1
|
Gendarme S, Maitre B, Hanash S, Pairon JC, Canoui-Poitrine F, Chouaïd C. Beyond lung cancer screening, an opportunity for early detection of chronic obstructive pulmonary disease and cardiovascular diseases. JNCI Cancer Spectr 2024; 8:pkae082. [PMID: 39270051 PMCID: PMC11472859 DOI: 10.1093/jncics/pkae082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2024] [Revised: 05/16/2024] [Accepted: 09/06/2024] [Indexed: 09/15/2024] Open
Abstract
BACKGROUND Lung cancer screening programs concern smokers at risk for cardiovascular diseases (CVDs) and chronic obstructive pulmonary disease (COPD). The LUMASCAN (LUng Cancer Screening, MArkers and low-dose computed tomography SCANner) study aimed to evaluate the acceptability and feasibility of screening for these 3 diseases in a community population with centralized organization and to determine low-dose computed tomography (CT) markers associated with each disease. METHODS This cohort enrolled participants meeting National Comprehensive Cancer Network criteria (v1.2014) in an organized lung cancer-screening program including low-dose CT scans; spirometry; evaluations of coronary artery calcifications (CACs); and a smoking cessation plan at inclusion, 1, and 2 years; then telephone follow-up. Outcomes were the participation rate and the proportion of participants affected by lung cancer, obstructive lung disease, or CVD events. Logistic-regression models were used to identify radiological factors associated with each disease. RESULTS Between 2016 and 2019, a total of 302 participants were enrolled: 61% men; median age 58.8 years; 77% active smoker; 11% diabetes; 38% hypertension; and 27% taking lipid-lowering agents. Inclusion, 1-year, and 2-year participation rates were 99%, 81%, 79%, respectively. After a median follow-up of 5.81 years, screenings detected 12 (4%) lung cancer, 9 of 12 via low-dose CT (78% localized) and 3 of 12 during follow-up (all stage IV), 83 (27%) unknown obstructive lung disease, and 131 (43.4%) moderate to severe CACs warranting a cardiology consultation. Preexisting COPD and moderate to severe CACs were associated with major CVD events with odds ratios of 1.98 (95% confident interval [CI] = 1.00 to 3.88) and 3.27 (95% CI = 1.72 to 6.43), respectively. CONCLUSION The LUMASCAN study demonstrated the feasibility of combined screening for lung cancer, COPD, and CVD in a community population. Its centralized organization enabled high participation and coordination of healthcare practitioners.
Collapse
Affiliation(s)
- Sébastien Gendarme
- Pulmonology Department, Centre Hospitalier Intercommunal de Créteil, Créteil, France
- Inserm U955, IMRB, Université Paris-Est Créteil, Créteil, France
| | - Bernard Maitre
- Pulmonology Department, Centre Hospitalier Intercommunal de Créteil, Créteil, France
- Inserm U955, IMRB, Université Paris-Est Créteil, Créteil, France
| | - Sam Hanash
- Department of Clinical Cancer Prevention, The University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jean-Claude Pairon
- Inserm U955, IMRB, Université Paris-Est Créteil, Créteil, France
- Occupational Medicine Department, Centre Hospitalier Intercommunal de Créteil, Créteil, France
| | - Florence Canoui-Poitrine
- Inserm U955, IMRB, Université Paris-Est Créteil, Créteil, France
- Public Health Department, Henri-Mondor Hospital, Créteil, France
| | - Christos Chouaïd
- Pulmonology Department, Centre Hospitalier Intercommunal de Créteil, Créteil, France
- Inserm U955, IMRB, Université Paris-Est Créteil, Créteil, France
| |
Collapse
|
2
|
Behr C, Koffijberg H, IJzerman M, Kauczor HU, Revel MP, Silva M, von Stackelberg O, van Til J, Vliegenthart R. Willingness to participate in combination screening for lung cancer, chronic obstructive pulmonary disease and cardiovascular disease in four European countries. Eur Radiol 2024; 34:4448-4456. [PMID: 38060003 PMCID: PMC11213747 DOI: 10.1007/s00330-023-10474-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 10/04/2023] [Accepted: 10/22/2023] [Indexed: 12/08/2023]
Abstract
