1
|
Corrado D, Thiene G, Bauce B, Calore C, Cipriani A, De Lazzari M, Migliore F, Perazzolo Marra M, Pilichou K, Rigato I, Rizzo S, Zorzi A, Basso C. The "Padua classification" of cardiomyopathies: Combining pathobiological basis and morpho-functional remodeling. Int J Cardiol 2025; 418:132571. [PMID: 39306295 DOI: 10.1016/j.ijcard.2024.132571] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2024] [Revised: 09/12/2024] [Accepted: 09/16/2024] [Indexed: 10/19/2024]
Abstract
Over the last 20 years, the scientific progresses in molecular biology and genetics in combination with the increasing use in the clinical setting of contrast-enhanced cardiac magnetic resonance (CMR) for morpho-functional imaging and structural myocardial tissue characterization have provided important new insights into our understanding of the distinctive aspects of cardiomyopathy, regarding both the genetic and biologic background and the clinical phenotypic features. This has led to the need of an appropriate revision and upgrading of current nosographic framework and pathobiological categorization of heart muscle disorders. This article proposes a new definition and classification of cardiomyopathies that rely on the combination of the distinctive pathobiological basis (genetics, molecular biology and pathology) and the clinical phenotypic pattern (morpho-functional and structural features), leading to the proposal of three different disease categories, each of either genetic or non-genetic etiology and characterized by a combined designation based on both "anatomic" and "functional" features, i.e., hypertrophic/restrictive (H/RC), dilated/hypokinetic (D/HC) and scarring/arrhythmogenic cardiomyopathy (S/AC). The clinical application of the newly proposed classification approach in the real-world practice appears crucial to design a targeted clinical management and evaluation of outcomes of affected patients. Although current treatment of cardiomyopathies is largely palliative and based on drugs, catheter ablation, device or surgical interventions aimed to prevent and manage heart failure and malignant arrhythmias, better knowledge of basic mechanisms involved in the onset and progression of pathobiologically different heart muscle diseases may allow to the development of disease-specific curative therapy.
Collapse
Affiliation(s)
- Domenico Corrado
- Department of Cardio-Thoraco-Vascular Sciences and Public Health, University of Padua, Italy.
| | - Gaetano Thiene
- Department of Cardio-Thoraco-Vascular Sciences and Public Health, University of Padua, Italy
| | - Barbara Bauce
- Department of Cardio-Thoraco-Vascular Sciences and Public Health, University of Padua, Italy
| | - Chiara Calore
- Department of Cardio-Thoraco-Vascular Sciences and Public Health, University of Padua, Italy
| | - Alberto Cipriani
- Department of Cardio-Thoraco-Vascular Sciences and Public Health, University of Padua, Italy
| | - Manuel De Lazzari
- Department of Cardio-Thoraco-Vascular Sciences and Public Health, University of Padua, Italy
| | - Federico Migliore
- Department of Cardio-Thoraco-Vascular Sciences and Public Health, University of Padua, Italy
| | - Martina Perazzolo Marra
- Department of Cardio-Thoraco-Vascular Sciences and Public Health, University of Padua, Italy
| | - Kalliopi Pilichou
- Department of Cardio-Thoraco-Vascular Sciences and Public Health, University of Padua, Italy
| | - Ilaria Rigato
- Department of Cardio-Thoraco-Vascular Sciences and Public Health, University of Padua, Italy
| | - Stefania Rizzo
- Department of Cardio-Thoraco-Vascular Sciences and Public Health, University of Padua, Italy
| | - Alessandro Zorzi
- Department of Cardio-Thoraco-Vascular Sciences and Public Health, University of Padua, Italy
| | - Cristina Basso
- Department of Cardio-Thoraco-Vascular Sciences and Public Health, University of Padua, Italy
| |
Collapse
|
2
|
Penna VR, Amrute JM, Engel M, Shiel EA, Farra W, Cannon EN, Leu-Turner C, Ma P, Villanueva A, Shin H, Parvathaneni A, Jager J, Bueno-Beti C, Asimaki A, Lavine KJ, Saffitz JE, Chelko SP. Interleukin-1β Drives Disease Progression in Arrhythmogenic Cardiomyopathy. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.12.11.628020. [PMID: 39763850 PMCID: PMC11702578 DOI: 10.1101/2024.12.11.628020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/14/2025]
Abstract
