1
|
Hussain S, Lafarga-Osuna Y, Ali M, Naseem U, Ahmed M, Tamez-Peña JG. Deep learning, radiomics and radiogenomics applications in the digital breast tomosynthesis: a systematic review. BMC Bioinformatics 2023; 24:401. [PMID: 37884877 PMCID: PMC10605943 DOI: 10.1186/s12859-023-05515-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2023] [Accepted: 10/02/2023] [Indexed: 10/28/2023] Open
Abstract
BACKGROUND Recent advancements in computing power and state-of-the-art algorithms have helped in more accessible and accurate diagnosis of numerous diseases. In addition, the development of de novo areas in imaging science, such as radiomics and radiogenomics, have been adding more to personalize healthcare to stratify patients better. These techniques associate imaging phenotypes with the related disease genes. Various imaging modalities have been used for years to diagnose breast cancer. Nonetheless, digital breast tomosynthesis (DBT), a state-of-the-art technique, has produced promising results comparatively. DBT, a 3D mammography, is replacing conventional 2D mammography rapidly. This technological advancement is key to AI algorithms for accurately interpreting medical images. OBJECTIVE AND METHODS This paper presents a comprehensive review of deep learning (DL), radiomics and radiogenomics in breast image analysis. This review focuses on DBT, its extracted synthetic mammography (SM), and full-field digital mammography (FFDM). Furthermore, this survey provides systematic knowledge about DL, radiomics, and radiogenomics for beginners and advanced-level researchers. RESULTS A total of 500 articles were identified, with 30 studies included as the set criteria. Parallel benchmarking of radiomics, radiogenomics, and DL models applied to the DBT images could allow clinicians and researchers alike to have greater awareness as they consider clinical deployment or development of new models. This review provides a comprehensive guide to understanding the current state of early breast cancer detection using DBT images. CONCLUSION Using this survey, investigators with various backgrounds can easily seek interdisciplinary science and new DL, radiomics, and radiogenomics directions towards DBT.
Collapse
Affiliation(s)
- Sadam Hussain
- School of Engineering and Sciences, Tecnológico de Monterrey, Ave. Eugenio Garza Sada 2501, 64849, Monterrey, Mexico.
| | - Yareth Lafarga-Osuna
- School of Engineering and Sciences, Tecnológico de Monterrey, Ave. Eugenio Garza Sada 2501, 64849, Monterrey, Mexico
| | - Mansoor Ali
- School of Engineering and Sciences, Tecnológico de Monterrey, Ave. Eugenio Garza Sada 2501, 64849, Monterrey, Mexico
| | - Usman Naseem
- College of Science and Engineering, James Cook University, Cairns, Australia
| | - Masroor Ahmed
- School of Engineering and Sciences, Tecnológico de Monterrey, Ave. Eugenio Garza Sada 2501, 64849, Monterrey, Mexico
| | - Jose Gerardo Tamez-Peña
- School of Medicine and Health Sciences, Tecnológico de Monterrey, Ave. Eugenio Garza Sada 2501, 64849, Monterrey, Mexico
| |
Collapse
|
2
|
Zhang YP, Zhang XY, Cheng YT, Li B, Teng XZ, Zhang J, Lam S, Zhou T, Ma ZR, Sheng JB, Tam VCW, Lee SWY, Ge H, Cai J. Artificial intelligence-driven radiomics study in cancer: the role of feature engineering and modeling. Mil Med Res 2023; 10:22. [PMID: 37189155 DOI: 10.1186/s40779-023-00458-8] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Accepted: 05/04/2023] [Indexed: 05/17/2023] Open
Abstract
Modern medicine is reliant on various medical imaging technologies for non-invasively observing patients' anatomy. However, the interpretation of medical images can be highly subjective and dependent on the expertise of clinicians. Moreover, some potentially useful quantitative information in medical images, especially that which is not visible to the naked eye, is often ignored during clinical practice. In contrast, radiomics performs high-throughput feature extraction from medical images, which enables quantitative analysis of medical images and prediction of various clinical endpoints. Studies have reported that radiomics exhibits promising performance in diagnosis and predicting treatment responses and prognosis, demonstrating its potential to be a non-invasive auxiliary tool for personalized medicine. However, radiomics remains in a developmental phase as numerous technical challenges have yet to be solved, especially in feature engineering and statistical modeling. In this review, we introduce the current utility of radiomics by summarizing research on its application in the diagnosis, prognosis, and prediction of treatment responses in patients with cancer. We focus on machine learning approaches, for feature extraction and selection during feature engineering and for imbalanced datasets and multi-modality fusion during statistical modeling. Furthermore, we introduce the stability, reproducibility, and interpretability of features, and the generalizability and interpretability of models. Finally, we offer possible solutions to current challenges in radiomics research.
Collapse
Affiliation(s)
- Yuan-Peng Zhang
- Department of Medical Informatics, Nantong University, Nantong, 226001, Jiangsu, China
- Department of Health Technology and Informatics, the Hong Kong Polytechnic University, Hong Kong, 999077, China
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, 518000, Guangdong, China
| | - Xin-Yun Zhang
- Department of Medical Informatics, Nantong University, Nantong, 226001, Jiangsu, China
| | - Yu-Ting Cheng
- Department of Medical Informatics, Nantong University, Nantong, 226001, Jiangsu, China
| | - Bing Li
- Department of Radiation Oncology, the Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, 450008, Henan, China
| | - Xin-Zhi Teng
- Department of Health Technology and Informatics, the Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Jiang Zhang
- Department of Health Technology and Informatics, the Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Saikit Lam
- Department of Health Technology and Informatics, the Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Ta Zhou
- Department of Health Technology and Informatics, the Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Zong-Rui Ma
- Department of Health Technology and Informatics, the Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Jia-Bao Sheng
- Department of Health Technology and Informatics, the Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Victor C W Tam
- Department of Health Technology and Informatics, the Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Shara W Y Lee
- Department of Health Technology and Informatics, the Hong Kong Polytechnic University, Hong Kong, 999077, China
| | - Hong Ge
- Department of Radiation Oncology, the Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, 450008, Henan, China
| | - Jing Cai
- Department of Health Technology and Informatics, the Hong Kong Polytechnic University, Hong Kong, 999077, China.