OBJECTIVES Lung cancer screening (LCS), using low-dose computed tomography (LDCT), can be more efficient by simultaneously screening for chronic obstructive pulmonary disease (COPD) and cardiovascular disease (CVD), the Big-3 diseases. This study aimed to determine the willingness to participate in (combinations of) Big-3 screening in four European countries and the relative importance of amendable participation barriers. METHODS An online cross-sectional survey aimed at (former) smokers aged 50-75 years elicited the willingness of individuals to participate in Big-3 screening and used analytical hierarchy processing (AHP) to determine the importance of participation barriers. RESULTS Respondents were from France (n = 391), Germany (n = 338), Italy (n = 399), and the Netherlands (n = 342), and consisted of 51.2% men. The willingness to participate in screening was marginally influenced by the diseases screened for (maximum difference of 3.1%, for Big-3 screening (73.4%) vs. lung cancer and COPD screening (70.3%)) and by country (maximum difference of 3.7%, between France (68.5%) and the Netherlands (72.3%)). The largest effect on willingness to participate was personal perceived risk of lung cancer. The most important barriers were the missed cases during screening (weight 0.19) and frequency of screening (weight 0.14), while diseases screened for (weight 0.11) ranked low. CONCLUSIONS The difference in willingness to participate in LCS showed marginal increase with inclusion of more diseases and limited variation between countries. A marginal increase in participation might result in a marginal additional benefit of Big-3 screening. The amendable participation barriers are similar to previous studies, and the new criterion, diseases screened for, is relatively unimportant. CLINICAL RELEVANCE STATEMENT Adding diseases to combination screening modestly improves participation, driven by personal perceived risk. These findings guide program design and campaigns for lung cancer and Big-3 screening. Benefits of Big-3 screening lie in long-term health and economic impact, not participation increase. KEY POINTS • It is unknown whether or how combination screening might affect participation. • The addition of chronic obstructive pulmonary disease and cardiovascular disease to lung cancer screening resulted in a marginal increase in willingness to participate. • The primary determinant influencing individuals' engagement in such programs is their personal perceived risk of the disease.
Collapse
Affiliation(s)
- Carina Behr
- Health Technology and Services Research, Faculty of Behavioural and Management Science, University of Twente, Drienerlolaan 5, 7522 NB, Enschede, The Netherlands
| | - Hendrik Koffijberg
- Health Technology and Services Research, Faculty of Behavioural and Management Science, University of Twente, Drienerlolaan 5, 7522 NB, Enschede, The Netherlands
| | - Maarten IJzerman
- Health Technology and Services Research, Faculty of Behavioural and Management Science, University of Twente, Drienerlolaan 5, 7522 NB, Enschede, The Netherlands
- Cancer Health Services Research, Centre for Health Policy, Melbourne School of Population and Global Health, Faculty of Medicine, Dentistry and Health Sciences, The University of Melbourne, Parkville, Melbourne, VIC, 3010, Australia
- Erasmus School of Health Policy & Management, Rotterdam, The Netherlands
| | - Hans-Ulrich Kauczor
- Department of Diagnostic and Interventional Radiology, Heidelberg University Hospital, Im Neuenheimer Feld 110, 69120, Heidelberg, Germany
- Translational Lung Research Center, Member of the German Lung Research Center, Heidelberg, Germany
| | - Marie-Pierre Revel
- Service de radiologie, Université de Paris, Assistance Publique des hôpitaux de Paris, Hôpital Cochin, 85 boulevard Saint-Germain, 75006, Paris, France
- Inserm U1016, Institut Cochin, 22 rue Méchain, 75014, Paris, France
| | - Mario Silva
- Scienze Radiologiche, Department of Medicine and Surgery (DiMeC), University of Parma, Pad. Barbieri, Ospedale Universitario di Parma, Via Gramsci 14, 43126, Parma, Italy
| | - Oyunbileg von Stackelberg
- Department of Diagnostic and Interventional Radiology, Heidelberg University Hospital, Im Neuenheimer Feld 110, 69120, Heidelberg, Germany
- Translational Lung Research Center, Member of the German Lung Research Center, Heidelberg, Germany
| | - Janine van Til
- Health Technology and Services Research, Faculty of Behavioural and Management Science, University of Twente, Drienerlolaan 5, 7522 NB, Enschede, The Netherlands
| | - Rozemarijn Vliegenthart
- Department of Radiology, University of Groningen, University Medical Centre Groningen, Hanzeplein 1, 9713 GZ, Groningen, The Netherlands.
