreas and PDAC were measured. Image quality was assessed using the image quality score (IQS: 1-4, ≥3 were considered diagnostic quality). Three readers independently performed the pancreatic stiffness and IQS assessments to evaluate reproducibility. STATISTICAL TESTS Logistic regression analyses were performed to determine variables that influenced IQS. Statistical significance was set at P <0.05. Levels of inter- and intrarater agreement were assessed using intraclass correlation coefficients (ICC) and Cohen's kappa coefficient (κ). Good reproducibility was set at ICC and κ ≥ 0.8. RESULTS In logistic regression analysis, a diagnostic IQS in healthy volunteers was independently associated with a lower BMI (odds ratio [OR] = 0.89 kg/m-2 ), shorter wave distance (OR = 0.70 cm-1 ), and lower frequency (30 and 40 Hz: OR = 170.01 and 96.02). In PDAC, frequency was the only independent factor for diagnostic IQS (30-60 Hz: OR = 46.18, 46.18, and 17.20, respectively) with 100 Hz as a reference. In healthy volunteers, good reproducibility was observed at 30 and 40 Hz. In PDAC, good reproducibility was observed at 30-60 Hz. DATA CONCLUSION MRE at 30 and 40 Hz provides diagnostic wave images and reliable measurements of pancreatic stiffness in healthy volunteers. MRE at 30-60 Hz is acceptable for PDACs (IQS ≥ 3, ICC and κ ≥ 0.80). EVIDENCE LEVEL 1 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Qike Song
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, P.R. China
| | - Yu Shi
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, P.R. China
| | - Feng Gao
- Department of Pancreato-thyroidic Surgery, Shengjing Hospital of China Medical University, Shenyang, P.R. China
| | - Meng Yin
- Department of Radiology, Mayo Clinic, Rochester, MN, USA
| | - Rui Yang
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, P.R. China
| | - Yuanyuan Liu
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, P.R. China
| | - Shiling Zhong
- Department of Radiology, Shengjing Hospital of China Medical University, Shenyang, P.R. China
| | - Yang Hong
- Department of Neurosurgery, Shengjing Hospital of China Medical University, Shenyang, P.R. China
| |
Collapse
|
20
|
Wang Y, Guo J, Ma D, Zhou J, Yang Y, Chen Y, Wang H, Sack I, Li R, Yan F. Reduced tumor stiffness quantified by tomoelastography as a predicative marker for glypican-3-positive hepatocellular carcinoma. Front Oncol 2022; 12:962272. [PMID: 36518314 PMCID: PMC9744252 DOI: 10.3389/fonc.2022.962272] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 11/14/2022] [Indexed: 11/04/2023] Open
Abstract
BACKGROUND Glypican-3 (GPC3) expression is investigated as a promising target for tumor-specific immunotherapy of hepatocellular carcinoma (HCC). This study aims to determine whether GPC3 alters the viscoelastic properties of HCC and whether tomoelastography, a multifrequency magnetic resonance elastography (MRE) technique, is sensitive to it. METHODS Ninety-five participants (mean age, 58 ± 1 years; 78 men and 17 women) with 100 pathologically confirmed HCC lesions were enrolled in this prospective study from July 2020 to August 2021. All patients underwent preoperative multiparametric MRI and tomoelastography. Tomoelastography provided shear wave speed (c, m/s) representing tissue stiffness and loss angle (φ, rad) relating to viscosity. Clinical, laboratory, and imaging parameters were compared between GPC3-positive and -negative groups. Univariable and multivariable logistic regression were performed to determine factors associated with GPC3-positive HCC. The diagnostic performance of combined biomarkers was established using logistic regression analysis. Area-under-the-curve (AUC) analysis was done to assess diagnostic performance in detecting GPC3-positive HCC. FINDINGS GPC3-positive HCCs (n=72) had reduced stiffness compared with GPC3-negative HCCs (n=23) while viscosity was not different (c: 2.34 ± 0.62 versus 2.72 ± 0.62 m/s, P=0.010, φ: 1.11 ± 0.21 vs 1.18 ± 0.27 rad, P=0.21). Logistic regression showed c and elevated serum alpha-fetoprotein (AFP) level above 20 ng/mL were independent factors for GPC3-positive HCC. Stiffness with a cutoff of c = 2.8 m/s in conjunction with an elevated AFP yielded a sensitivity of 80.3%, specificity of 70.8%, and AUC of 0.80. INTERPRETATION Reduced stiffness quantified by tomoelastography may be a mechanical signature of GPC3-positive HCC. Combining reduced tumor stiffness and elevated AFP level may provide potentially valuable biomarker for GPC3-targeted immunotherapy.