Arrhythmogenic cardiomyopathy (ACM) is a genetic form of heart failure that affects 1 in 5000 people globally and is caused by mutations in cardiac desmosomal proteins including PKP2, DSP, and DSG2. Individuals with ACM suffer from ventricular arrhythmias, sudden cardiac death, and heart failure. There are few effective treatments and heart transplantation remains the best option for many affected individuals. Here we performed single nucleus RNA sequencing (snRNAseq) and spatial transcriptomics on myocardial samples from patients with ACM and control donors. We identified disease-associated spatial niches characterized by co-existence of fibrotic and inflammatory cell types and failing cardiac myocytes. The inflammatory-fibrotic niche co-localized to areas of cardiac myocyte loss and was comprised of FAP (fibroblast activation protein) and POSTN (periostin) expressing fibroblasts and macrophages expressing NLRP3 (NLR family pyrin domain containing 3) and NFκB activated genes. Using homozygous Desmoglein-2 mutant (Dsg2 mut/mut ) mice, we identified analogous populations of Postn expressing fibroblasts and inflammatory macrophage populations that co-localized within diseased areas. Detailed single cell RNA sequencing analysis of inflammatory macrophage subsets that were increased in ACM samples revealed high levels of interleukin-1β (Il1b) expression. To delineate the possible benefit of targeting IL-1β in ACM, we treated Dsg2 mut/mut mice with an anti-IL-1β neutralizing antibody and observed attenuated fibrosis, reduced levels of inflammatory cytokines and chemokines, preserved cardiac function, and diminished conduction slowing and automaticity, key mechanisms of arrhythmogenesis. These results suggest that currently approved therapeutics that target IL-1β or IL-1 signaling may improve outcomes for patients with ACM.
Collapse
Affiliation(s)
- Vinay R. Penna
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University in St. Louis School of Medicine; St. Louis, MO, USA
| | - Junedh M. Amrute
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University in St. Louis School of Medicine; St. Louis, MO, USA
| | - Morgan Engel
- Department of Biomedical Sciences, Florida State University College of Medicine; Tallahassee, FL, USA
| | - Emily A. Shiel
- Department of Biomedical Sciences, Florida State University College of Medicine; Tallahassee, FL, USA
| | - Waleed Farra
- Department of Biomedical Sciences, Florida State University College of Medicine; Tallahassee, FL, USA
| | - Elisa N. Cannon
- Department of Biomedical Sciences, Florida State University College of Medicine; Tallahassee, FL, USA
| | - Colleen Leu-Turner
- Department of Biomedical Sciences, Florida State University College of Medicine; Tallahassee, FL, USA
- Creighton University, School of Medicine, Emergency Medicine, Phoenix, AZ, USA
| | - Pan Ma
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University in St. Louis School of Medicine; St. Louis, MO, USA
| | - Ana Villanueva
- Department of Pathology and Immunology, Washington University in St. Louis School of Medicine; St. Louis, MO, USA
| | - Haewon Shin
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University in St. Louis School of Medicine; St. Louis, MO, USA
| | - Alekhya Parvathaneni
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University in St. Louis School of Medicine; St. Louis, MO, USA
| | - Joanna Jager
- Cardiovascular and Genomics Research Institute, School of Health & Medical Sciences, City St George’s, University of London
| | - Carlos Bueno-Beti
- Cardiovascular and Genomics Research Institute, School of Health & Medical Sciences, City St George’s, University of London
| | - Angeliki Asimaki
- Cardiovascular and Genomics Research Institute, School of Health & Medical Sciences, City St George’s, University of London
| | - Kory J. Lavine
- Center for Cardiovascular Research, Division of Cardiology, Department of Medicine, Washington University in St. Louis School of Medicine; St. Louis, MO, USA
- Department of Pathology and Immunology, Washington University in St. Louis School of Medicine; St. Louis, MO, USA
- Department of Developmental Biology, Washington University in St. Louis School of Medicine; St. Louis, MO, USA
| | - Jeffrey E. Saffitz
- Department of Pathology, Beth Israel Deaconess Medical Center and Harvard Medical School; Boston, MA, USA
| | - Stephen P. Chelko
- Department of Biomedical Sciences, Florida State University College of Medicine; Tallahassee, FL, USA
| |
Collapse
|
3
|