| |
Collapse
|
3
|
Dudurych I, Pelgrim GJ, Sidorenkov G, Garcia-Uceda A, Petersen J, Slebos DJ, de Bock GH, van den Berge M, de Bruijne M, Vliegenthart R. Low-Dose CT-derived Bronchial Parameters in Individuals with Healthy Lungs. Radiology 2024; 311:e232677. [PMID: 38916504 DOI: 10.1148/radiol.232677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/26/2024]
Abstract
Background CT-derived bronchial parameters have been linked to chronic obstructive pulmonary disease and asthma severity, but little is known about these parameters in healthy individuals. Purpose To investigate the distribution of bronchial parameters at low-dose CT in individuals with healthy lungs from a Dutch general population. Materials and Methods In this prospective study, low-dose chest CT performed between May 2017 and October 2022 were obtained from participants who had completed the second-round assessment of the prospective, longitudinal Imaging in Lifelines study. Participants were aged at least 45 years, and those with abnormal spirometry, self-reported respiratory disease, or signs of lung disease at CT were excluded. Airway lumens and walls were segmented automatically. The square root of the bronchial wall area of a hypothetical airway with an internal perimeter of 10 mm (Pi10), luminal area (LA), wall thickness (WT), and wall area percentage were calculated. Associations between sex, age, height, weight, smoking status, and bronchial parameters were assessed using univariable and multivariable analyses. Results The study sample was composed of 8869 participants with healthy lungs (mean age, 60.9 years ± 10.4 [SD]; 4841 [54.6%] female participants), including 3672 (41.4%) never-smokers and 1197 (13.5%) individuals who currently smoke. Bronchial parameters for male participants were higher than those for female participants (Pi10, slope [β] range = 3.49-3.66 mm; LA, β range = 25.40-29.76 mm2; WT, β range = 0.98-1.03 mm; all P < .001). Increasing age correlated with higher Pi10, LA, and WT (r2 range = 0.06-0.09, 0.02-0.01, and 0.02-0.07, respectively; all P < .001). Never-smoking individuals had the lowest Pi10 followed by formerly smoking and currently smoking individuals (3.62 mm ± 0.13, 3.68 mm ± 0.14, and 3.70 mm ± 0.14, respectively; all P < .001). In multivariable regression models, age, sex, height, weight, and smoking history explained up to 46% of the variation in bronchial parameters. Conclusion In healthy individuals, bronchial parameters differed by sex, height, weight, and smoking history; male sex and increasing age were associated with wider lumens and thicker walls. © RSNA, 2024 Supplemental material is available for this article. See also the editorial by Emrich and Varga-Szemes in this issue.
Collapse
Affiliation(s)
- Ivan Dudurych
- From the Departments of Radiology (I.D., G.J.P., G.S., R.V.), Epidemiology (G.S., G.H.d.B.), and Pulmonology (D.J.S., M.v.d.B.), University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9700 GZ Groningen, the Netherlands; Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, the Netherlands (A.G.U., M.d.B.); Department of Computer Science, Copenhagen University, Copenhagen, Denmark (J.P., M.d.B.); and Department of Oncology, Rigshospitalet, Copenhagen, Denmark (J.P.)
| | - Gert-Jan Pelgrim
- From the Departments of Radiology (I.D., G.J.P., G.S., R.V.), Epidemiology (G.S., G.H.d.B.), and Pulmonology (D.J.S., M.v.d.B.), University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9700 GZ Groningen, the Netherlands; Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, the Netherlands (A.G.U., M.d.B.); Department of Computer Science, Copenhagen University, Copenhagen, Denmark (J.P., M.d.B.); and Department of Oncology, Rigshospitalet, Copenhagen, Denmark (J.P.)
| | - Grigory Sidorenkov
- From the Departments of Radiology (I.D., G.J.P., G.S., R.V.), Epidemiology (G.S., G.H.d.B.), and Pulmonology (D.J.S., M.v.d.B.), University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9700 GZ Groningen, the Netherlands; Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, the Netherlands (A.G.U., M.d.B.); Department of Computer Science, Copenhagen University, Copenhagen, Denmark (J.P., M.d.B.); and Department of Oncology, Rigshospitalet, Copenhagen, Denmark (J.P.)
| | - Antonio Garcia-Uceda
- From the Departments of Radiology (I.D., G.J.P., G.S., R.V.), Epidemiology (G.S., G.H.d.B.), and Pulmonology (D.J.S., M.v.d.B.), University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9700 GZ Groningen, the Netherlands; Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, the Netherlands (A.G.U., M.d.B.); Department of Computer Science, Copenhagen University, Copenhagen, Denmark (J.P., M.d.B.); and Department of Oncology, Rigshospitalet, Copenhagen, Denmark (J.P.)
| | - Jens Petersen
- From the Departments of Radiology (I.D., G.J.P., G.S., R.V.), Epidemiology (G.S., G.H.d.B.), and Pulmonology (D.J.S., M.v.d.B.), University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9700 GZ Groningen, the Netherlands; Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, the Netherlands (A.G.U., M.d.B.); Department of Computer Science, Copenhagen University, Copenhagen, Denmark (J.P., M.d.B.); and Department of Oncology, Rigshospitalet, Copenhagen, Denmark (J.P.)