Collapse
Affiliation(s)
- Yihuan Wang
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jing Guo
- Department of Radiology, Charité–Universitätsmedizin Berlin, Berlin, Germany
| | - Di Ma
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jiahao Zhou
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yuchen Yang
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yongjun Chen
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Huafeng Wang
- Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ingolf Sack
- Department of Radiology, Charité–Universitätsmedizin Berlin, Berlin, Germany
| | - Ruokun Li
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Fuhua Yan
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
21
|
Shi SY, Wang L, Peng Z, Wang Y, Lin Z, Hu X, Yuan J, Huang L, Feng ST, Luo Y. Multi-frequency magnetic resonance elastography of the pancreas: measurement reproducibility and variance among healthy volunteers. Gastroenterol Rep (Oxf) 2022; 10:goac033. [PMID: 35910246 PMCID: PMC9336557 DOI: 10.1093/gastro/goac033] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 04/08/2022] [Accepted: 07/05/2022] [Indexed: 12/13/2022] Open
Abstract
Background Patients with chronic pancreatitis often have irreversible pancreatic insufficiency before a clinical diagnosis. Pancreatic cancer is a fatal malignant tumor in the advanced stages. Patients having high risk of pancreatic diseases must be screened early to obtain better outcomes using new imaging modalities. Therefore, this study aimed to investigate the reproducibility of tomoelastography measurements for assessing pancreatic stiffness and fluidity and the variance among healthy volunteers. Methods Forty-seven healthy volunteers were prospectively enrolled and underwent two tomoelastography examinations at a mean interval of 7 days. Two radiologists blindly and independently measured the pancreatic stiffness and fluidity at the first examination to determine the reproducibility between readers. One radiologist measured the adjacent pancreatic slice at the first examination to determine the reproducibility among slices and measured the pancreas at the second examination to determine short-term repeatability. The stiffness and fluidity of the pancreatic head, body, and tail were compared to determine anatomical differences. The pancreatic stiffness and fluidity were compared based on sex, age, and body mass index (BMI). Results Bland–Altman analyses (all P > 0.05) and intraclass correlation coefficients (all >0.9) indicated near perfect reproducibility among readers, slices, and examinations at short intervals. Neither stiffness (P = 0.477) nor fluidity (P = 0.368) differed among the pancreatic anatomical regions. The mean pancreatic stiffness was 1.45 ± 0.09 m/s; the mean pancreatic fluidity was 0.83 ± 0.06 rad. Stiffness and fluidity did not differ by sex, age, or BMI. Conclusion Tomoelastography is a promising and reproducible tool for assessing pancreatic stiffness and fluidity in healthy volunteers.
Collapse
Affiliation(s)
- Si-Ya Shi
- Department of Radiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
| | - Liqin Wang
- Department of Radiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
| | - Zhenpeng Peng
- Department of Radiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
| | - Yangdi Wang
- Department of Radiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
| | - Zhi Lin
- Department of Radiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
| | - Xuefang Hu
- Department of Radiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
| | - Jiaxin Yuan
- Department of Radiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
| | - Li Huang
- Department of Radiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
| | - Shi-Ting Feng
- Department of Radiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
| | - Yanji Luo
- Department of Radiology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, P. R. China
| |
Collapse
|
22
|
Lin H, Wang Y, Zhou J, Yang Y, Xu X, Ma D, Chen Y, Yang C, Sack I, Guo J, Li R, Yan F. Tomoelastography based on multifrequency MR elastography predicts liver function reserve in patients with hepatocellular carcinoma: a prospective study. Insights Imaging 2022; 13:95. [PMID: 35657534 PMCID: PMC9166923 DOI: 10.1186/s13244-022-01232-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Accepted: 04/26/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Estimating liver function reserve is essential for preoperative surgical planning and predicting post-hepatectomy complications in patients with hepatocellular carcinoma (HCC). We investigated hepatic viscoelasticity quantified by tomoelastography, a multifrequency magnetic resonance elastography technique, to predict liver function reserve. METHODS One hundred fifty-six patients with suspected HCC (mean age, 60 ± 1 years; 131 men) underwent preoperative