Mo L, Sia C, Lin W, Zheng X, Peng K. Describing and Mapping the Research Trend of Scientific Publications on Arrhythmogenic Right Ventricular Cardiomyopathy Across Four Decades: A Bibliometric Analysis. Clin Cardiol 2024; 47:e70051. [PMID: 39600076 PMCID: PMC11599429 DOI: 10.1002/clc.70051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Revised: 11/06/2024] [Accepted: 11/15/2024] [Indexed: 11/29/2024] Open
Abstract
OBJECTIVES To perform a bibliometric analysis of publications of arrhythmogenic right ventricular cardiomyopathy (ARVC) from 1981 to 2023 to summarize the current publications and explore frontiers on this topic. METHODS We integrated the scientific publications on ARVC in the Web of Science (WOS) Core Collection database from January 1981 to September 2023, using the retrieval strategy of medical subject headings combined with keywords. We focused on articles and reviews that were published in English. Relevant information such as the journal and publisher, the title, authors, organizations, abstract, keywords, published date, and number of citations, were collected. Bibliometric analysis was performed and visualized by the R software and Microsoft Excel. RESULTS The results revealed a total of 4792 records related to ARVC from the WOS database, and 2992 original articles or reviews which were selected for bibliometric analysis. There were 79 countries and regions, 3724 research institutions, and 12 157 scholars who have published in this topic. The number of scientific publications of ARVC increased year-by-year, with an annual growth rate of 12.12%. We also investigated the top 10 contributing countries, organizations with affiliations, most influential researchers, highest-cited articles, and highest-frequency keywords. In addition, the most active areas of research on ARVC included that of fatal complications, molecular pathological mechanisms, diagnosis, therapy, and prognosis respectively according to the keywords trend analysis. CONCLUSIONS Our study reports the publication landscape of ARVC during the past four decades based on bibliometric analysis. This study provides a deeper understanding of the published literature on ARVC.
Collapse
Affiliation(s)
- Leitong Mo
- Department of Coronary Care UnitMaoming People's HospitalMaomingGuangdongChina
| | - Ching‐Hui Sia
- Department of CardiologyNational University Heart Centre SingaporeSingaporeSingapore
- Department of MedicineYong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
| | - Weiqin Lin
- Department of CardiologyNational University Heart Centre SingaporeSingaporeSingapore
- Department of MedicineYong Loo Lin School of MedicineNational University of SingaporeSingaporeSingapore
| | - Xifeng Zheng
- Department of Internal MedicineHospital of Guangdong University of TechnologyGuangzhouGuangdongChina
| | - Kaiyi Peng
- Department of Critical Care MedicineMaoming People's HospitalMaomingGuangdongChina
| |
Collapse
|
4
|
Graziano F, Zorzi A, Cipriani A, Bauce B, Rigato I, Perazzolo Marra M, Vago H, Merkely B, Pilichou K, Basso C, Corrado D. Contemporary diagnostic approach to arrhythmogenic cardiomyopathy: The three-step work-up. Trends Cardiovasc Med 2024:S1050-1738(24)00089-6. [PMID: 39341581 DOI: 10.1016/j.tcm.2024.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/22/2024] [Revised: 09/11/2024] [Accepted: 09/16/2024] [Indexed: 10/01/2024]
Abstract
Arrhythmogenic Cardiomyopathy (ACM) is a cardiac disorder characterized by non-ischemic myocardial scarring, which may lead to ventricular electrical instability and systolic dysfunction. Diagnosing ACM is challenging as there is no single gold-standard test and a combination of criteria is required. The first diagnostic criteria were established in 1994 and revised in 2010, focusing primarily on right ventricular involvement. However, in 2019, an international expert report identified limitations of previous diagnostic scoring and developed the 2020 Padua criteria with also included criteria for diagnosis of left ventricular variants and introduced cardiac magnetic resonance tissue characterization findings for detection of left ventricular myocardial scar. These criteria were further refined and published in 2023 as the European Task Force criteria, gaining international recognition. This review provides an overview of the 20 years of progresses on the disease diagnostic from the original 1994 criteria to the most recent 2023 European criteria, highlighting the evolution into our understanding of the pathobiology and morpho-functional features of the disease.