| | - Dirk-Jan Slebos
- From the Departments of Radiology (I.D., G.J.P., G.S., R.V.), Epidemiology (G.S., G.H.d.B.), and Pulmonology (D.J.S., M.v.d.B.), University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9700 GZ Groningen, the Netherlands; Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, the Netherlands (A.G.U., M.d.B.); Department of Computer Science, Copenhagen University, Copenhagen, Denmark (J.P., M.d.B.); and Department of Oncology, Rigshospitalet, Copenhagen, Denmark (J.P.)
| | - Geertruida H de Bock
- From the Departments of Radiology (I.D., G.J.P., G.S., R.V.), Epidemiology (G.S., G.H.d.B.), and Pulmonology (D.J.S., M.v.d.B.), University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9700 GZ Groningen, the Netherlands; Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, the Netherlands (A.G.U., M.d.B.); Department of Computer Science, Copenhagen University, Copenhagen, Denmark (J.P., M.d.B.); and Department of Oncology, Rigshospitalet, Copenhagen, Denmark (J.P.)
| | - Maarten van den Berge
- From the Departments of Radiology (I.D., G.J.P., G.S., R.V.), Epidemiology (G.S., G.H.d.B.), and Pulmonology (D.J.S., M.v.d.B.), University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9700 GZ Groningen, the Netherlands; Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, the Netherlands (A.G.U., M.d.B.); Department of Computer Science, Copenhagen University, Copenhagen, Denmark (J.P., M.d.B.); and Department of Oncology, Rigshospitalet, Copenhagen, Denmark (J.P.)
| | - Marleen de Bruijne
- From the Departments of Radiology (I.D., G.J.P., G.S., R.V.), Epidemiology (G.S., G.H.d.B.), and Pulmonology (D.J.S., M.v.d.B.), University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9700 GZ Groningen, the Netherlands; Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, the Netherlands (A.G.U., M.d.B.); Department of Computer Science, Copenhagen University, Copenhagen, Denmark (J.P., M.d.B.); and Department of Oncology, Rigshospitalet, Copenhagen, Denmark (J.P.)
| | - Rozemarijn Vliegenthart
- From the Departments of Radiology (I.D., G.J.P., G.S., R.V.), Epidemiology (G.S., G.H.d.B.), and Pulmonology (D.J.S., M.v.d.B.), University of Groningen, University Medical Center Groningen, Hanzeplein 1, 9700 GZ Groningen, the Netherlands; Department of Radiology and Nuclear Medicine, Erasmus MC, Rotterdam, the Netherlands (A.G.U., M.d.B.); Department of Computer Science, Copenhagen University, Copenhagen, Denmark (J.P., M.d.B.); and Department of Oncology, Rigshospitalet, Copenhagen, Denmark (J.P.)
| |
Collapse
|
4
|
Ten Berge H, Willems B, Pan X, Dvortsin E, Aerts J, Postma MJ, Prokop M, van den Heuvel MM. Cost-effectiveness analysis of a lung cancer screening program in the netherlands: a simulation based on NELSON and NLST study outcomes. J Med Econ 2024; 27:1197-1211. [PMID: 39291295 DOI: 10.1080/13696998.2024.2404359] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Revised: 09/09/2024] [Accepted: 09/11/2024] [Indexed: 09/19/2024]
Abstract
BACKGROUND In the Netherlands, lung cancer is the leading cause of cancer-related death, accounting for more than 10,000 annual deaths. Lung cancer screening (LCS) studies using low-dose computed tomography (LDCT) have demonstrated that early detection reduces lung cancer mortality. However, no LCS program has been implemented yet in the Netherlands. A national LCS program has the potential to enhance the health outcomes for lung cancer patients in the Netherlands. OBJECTIVE AND METHODS This study evaluates the cost-effectiveness of LCS compared to no-screening in the Netherlands, by simulating the screening outcomes based on data from NEderlands-Leuvens Longkanker Screenings ONderzoek (NELSON) and National Lung Screening Trial (NLST). We simulated annual screening up to 74 years of age, using inclusion criteria from the respective studies. A decision tree and Markov model was used to predict the incremental costs, quality-adjusted life-years (QALYs), and incremental cost-effectiveness ratio (ICERs) for the screening population. The analysis used a lifetime horizon and a societal perspective. RESULTS Compared to no-screening, LCS resulted in an ICER of €5,169 per QALY for the NELSON simulation, and an ICER of €17,119 per QALY for the NLST simulation. The screening costs were highly impactful for the cost-effectiveness. The most influential parameter was the CT scan cost. Cost reduction for CT from €201 to €101 per scan would reduce the ICER to €2,335 using NELSON criteria. Additionally, LCS could prevent 15,115 and 12,611 premature lung cancer deaths, accompanied by 1.66 and 1.31 QALYs gained per lung cancer case for the NELSON and NLST simulations, respectively. CONCLUSION LCS was estimated to be cost-effective in the Netherlands for both simulations at a willingness-to-pay threshold of €20,000 per QALY. Using the NELSON criteria, less than €5,500 per QALY had to be spent. Lowering the cost per CT exam would lead to a further reduction of this amount.