tomoelastography examination between July 2020 and August 2021. Sixty-nine were included in the final analysis, and their 15-min indocyanine green retention rates (ICG-R15s) were obtained to determine liver function reserve. Tomoelastography quantified the shear wave speed (c, m/s), which represents stiffness, and loss angle (φ, rad), which represents fluidity. Both were correlated with the ICG-R15. A prediction model based on logistic regression for major hepatectomy tolerance (ICG-R15 ≥ 14%) was established. RESULTS Patients were assigned to either the ICG-R15 < 14% (n = 50) or ICG-R15 ≥ 14% (n = 19) group. Liver c (r = 0.617) and φ (r = 0.517) were positively correlated with the ICG-R15 (both p < 0.001). At fibrosis stages F1-2, φ was positively correlated with the ICG-R15 (r = 0.528; p = 0.017), but c was not (p = 0.104). At stages F3-4, c (r = 0.642; p < 0.001) and φ (r = 0.377; p = 0.008) were both positively correlated with the ICG-R15. The optimal cutoffs of c and φ for predicting ICG-R15 ≥ 14% were 2.04 m/s and 0.79 rad, respectively. The area under the receiver operating characteristic curve was higher for c (0.892) than for φ (0.779; p = 0.045). CONCLUSIONS Liver stiffness and fluidity, quantified by tomoelastography, were correlated with liver function and may be used clinically to noninvasively assess liver function reserve and stratify treatments.
Collapse
Affiliation(s)
- Huimin Lin
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin Er Road, Shanghai, 200025, China
| | - Yihuan Wang
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin Er Road, Shanghai, 200025, China
| | - Jiahao Zhou
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin Er Road, Shanghai, 200025, China
| | - Yuchen Yang
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xinxin Xu
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin Er Road, Shanghai, 200025, China
| | - Di Ma
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yongjun Chen
- Department of General Surgery, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chunxue Yang
- Department of Pathology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ingolf Sack
- Department of Radiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Jing Guo
- Department of Radiology, Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Ruokun Li
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin Er Road, Shanghai, 200025, China.
| | - Fuhua Yan
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No. 197 Ruijin Er Road, Shanghai, 200025, China.
| |
Collapse
|
23
|
Hu X, Zhou J, Li Y, Wang Y, Guo J, Sack I, Chen W, Yan F, Li R, Wang C. Added Value of Viscoelasticity for MRI-Based Prediction of Ki-67 Expression of Hepatocellular Carcinoma Using a Deep Learning Combined Radiomics (DLCR) Model. Cancers (Basel) 2022; 14:2575. [PMID: 35681558 PMCID: PMC9179448 DOI: 10.3390/cancers14112575] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 05/14/2022] [Accepted: 05/17/2022] [Indexed: 12/11/2022] Open
Abstract
This study aimed to explore the added value of viscoelasticity measured by magnetic resonance elastography (MRE) in the prediction of Ki-67 expression in hepatocellular carcinoma (HCC) using a deep learning combined radiomics (DLCR) model. This retrospective study included 108 histopathology-proven HCC patients (93 males; age, 59.6 ± 11.0 years) who underwent preoperative MRI and MR elastography. They were divided into training (n = 87; 61.0 ± 9.8 years) and testing (n = 21; 60.6 ± 10.1 years) cohorts. An independent validation cohort including 43 patients (60.1 ± 11.3 years) was included for testing. A DLCR model was proposed to predict the expression of Ki-67 with cMRI, including T2W, DW, and dynamic contrast enhancement (DCE) images as inputs. The images of the shear wave speed (c-map) and phase angle (φ-map) derived from MRE were also fed into the DLCR model. The Ki-67 expression was classified into low and high groups with a threshold of 20%. Both c and φ values were ranked within the top six features for Ki-67 prediction with random forest selection, which revealed the value of MRE-based viscosity for the assessment of tumor proliferation status in HCC. When comparing the six CNN models, Xception showed the best performance for classifying the Ki-67 expression, with an AUC of 0.80 ± 0.03 (CI: 0.79-0.81) and accuracy of 0.77 ± 0.04 (CI: 0.76-0.78) when cMRI were fed into the model. The model with all modalities (MRE, AFP, and cMRI) as inputs achieved the highest AUC of 0.90 ± 0.03 (CI: 0.89-0.91) in the validation cohort. The same finding was observed in the independent testing cohort, with an AUC of 0.83 ± 0.03 (CI: 0.82-0.84). The shear wave speed and phase angle improved the performance of the DLCR model significantly for Ki-67 prediction, suggesting that MRE-based c and φ-maps can serve as important parameters to assess the tumor proliferation status in HCC.