- The Hong Kong Polytechnic University Shenzhen Research Institute, Shenzhen, 518000, Guangdong, China.
| |
Collapse
|
3
|
Zhong J, Pan Z, Chen Y, Wang L, Xia Y, Wang L, Li J, Lu W, Shi X, Feng J, Yan F, Zhang H, Yao W. Robustness of radiomics features of virtual unenhanced and virtual monoenergetic images in dual-energy CT among different imaging platforms and potential role of CT number variability. Insights Imaging 2023; 14:79. [PMID: 37166511 PMCID: PMC10175529 DOI: 10.1186/s13244-023-01426-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2023] [Accepted: 04/05/2023] [Indexed: 05/12/2023] Open
Abstract
OBJECTIVES To evaluate robustness of dual-energy CT (DECT) radiomics features of virtual unenhanced (VUE) image and virtual monoenergetic image (VMI) among different imaging platforms. METHODS A phantom with sixteen clinical-relevant densities was scanned on ten DECT platforms with comparable scan parameters. Ninety-four radiomic features were extracted via Pyradiomics from VUE images and VMIs at energy level of 70 keV (VMI70keV). Test-retest repeatability was assessed by Bland-Altman analysis. Inter-platform reproducibility of VUE images and VMI70keV was evaluated by coefficient of variation (CV) and quartile coefficient of dispersion (QCD) among platforms, and by intraclass correlation coefficient (ICC) and concordance correlation coefficient (CCC) between platform pairs. The correlation between variability of CT number radiomics reproducibility was estimated. RESULTS 92.02% and 92.87% of features were repeatable between scan-rescans for VUE images and VMI70keV, respectively. Among platforms, 11.30% and 28.39% features of VUE images, and 15.16% and 28.99% features of VMI70keV were with CV < 10% and QCD < 10%. The average percentages of radiomics features with ICC > 0.90 and CCC > 0.90 between platform pairs were 10.00% and 9.86% in VUE images and 11.23% and 11.23% in VMI70keV. The CT number inter-platform reproducibility using CV and QCD showed negative correlations with percentage of the first-order radiomics features with CV < 10% and QCD < 10%, in both VUE images and VMI70keV (r2 0.3870-0.6178, all p < 0.001). CONCLUSIONS The majority of DECT radiomics features were non-reproducible. The differences in CT number were considered as an indicator of inter-platform DECT radiomics variation. Critical relevance statement: The majority of radiomics features extracted from the VUE images and the VMI70keV were non-reproducible among platforms, while synchronizing energy levels of VMI to reduce the CT number value variability may be a potential way to mitigate radiomics instability.
Collapse
Affiliation(s)
- Jingyu Zhong
- Department of Imaging, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China
| | - Zilai Pan
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yong Chen
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Lingyun Wang
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yihan Xia
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Lan Wang
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Jianying Li
- Computed Tomography Research Center, GE Healthcare, Beijing, 100176, China
| | - Wei Lu
- Computed Tomography Research Center, GE Healthcare, Shanghai, 201203, China
| | - Xiaomeng Shi
- Department of Materials, Imperial College London, London, SW7 2AZ, UK
| | - Jianxing Feng
- Haohua Technology Co., Ltd., Shanghai, 201100, China
| | - Fuhua Yan
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Huan Zhang
- Department of Radiology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Weiwu Yao
- Department of Imaging, Tongren Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200336, China.
| |
Collapse
|
4
|
Dunning CAS, Rajendran K, Fletcher JG, McCollough CH, Leng S. Impact of improved spatial resolution on radiomic features using photon-counting-detector CT. PROCEEDINGS OF SPIE--THE INTERNATIONAL SOCIETY FOR OPTICAL ENGINEERING 2022; 12032:1203221. [PMID: 35677727 PMCID: PMC9171727 DOI: 10.1117/12.2612229] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/26/2023]
Abstract
Radiomics is a promising mathematical tool for characterizing disease and predicting clinical outcomes from radiological images such as CT. Photon-counting-detector (PCD) CT provides improved spatial resolution and dose efficiency relative to conventional energy-integrating-detector CT systems. Since improved spatial resolution enables visualization of smaller structures and more details that are not typically visible at routine resolution, it has a direct impact on textural features in CT images. Therefore, it is of clinical interest to quantify the impact of the improved spatial resolution on calculated radiomic features and, consequently, on sample classification. In this work, organic samples (zucchini, onions, and oranges) were scanned on both clinical PCD-CT and EID-CT systems at two dose levels. High-resolution PCD-CT and routine-resolution EID-CT images were reconstructed using a dedicated sharp kernel and a routine kernel, respectively. The noise in each image was quantified. Fourteen radiomic features of relevance were calculated in each image for each sample and compared between the two scanners. Radiomic features were plotted pairwise to evaluate the resulting cluster separation of the samples by their type between PCD-CT and EID-CT. Thirteen out of 14 studied radiomic features were notably changed by the improved resolution of the PCD-CT system, and the cluster separation was better when assessing features derived from PCD-CT. These results show that features derived from high-resolution PCD-CT, which are subject to higher noise compared to EID-CT, may impact radiomics-based clinical decision making.
Collapse
|