Collapse
Affiliation(s)
- Hilde Ten Berge
- Institute for Diagnostic Accuracy, Groningen, The Netherlands
| | - Bo Willems
- Department of Pulmonary Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
- AstraZeneca, Oncology Business Unit, The Netherlands
| | - Xuanqi Pan
- Institute for Diagnostic Accuracy, Groningen, The Netherlands
- Unit of Global Health, Faculty of Medical Sciences, University of Groningen, Groningen, The Netherlands
| | - Evgeni Dvortsin
- Institute for Diagnostic Accuracy, Groningen, The Netherlands
| | - Joachim Aerts
- Department of Pulmonary Medicine, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Maarten J Postma
- Unit of Global Health, Faculty of Medical Sciences, University of Groningen, Groningen, The Netherlands
- Department of Economics, Econometrics & Finance, Faculty of Economics & Business, University of Groningen, Groningen, The Netherlands
| | - Mathias Prokop
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Michel M van den Heuvel
- Department of Pulmonary Diseases, Radboud University Medical Center, Nijmegen, The Netherlands
| |
Collapse
|
5
|
Antunes-Ferreira M, D'Ambrosi S, Arkani M, Post E, In 't Veld SGJG, Ramaker J, Zwaan K, Kucukguzel ED, Wedekind LE, Griffioen AW, Oude Egbrink M, Kuijpers MJE, van den Broek D, Noske DP, Hartemink KJ, Sabrkhany S, Bahce I, Sol N, Bogaard HJ, Koppers-Lalic D, Best MG, Wurdinger T. Tumor-educated platelet blood tests for Non-Small Cell Lung Cancer detection and management. Sci Rep 2023; 13:9359. [PMID: 37291189 PMCID: PMC10250384 DOI: 10.1038/s41598-023-35818-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 05/24/2023] [Indexed: 06/10/2023] Open
Abstract
Liquid biopsy approaches offer a promising technology for early and minimally invasive cancer detection. Tumor-educated platelets (TEPs) have emerged as a promising liquid biopsy biosource for the detection of various cancer types. In this study, we processed and analyzed the TEPs collected from 466 Non-small Cell Lung Carcinoma (NSCLC) patients and 410 asymptomatic individuals (controls) using the previously established thromboSeq protocol. We developed a novel particle-swarm optimization machine learning algorithm which enabled the selection of an 881 RNA biomarker panel (AUC 0.88). Herein we propose and validate in an independent cohort of samples (n = 558) two approaches for blood samples testing: one with high sensitivity (95% NSCLC detected) and another with high specificity (94% controls detected). Our data explain how TEP-derived spliced RNAs may serve as a biomarker for minimally-invasive clinical blood tests, complement existing imaging tests, and assist the detection and management of lung cancer patients.