Collapse
Affiliation(s)
- Xumei Hu
- Human Phenome Institute, Fudan University, Shanghai 201203, China;
| | - Jiahao Zhou
- Department of Radiology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China; (J.Z.); (Y.L.); (Y.W.); (F.Y.)
| | - Yan Li
- Department of Radiology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China; (J.Z.); (Y.L.); (Y.W.); (F.Y.)
| | - Yikun Wang
- Department of Radiology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China; (J.Z.); (Y.L.); (Y.W.); (F.Y.)
| | - Jing Guo
- Department of Radiology, Charité–Universitätsmedizin Berlin, 10117 Berlin, Germany; (J.G.); (I.S.)
| | - Ingolf Sack
- Department of Radiology, Charité–Universitätsmedizin Berlin, 10117 Berlin, Germany; (J.G.); (I.S.)
| | - Weibo Chen
- Philips Healthcare, Shanghai 200070, China;
| | - Fuhua Yan
- Department of Radiology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China; (J.Z.); (Y.L.); (Y.W.); (F.Y.)
| | - Ruokun Li
- Department of Radiology, Ruijin Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200025, China; (J.Z.); (Y.L.); (Y.W.); (F.Y.)
| | - Chengyan Wang
- Human Phenome Institute, Fudan University, Shanghai 201203, China;
| |
Collapse
|
24
|
Farr KP, Moses D, Haghighi KS, Phillips PA, Hillenbrand CM, Chua BH. Imaging Modalities for Early Detection of Pancreatic Cancer: Current State and Future Research Opportunities. Cancers (Basel) 2022; 14:cancers14102539. [PMID: 35626142 PMCID: PMC9139708 DOI: 10.3390/cancers14102539] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 05/18/2022] [Accepted: 05/19/2022] [Indexed: 02/06/2023] Open
Abstract
Simple Summary While survival rates for many cancers have improved dramatically over the last 20 years, patients with pancreatic cancer have persistently poor outcomes. The majority of patients with pancreatic cancer are not suitable for potentially curative surgery due to locally advanced or metastatic disease stage at diagnosis. Therefore, early detection would potentially improve survival of pancreatic cancer patients through earlier intervention. Here, we present clinical challenges in the early detection of pancreatic cancer, characterise high risk groups for pancreatic cancer and current screening programs in high-risk individuals. The aim of this scoping review is to investigate the role of both established and novel imaging modalities for early detection of pancreatic cancer. Furthermore, we investigate innovative imaging techniques for early detection of pancreatic cancer, but its widespread application requires further investigation and potentially a combination with other non-invasive biomarkers. Abstract Pancreatic cancer, one of the most lethal malignancies, is increasing in incidence. While survival rates for many cancers have improved dramatically over the last 20 years, people with pancreatic cancer have persistently poor outcomes. Potential cure for pancreatic cancer involves surgical resection and adjuvant therapy. However, approximately 85% of patients diagnosed with pancreatic cancer are not suitable for potentially curative therapy due to locally advanced or metastatic disease stage. Because of this stark survival contrast, any improvement in early detection would likely significantly improve survival of patients with pancreatic cancer through earlier intervention. This comprehensive scoping review describes the current evidence on groups at high risk for developing pancreatic cancer, including individuals with inherited predisposition, pancreatic cystic lesions, diabetes, and pancreatitis. We review the current roles of imaging modalities focusing on early detection of pancreatic cancer. Additionally, we propose the use of advanced imaging modalities to identify early, potentially curable pancreatic cancer in high-risk cohorts. We discuss innovative imaging techniques for early detection of pancreatic cancer, but its widespread application requires further investigation and potentially a combination with other non-invasive biomarkers.
Collapse
Affiliation(s)
- Katherina P. Farr
- School of Clinical Medicine, Faculty of Medicine & Health, UNSW, Sydney, NSW 2052, Australia; (K.S.H.); (B.H.C.)