Collapse
Affiliation(s)
- Mafalda Antunes-Ferreira
- Department of Neurosurgery, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Amsterdam, The Netherlands
- Brain Tumor Center Amsterdam, Amsterdam, The Netherlands
| | - Silvia D'Ambrosi
- Department of Neurosurgery, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Amsterdam, The Netherlands
- Brain Tumor Center Amsterdam, Amsterdam, The Netherlands
| | - Mohammad Arkani
- Department of Neurosurgery, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Amsterdam, The Netherlands
- Department of Pulmonary Medicine, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
- Department of Biomedical Data Science, Leiden University Medical Center, Leiden, The Netherlands
| | - Edward Post
- Department of Neurosurgery, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Amsterdam, The Netherlands
- Brain Tumor Center Amsterdam, Amsterdam, The Netherlands
| | - Sjors G J G In 't Veld
- Department of Neurosurgery, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Amsterdam, The Netherlands
- Brain Tumor Center Amsterdam, Amsterdam, The Netherlands
| | - Jip Ramaker
- Department of Neurosurgery, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Amsterdam, The Netherlands
- Brain Tumor Center Amsterdam, Amsterdam, The Netherlands
| | - Kenn Zwaan
- Department of Neurosurgery, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Amsterdam, The Netherlands
- Brain Tumor Center Amsterdam, Amsterdam, The Netherlands
| | - Ece Demirel Kucukguzel
- Department of Neurosurgery, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Amsterdam, The Netherlands
- Brain Tumor Center Amsterdam, Amsterdam, The Netherlands
| | - Laurine E Wedekind
- Department of Neurosurgery, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Amsterdam, The Netherlands
- Brain Tumor Center Amsterdam, Amsterdam, The Netherlands
| | - Arjan W Griffioen
- Cancer Center Amsterdam, Amsterdam, The Netherlands
- Department of Medical Oncology, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
| | - Mirjam Oude Egbrink
- Department of Physiology, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
| | - Marijke J E Kuijpers
- Department of Biochemistry, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
| | - Daan van den Broek
- Department of Laboratory Medicine, The Netherlands Cancer Institute - Antoni van Leeuwenhoek Hospital, Amsterdam, The Netherlands
| | - David P Noske
- Department of Neurosurgery, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Amsterdam, The Netherlands
- Brain Tumor Center Amsterdam, Amsterdam, The Netherlands
| | - Koen J Hartemink
- Department of Thoracic Surgery, The Netherlands Cancer Institute-Antoni Van Leeuwenhoek Hospital, Amsterdam, The Netherlands
| | - Siamack Sabrkhany
- Department of Physiology, Cardiovascular Research Institute Maastricht, Maastricht University, Maastricht, The Netherlands
| | - Idris Bahce
- Department of Pulmonary Medicine, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
| | - Nik Sol
- Cancer Center Amsterdam, Amsterdam, The Netherlands
- Brain Tumor Center Amsterdam, Amsterdam, The Netherlands
- Department of Neurology, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
| | - Harm-Jan Bogaard
- Department of Pulmonary Medicine, Amsterdam UMC Location Vrije Universiteit Amsterdam, De Boelelaan 1117, Amsterdam, The Netherlands
| | | | - Myron G Best
- Department of Neurosurgery, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands
- Cancer Center Amsterdam, Amsterdam, The Netherlands
- Brain Tumor Center Amsterdam, Amsterdam, The Netherlands
| | - Thomas Wurdinger
- Department of Neurosurgery, Cancer Center Amsterdam, Amsterdam UMC, VU University Medical Center, De Boelelaan 1117, 1081 HV, Amsterdam, The Netherlands.
- Cancer Center Amsterdam, Amsterdam, The Netherlands.
- Brain Tumor Center Amsterdam, Amsterdam, The Netherlands.
| |
Collapse
|
6
|
Behr CM, Oude Wolcherink MJ, IJzerman MJ, Vliegenthart R, Koffijberg H. Population-Based Screening Using Low-Dose Chest Computed Tomography: A Systematic Review of Health Economic Evaluations. PHARMACOECONOMICS 2023; 41:395-411. [PMID: 36670332 PMCID: PMC10020316 DOI: 10.1007/s40273-022-01238-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Accepted: 12/27/2022] [Indexed: 05/10/2023]
Abstract
BACKGROUND Chest low-dose computed tomography (LDCT) is a promising technology for population-based screening because it is non-invasive, relatively inexpensive, associated with low radiation and highly sensitive to lung cancer. To improve the cost-effectiveness of lung cancer screening, simultaneous screening for other diseases could be considered. This systematic review was conducted to analyse studies that published evidence on the cost-effectiveness of chest LDCT screening programs for different diseases. METHODS Scopus and PubMed were searched for English publications (1 January 2011-22 July 2022) using search terms related to screening, computed tomography and cost-effectiveness. An additional search specifically searched for the cost-effectiveness of screening for lung cancer, chronic obstructive pulmonary disease or cardiovascular disease. Included publications should present a full health economic evaluation of population screening with chest LDCT. The extracted data included the disease screened for, model type, country context of screening, inclusion of comorbidities or incidental findings, incremental costs, incremental effects and the resulting cost-effectiveness ratio amongst others. Reporting quality was assessed using the 2022 Consolidated Health Economic Evaluation Reporting Standards (CHEERS) checklist. RESULTS The search yielded 1799 unique papers, of which 43 were included. Most papers focused on lung cancer screening (n = 40), and three were on coronary calcium scoring. Microsimulation was the most commonly applied modelling type (n = 16), followed by life table analysis (n = 10) and Markov cohort models (n = 10). Studies reflected the healthcare context of the US (n = 15), Canada (n = 4), the UK (n = 3) and 13 other countries. The reported incremental cost-effectiveness ratio ranged from US$10,000 to US$90,000/quality-adjusted life year (QALY) for lung cancer screening compared to no screening and was US$15,900/QALY-US$45,300/QALY for coronary calcium scoring compared to no screening. DISCUSSION Almost all health economic evaluations of LDCT screening focused on lung cancer. Literature regarding the health economic benefits of simultaneous LDCT screening for multiple diseases is absent. Most studies suggest LDCT screening is cost-effective for current and former smokers aged 55-74 with a minimum of 30 pack-years of smoking history. Consequently, more evidence on LDCT is needed to support further cost-effectiveness analyses. Preferably evidence on simultaneous screening for multiple diseases is needed, but alternatively, on single-disease screening. REGISTRATION OF SYSTEMATIC REVIEW Prospective Register of Ongoing Systematic Reviews registration CRD42021290228 can be accessed https://www.crd.york.ac.uk/prospero/display_record.php?RecordID=290228 .
Collapse
Affiliation(s)
- Carina M Behr
- Health Technology and Services Research, University of Twente, Enschede, The Netherlands
| | | | - Maarten J IJzerman
- Health Technology and Services Research, University of Twente, Enschede, The Netherlands
- Cancer Health Services Research, Centre for Health Policy, Melbourne School of Population and Global Health, University of Melbourne, Melbourne, Australia
- Erasmus School of Health Policy and Managament, Erasmus University Rotterdam, Rotterdam, The Netherlands
| | - Rozemarijn Vliegenthart
- Department of Radiology, University Medical Centre Groningen, University of Groningen, Groningen, The Netherlands
| | - Hendrik Koffijberg
- Health Technology and Services Research, University of Twente, Enschede, The Netherlands.
| |
Collapse
|
7
|
Boudewijns EA, Otten TM, Gobianidze M, Ramaekers BL, van Schayck OCP, Joore MA. Headroom Analysis for Early Economic Evaluation: A Systematic Review. APPLIED HEALTH ECONOMICS AND HEALTH POLICY 2023; 21:195-204. [PMID: 36575333 DOI: 10.1007/s40258-022-00774-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 11/14/2022] [Indexed: 06/17/2023]
Abstract
OBJECTIVES The headroom analysis is an early economic evaluation that quantifies the highest price at which an intervention may still be cost effective. Currently, there is no comprehensive review on how it is applied. This study investigated the application of the headroom analysis, specifically (1) how the headroom analysis is framed (2) the analytical approach and sources of evidence used, and (3) how expert judgement is used and reported. METHODS A systematic search was conducted in PubMed, Embase, Web of Science, EconLit, and Google Scholar on 28 April 2022. Studies were eligible if they reported an application of the headroom analysis. Data were presented in tabular form and summarised descriptively. RESULTS We identified 42 relevant papers. The headroom analysis was applied to medicines (29%), diagnostic or screening tests (29%), procedures, programmes and systems (21%), medical devices (19%), and a combined test and device (2%). All studies used model-based analyses, with 40% using simple models and 60% using more comprehensive models. Thirty-three percent of the studies assumed perfect effectiveness of the health technology, while 67% adopted realistic assumptions. Ten percent of the studies calculated an effectiveness-seeking headroom instead of a cost-seeking headroom. Expert judgement was used in 71% of the studies; 23 studies (55%) used expert opinion, 6 studies (14%) used expert elicitation, and 1 study (2%) used both. CONCLUSIONS Because the application of the headroom analysis varies considerably, we recommend its appropriate use and clear reporting of analytical approaches, level of evidence available, and the use of expert judgement.
Collapse
Affiliation(s)
- Esther A Boudewijns
- Department of Family Medicine, Care and Public Health Research Institute (CAPHRI), Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands.