- Correspondence:
| | - Daniel Moses
- Graduate School of Biomedical Engineering, UNSW, Sydney, NSW 2052, Australia;
| | - Koroush S. Haghighi
- School of Clinical Medicine, Faculty of Medicine & Health, UNSW, Sydney, NSW 2052, Australia; (K.S.H.); (B.H.C.)
- Department of General Surgery, Prince of Wales Hospital, Sydney, NSW 2052, Australia
| | - Phoebe A. Phillips
- Pancreatic Cancer Translational Research Group, School of Clinical Medicine, Lowy Cancer Research Centre, UNSW, Sydney, NSW 2052, Australia;
| | - Claudia M. Hillenbrand
- Research Imaging NSW, Division of Research & Enterprise, UNSW, Sydney, NSW 2052, Australia;
| | - Boon H. Chua
- School of Clinical Medicine, Faculty of Medicine & Health, UNSW, Sydney, NSW 2052, Australia; (K.S.H.); (B.H.C.)
- Nelune Comprehensive Cancer Centre, Prince of Wales Hospital, Sydney, NSW 2052, Australia
| |
Collapse
|
25
|
Gültekin E, Wetz C, Braun J, Geisel D, Furth C, Hamm B, Sack I, Marticorena Garcia SR. Added Value of Tomoelastography for Characterization of Pancreatic Neuroendocrine Tumor Aggressiveness Based on Stiffness. Cancers (Basel) 2021; 13:cancers13205185. [PMID: 34680334 PMCID: PMC8533708 DOI: 10.3390/cancers13205185] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 10/03/2021] [Accepted: 10/13/2021] [Indexed: 12/12/2022] Open
Abstract
Simple Summary The prediction of pancreatic neuroendocrine tumor (PNET) aggressiveness is important for treatment planning. The aim of this study was to evaluate the diagnostic performance of magnetic resonance elastography (MRE) with tomoelastography postprocessing (tomoelastography) in differentiating PNET from healthy pancreatic tissue and to correlate PNET stiffness with aggressiveness using asphericity derived from positron emission tomography (PET) as reference. In this prospective study we showed in a group of 13 patients with PNET that tomoelastography detected PNET by increased stiffness (p < 0.01) with a high diagnostic performance (AUC = 0.96). PNET was positively correlated with PET derived asphericity (r = 0.81). Tomoelastography provides quantitative imaging markers for the detection of PNET and the prediction of greater tumor aggressiveness by increased stiffness. Abstract Purpose: To evaluate the diagnostic performance of tomoelastography in differentiating pancreatic neuroendocrine tumors (PNETs) from healthy pancreatic tissue and to assess the prediction of tumor aggressiveness by correlating PNET stiffness with PET derived asphericity. Methods: 13 patients with PNET were prospectively compared to 13 age-/sex-matched heathy volunteers (CTR). Multifrequency MR elastography was combined with tomoelastography-postprocessing to provide high-resolution maps of shear wave speed (SWS in m/s). SWS of pancreatic neuroendocrine tumor (PNET-T) were compared with nontumorous pancreatic tissue in patients with PNET (PNET-NT) and heathy pancreatic tissue (CTR). The diagnostic performance of tomoelastography was evaluated by ROC-AUC analysis. PNET-SWS correlations were calculated with Pearson’s r. Results: SWS was higher in PNET-T (2.02 ± 0.61 m/s) compared to PNET-NT (1.31 ± 0.18 m/s, p < 0.01) and CTR (1.26 ± 0.09 m/s, p < 0.01). An SWS-cutoff of 1.46 m/s distinguished PNET-T from PNET-NT (AUC = 0.89; sensitivity = 0.85; specificity = 0.92) and a cutoff of 1.49 m/s differentiated pancreatic tissue of CTR from PNET-T (AUC = 0.96; sensitivity = 0.92; specificity = 1.00). The SWS of PNET-T was positively correlated with PET derived asphericity (r = 0.81; p = 0.01). Conclusions: Tomoelastography provides quantitative imaging markers for the detection of PNET and the prediction of greater tumor aggressiveness by increased stiffness.