| | - Thomas M Otten
- Department of Clinical Epidemiology and Medical Technology Assessment (KEMTA), Maastricht University Medical Centre MUMC+/Care and Public Health Research Institute (CAPHRI), Maastricht University, Maastricht, The Netherlands
| | - Mariam Gobianidze
- Department of Family Medicine, Care and Public Health Research Institute (CAPHRI), Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
| | - Bram L Ramaekers
- Department of Clinical Epidemiology and Medical Technology Assessment (KEMTA), Maastricht University Medical Centre MUMC+/Care and Public Health Research Institute (CAPHRI), Maastricht University, Maastricht, The Netherlands
| | - Onno C P van Schayck
- Department of Family Medicine, Care and Public Health Research Institute (CAPHRI), Maastricht University, P.O. Box 616, 6200 MD, Maastricht, The Netherlands
| | - Manuela A Joore
- Department of Clinical Epidemiology and Medical Technology Assessment (KEMTA), Maastricht University Medical Centre MUMC+/Care and Public Health Research Institute (CAPHRI), Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
8
|
Adams SJ, Stone E, Baldwin DR, Vliegenthart R, Lee P, Fintelmann FJ. Lung cancer screening. Lancet 2023; 401:390-408. [PMID: 36563698 DOI: 10.1016/s0140-6736(22)01694-4] [Citation(s) in RCA: 112] [Impact Index Per Article: 112.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Revised: 07/26/2022] [Accepted: 08/25/2022] [Indexed: 12/24/2022]
Abstract
Randomised controlled trials, including the National Lung Screening Trial (NLST) and the NELSON trial, have shown reduced mortality with lung cancer screening with low-dose CT compared with chest radiography or no screening. Although research has provided clarity on key issues of lung cancer screening, uncertainty remains about aspects that might be critical to optimise clinical effectiveness and cost-effectiveness. This Review brings together current evidence on lung cancer screening, including an overview of clinical trials, considerations regarding the identification of individuals who benefit from lung cancer screening, management of screen-detected findings, smoking cessation interventions, cost-effectiveness, the role of artificial intelligence and biomarkers, and current challenges, solutions, and opportunities surrounding the implementation of lung cancer screening programmes from an international perspective. Further research into risk models for patient selection, personalised screening intervals, novel biomarkers, integrated cardiovascular disease and chronic obstructive pulmonary disease assessments, smoking cessation interventions, and artificial intelligence for lung nodule detection and risk stratification are key opportunities to increase the efficiency of lung cancer screening and ensure equity of access.
Collapse
Affiliation(s)
- Scott J Adams
- Department of Radiology, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA.
| | - Emily Stone
- Faculty of Medicine, University of New South Wales and Department of Lung Transplantation and Thoracic Medicine, St Vincent's Hospital, Sydney, NSW, Australia
| | - David R Baldwin
- Respiratory Medicine Unit, David Evans Research Centre, Nottingham University Hospitals NHS Trust, Nottingham, UK
| | | | - Pyng Lee
- Division of Respiratory and Critical Care Medicine, National University Hospital and National University of Singapore, Singapore
| | - Florian J Fintelmann
- Department of Radiology, Massachusetts General Hospital, Boston, MA, USA; Harvard Medical School, Boston, MA, USA
| |
Collapse
|
9
|
Søgaard R, Diederichsen ACP, Rasmussen LM, Lambrechtsen J, Steffensen FH, Frost L, Egstrup K, Urbonaviciene G, Busk M, Lindholt JS. Cost effectiveness of population screening versus no screening for cardiovascular disease: the Danish Cardiovascular Screening trial (DANCAVAS). Eur Heart J 2022; 43:4392-4402. [PMID: 36029019 DOI: 10.1093/eurheartj/ehac488] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 08/08/2022] [Accepted: 08/25/2022] [Indexed: 11/14/2022] Open
Affiliation(s)
- Rikke Søgaard
- Elite Research Centre of Individualized Medicine in Arterial Disease (CIMA), Institute of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Axel Cosmus Pyndt Diederichsen
- Department of Cardiology, Elite Research Centre of Individualized Medicine in Arterial Disease (CIMA), Odense University Hospital, Odense, Denmark
| | - Lars M Rasmussen
- Department of Clinical Biochemistry and Pharmacology, Elite Research Centre of Individualized Medicine in Arterial Disease (CIMA), Odense University Hospital, Odense, Denmark
| | - Jess Lambrechtsen
- Department of Cardiology, Odense University Hospital, Svendborg, Denmark
| | | | - Lars Frost
- Department of Cardiology, Diagnostic Centre, Regional Hospital Silkeborg, Silkeborg, Denmark
| | - Kenneth Egstrup
- Department of Cardiology, Odense University Hospital, Svendborg, Denmark
| | - Grazina Urbonaviciene
- Department of Cardiology, Diagnostic Centre, Regional Hospital Silkeborg, Silkeborg, Denmark
| | - Martin Busk
- Department of Cardiology, Lillebaelt Hospital, Vejle, Denmark
| | - Jes S Lindholt
- Department of Cardiothoracic and Vascular Surgery, Elite Research Centre of Individualized Medicine in Arterial Disease (CIMA), Odense University Hospital, Odense, Denmark
| |
Collapse
|