Collapse
Affiliation(s)
- Emin Gültekin
- Department of Radiology, Campus Virchow Klinikum, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany; (E.G.); (D.G.); (B.H.)
| | - Christoph Wetz
- Department of Nuclear Medicine, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 13353 Berlin, Germany; (C.W.); (C.F.)
| | - Jürgen Braun
- Institute for Medical Informatics, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany;
| | - Dominik Geisel
- Department of Radiology, Campus Virchow Klinikum, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany; (E.G.); (D.G.); (B.H.)
| | - Christian Furth
- Department of Nuclear Medicine, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 13353 Berlin, Germany; (C.W.); (C.F.)
| | - Bernd Hamm
- Department of Radiology, Campus Virchow Klinikum, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany; (E.G.); (D.G.); (B.H.)
- Department of Radiology, Campus Mitte, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany;
| | - Ingolf Sack
- Department of Radiology, Campus Mitte, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany;
| | - Stephan R. Marticorena Garcia
- Department of Radiology, Campus Mitte, Charité–Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Charitéplatz 1, 10117 Berlin, Germany;
- Correspondence: ; Tel.: +49-30-450-527082; Fax: +49-30-450-7527911
| |
Collapse
|
26
|
Seyedpour SM, Nabati M, Lambers L, Nafisi S, Tautenhahn HM, Sack I, Reichenbach JR, Ricken T. Application of Magnetic Resonance Imaging in Liver Biomechanics: A Systematic Review. Front Physiol 2021; 12:733393. [PMID: 34630152 PMCID: PMC8493836 DOI: 10.3389/fphys.2021.733393] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Accepted: 08/25/2021] [Indexed: 12/15/2022] Open
Abstract
MRI-based biomechanical studies can provide a deep understanding of the mechanisms governing liver function, its mechanical performance but also liver diseases. In addition, comprehensive modeling of the liver can help improve liver disease treatment. Furthermore, such studies demonstrate the beginning of an engineering-level approach to how the liver disease affects material properties and liver function. Aimed at researchers in the field of MRI-based liver simulation, research articles pertinent to MRI-based liver modeling were identified, reviewed, and summarized systematically. Various MRI applications for liver biomechanics are highlighted, and the limitations of different viscoelastic models used in magnetic resonance elastography are addressed. The clinical application of the simulations and the diseases studied are also discussed. Based on the developed questionnaire, the papers' quality was assessed, and of the 46 reviewed papers, 32 papers were determined to be of high-quality. Due to the lack of the suitable material models for different liver diseases studied by magnetic resonance elastography, researchers may consider the effect of liver diseases on constitutive models. In the future, research groups may incorporate various aspects of machine learning (ML) into constitutive models and MRI data extraction to further refine the study methodology. Moreover, researchers should strive for further reproducibility and rigorous model validation and verification.
Collapse
Affiliation(s)
- Seyed M. Seyedpour
- Institute of Mechanics, Structural Analysis and Dynamics, Faculty of Aerospace Engineering and Geodesy, University of Stuttgart, Stuttgart, Germany
- Biomechanics Lab, Institute of Mechanics, Structural Analysis and Dynamics, Faculty of Aerospace Engineering and Geodesy, University of Stuttgart, Stuttgart, Germany
| | - Mehdi Nabati
- Department of Mechanical Engineering, Faculty of Engineering, Boğaziçi University, Istanbul, Turkey
| | - Lena Lambers
- Institute of Mechanics, Structural Analysis and Dynamics, Faculty of Aerospace Engineering and Geodesy, University of Stuttgart, Stuttgart, Germany
- Biomechanics Lab, Institute of Mechanics, Structural Analysis and Dynamics, Faculty of Aerospace Engineering and Geodesy, University of Stuttgart, Stuttgart, Germany
| | - Sara Nafisi
- Faculty of Pharmacy, Istinye University, Istanbul, Turkey
| | - Hans-Michael Tautenhahn
- Department of General, Visceral and Vascular Surgery, Jena University Hospital, Jena, Germany
| | - Ingolf Sack
- Department of Radiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Campus Charité Mitte, Berlin, Germany
| | - Jürgen R. Reichenbach
- Medical Physics Group, Institute of Diagnostic and Interventional Radiology, Jena University Hospital-Friedrich Schiller University Jena, Jena, Germany
- Center of Medical Optics and Photonics, Friedrich Schiller University, Jena, Germany
- Michael Stifel Center for Data-driven and Simulation Science Jena, Friedrich Schiller University, Jena, Germany
| | - Tim Ricken
- Institute of Mechanics, Structural Analysis and Dynamics, Faculty of Aerospace Engineering and Geodesy, University of Stuttgart, Stuttgart, Germany
- Biomechanics Lab, Institute of Mechanics, Structural Analysis and Dynamics, Faculty of Aerospace Engineering and Geodesy, University of Stuttgart, Stuttgart, Germany
| |
Collapse
|
27
|
Hu J, Guo J, Pei Y, Hu P, Li M, Sack I, Li W. Rectal Tumor Stiffness Quantified by In Vivo Tomoelastography and Collagen Content Estimated by Histopathology Predict Tumor Aggressiveness. Front Oncol 2021; 11:701336. [PMID: 34485136 PMCID: PMC8415020 DOI: 10.3389/fonc.2021.701336] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2021] [Accepted: 07/29/2021] [Indexed: 01/23/2023] Open
Abstract
PURPOSE To investigate the significance of collagen in predicting the aggressiveness of rectal tumors in patients, examined in vivo based on tomoelastography quantified stiffness and ex vivo by histologically measured collagen volume fraction (CVF). EXPERIMENTAL DESIGN 170 patients with suspected rectal cancer were prospectively enrolled and underwent preoperative magnetic resonance imaging (MRI) and rectal tomoelastography, a technique based on multifrequency magnetic resonance elastography. Histopathologic analysis identified eighty patients with rectal cancer who were divided into subgroups by tumor-node (TN) stage, prognostic stage, and risk level. Rectal tumor stiffness was correlated with histopathologic CVF. Area-under-the-curve (AUC) and contingency analysis were used to evaluate the performance of rectal stiffness in distinguishing tumor stages which was compared to standard clinical MRI. RESULTS In vivo tomoelastography revealed that rectal tumor stiffened significantly with increased TN stage (p<0.05). Tumors with poorly differentiated status, perineural and lymphovascular invasion also displayed higher stiffness than well-to-moderately differentiated, noninvasive tumors (all p<0.05). Similar to in vivo stiffness, CVF indicated an abnormally high collagen content in tumors with perineural invasion and poor differentiation status. CVF was also positively correlated with stiffness (p<0.05). Most importantly, both stiffness (AUROC: 0.82) and CVF (AUROC: 0.89) demonstrated very good diagnostic accuracy in detecting rectal tumors that have high risk for progressing to an aggressive state with poorer prognosis. CONCLUSION In human rectal carcinomas, overexpression of collagen is correlated with increased tissue stiffness and high risk for tumor advancing more aggressively. In vivo tomoelastography quantifies rectal tumor stiffness which improves the diagnostic performance of standard MRI in the assessment of lymph nodes metastasis. Therefore, in vivo stiffness mapping by tomoelastography can predict rectal tumor aggressiveness and add diagnostic value to MRI.
Collapse
Affiliation(s)
- Jiaxi Hu
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, China
| | - Jing Guo
- Department of Radiology, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Yigang Pei
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, China
| | - Ping Hu
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, China
| | - Mengsi Li
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, China
| | - Ingolf Sack
- Department of Radiology, Charité – Universitätsmedizin Berlin, Berlin, Germany
| | - Wenzheng Li
- Department of Radiology, Xiangya Hospital, Central South University, Changsha, China
| |
Collapse
|
28
|
Reiter R, Loch FN, Kamphues C, Bayerl C, Marticorena Garcia SR, Siegmund B, Kühl AA, Hamm B, Braun J, Sack I, Asbach P. Feasibility of Intestinal MR Elastography in Inflammatory Bowel Disease. J Magn Reson Imaging 2021; 55:815-822. [PMID: 34254389 DOI: 10.1002/jmri.27833] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 06/24/2021] [Accepted: 06/25/2021] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND While MR enterography allows detection of inflammatory bowel disease (IBD), the findings continue to be of limited use in guiding treatment-medication vs. surgery. PURPOSE To test the feasibility of MR elastography of the gut in healthy volunteers and IBD patients. STUDY TYPE Prospective pilot. POPULATION Forty subjects (healthy volunteers: n = 20, 37 ± 14 years, 10 women; IBD patients: n = 20 (ulcerative colitis n = 9, Crohn's disease n = 11), 41 ± 15 years, 11 women). FIELD STRENGTH/SEQUENCE Multifrequency MR elastography using a single-shot spin-echo echo planar imaging sequence at 1.5 T with drive frequencies of 40, 50, 60, and 70 Hz. ASSESSMENT Maps of shear-wave speed (SWS, in m/s) and loss angle (φ, in rad), representing stiffness and solid-fluid behavior, respectively, were generated using tomoelastography data processing. Histopathological analysis of surgical specimens was used as reference standard in patients. STATISTICAL TESTS Unpaired t-test, one-way analysis of variance followed by Tukey post hoc analysis, Pearson's correlation coefficient and area under the receiver operating characteristic curve (AUC) with 95%-confidence interval (CI). Significance level of 5%. RESULTS MR elastography was feasible in all 40 subjects (100% technical success rate). SWS and φ were significantly increased in IBD by 21% and 20% (IBD: 1.45 ± 0.14 m/s and 0.78 ± 0.12 rad; healthy volunteers: 1.20 ± 0.14 m/s and 0.65 ± 0.06 rad), whereas no significant differences were found between ulcerative colitis and Crohn's disease (P = 0.74 and 0.90, respectively). In a preliminary assessment, a high diagnostic accuracy in detecting IBD was suggested by an AUC of 0.90 (CI: 0.81-0.96) for SWS and 0.84 (CI: 0.71-0.95) for φ. DATA CONCLUSION In this pilot study, our results demonstrated the feasibility of MR elastography of the gut and showed an excellent diagnostic performance in predicting IBD. EVIDENCE LEVEL 1 TECHNICAL EFFICACY: Stage 1.
Collapse
Affiliation(s)
- Rolf Reiter
- Department of Radiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Hindenburgdamm 30, Berlin, 12203, Germany.,Berlin Institute of Health (BIH), Anna-Louisa-Karsch-Str. 2, Berlin, 10178, Germany
| | - Florian N Loch
- Department of Surgery, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Hindenburgdamm 30, Berlin, 12203, Germany
| | - Carsten Kamphues
- Department of Surgery, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Hindenburgdamm 30, Berlin, 12203, Germany
| | - Christian Bayerl
- Department of Radiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Hindenburgdamm 30, Berlin, 12203, Germany
| | - Stephan R Marticorena Garcia
- Department of Radiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Hindenburgdamm 30, Berlin, 12203, Germany
| | - Britta Siegmund
- Department of Gastroenterology, Infectious Disease, Rheumatology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Hindenburgdamm 30, Berlin, 12203, Germany
| | - Anja A Kühl
- iPATH.Berlin-Immunopathology for Experimental Models, Core Facility, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Hindenburgdamm 30, Berlin, 12203, Germany
| | - Bernd Hamm
- Department of Radiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Hindenburgdamm 30, Berlin, 12203, Germany
| | - Jürgen Braun
- Department of Medical Informatics, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Hindenburgdamm 30, Berlin, 12203, Germany
| | - Ingolf Sack
- Department of Radiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Hindenburgdamm 30, Berlin, 12203, Germany
| | - Patrick Asbach
- Department of Radiology, Charité - Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Hindenburgdamm 30, Berlin, 12203, Germany
| |
Collapse
|
29
|
Pancreatic Ductal Adenocarcinoma: Relating Biomechanics and Prognosis. J Clin Med 2021; 10:jcm10122711. [PMID: 34205335 PMCID: PMC8234178 DOI: 10.3390/jcm10122711] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 06/12/2021] [Accepted: 06/16/2021] [Indexed: 02/07/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is the most common form of pancreatic cancer and carries a dismal prognosis. Resectable patients are treated predominantly with surgery while borderline resectable patients may receive neoadjuvant treatment (NAT) to downstage their disease prior to possible resection. PDAC tissue is stiffer than healthy pancreas, and tissue stiffness is associated with cancer progression. Another feature of PDAC is increased tissue heterogeneity. We postulate that tumour stiffness and heterogeneity may be used alongside currently employed diagnostics to better predict prognosis and response to treatment. In this review we summarise the biomechanical changes observed in PDAC, explore the factors behind these changes and describe the clinical consequences. We identify methods available for assessing PDAC biomechanics ex vivo and in vivo, outlining the relative merits of each. Finally, we discuss the potential use of radiological imaging for prognostic use.
Collapse
|