Collapse
Affiliation(s)
- Francesca Graziano
- Department of Cardiac, Thoracic and Vascular Sciences and Public Health, University of Padova, Italy; Department of Sports Medicine, Semmelweis University, Budapest, Hungary; Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Alessandro Zorzi
- Department of Cardiac, Thoracic and Vascular Sciences and Public Health, University of Padova, Italy
| | - Alberto Cipriani
- Department of Cardiac, Thoracic and Vascular Sciences and Public Health, University of Padova, Italy
| | - Barbara Bauce
- Department of Cardiac, Thoracic and Vascular Sciences and Public Health, University of Padova, Italy
| | - Ilaria Rigato
- Department of Cardiac, Thoracic and Vascular Sciences and Public Health, University of Padova, Italy
| | - Martina Perazzolo Marra
- Department of Cardiac, Thoracic and Vascular Sciences and Public Health, University of Padova, Italy
| | - Hajnalka Vago
- Department of Sports Medicine, Semmelweis University, Budapest, Hungary; Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Bela Merkely
- Department of Sports Medicine, Semmelweis University, Budapest, Hungary; Heart and Vascular Center, Semmelweis University, Budapest, Hungary
| | - Kalliopi Pilichou
- Department of Cardiac, Thoracic and Vascular Sciences and Public Health, University of Padova, Italy
| | - Cristina Basso
- Department of Cardiac, Thoracic and Vascular Sciences and Public Health, University of Padova, Italy
| | - Domenico Corrado
- Department of Cardiac, Thoracic and Vascular Sciences and Public Health, University of Padova, Italy.
| |
Collapse
|
5
|
Graziano F, Zorzi A, Ungaro S, Bauce B, Rigato I, Cipriani A, Perazzolo Marra M, Pilichou K, Basso C, Corrado D. The 2023 European Task Force Criteria for Diagnosis of Arrhythmogenic Cardiomyopathy: Historical Background and Review of Main Changes. Rev Cardiovasc Med 2024; 25:348. [PMID: 39355594 PMCID: PMC11440389 DOI: 10.31083/j.rcm2509348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2024] [Revised: 06/24/2024] [Accepted: 06/28/2024] [Indexed: 10/03/2024] Open
Abstract
Arrhythmogenic cardiomyopathy (ACM) is a cardiac disease featured by non-ischemic myocardial scarring linked to ventricular electrical instability. As there is no single gold-standard test, diagnosing ACM remains challenging and a combination of specific criteria is needed. The diagnostic criteria were first defined and widespread in 1994 and then revised in 2010, approaching and focusing primarily on right ventricular involvement without considering any kind of left ventricular variant or phenotype. Years later, in 2020, with the purpose of overcoming previous limitations, the Padua Criteria were introduced by an international expert report. The main novel elements were the introduction of specific criteria for left ventricular variants as well as the use of cardiac magnetic resonance for tissue characterization and scar detection. The last modifications and refinement of these criteria were published at the end of 2023 as the European Task Force criteria, by a "head-quarter" of ACM international experts, proving the emerging relevance of this condition besides its difficult diagnosis. In this review, emphasizing the progress in understanding the aetiology of the cardiomyopathy, an analysis of the new criteria is presented. The introduction of the term "scarring/arrhythmogenic cardiomyopathy" sets an important milestone in this field, underlying how non-ischemic myocardial scarring-typical of ACM-and arrhythmic susceptibility could be the main pillars of numerous different phenotypic variants regardless of etiology.
Collapse
Affiliation(s)
- Francesca Graziano
- Department of Cardiac, Thoracic and Vascular Sciences and Public Health, University of Padova, 35128 Padova, Italy
- Department of Sports Medicine, Semmelweis University, 1085 Budapest, Hungary
| | - Alessandro Zorzi
- Department of Cardiac, Thoracic and Vascular Sciences and Public Health, University of Padova, 35128 Padova, Italy
| | - Simone Ungaro
- Department of Cardiac, Thoracic and Vascular Sciences and Public Health, University of Padova, 35128 Padova, Italy
| | - Barbara Bauce
- Department of Cardiac, Thoracic and Vascular Sciences and Public Health, University of Padova, 35128 Padova, Italy
| | - Ilaria Rigato
- Department of Cardiac, Thoracic and Vascular Sciences and Public Health, University of Padova, 35128 Padova, Italy
| | - Alberto Cipriani
- Department of Cardiac, Thoracic and Vascular Sciences and Public Health, University of Padova, 35128 Padova, Italy
| | - Martina Perazzolo Marra
- Department of Cardiac, Thoracic and Vascular Sciences and Public Health, University of Padova, 35128 Padova, Italy
| | - Kalliopi Pilichou
- Department of Cardiac, Thoracic and Vascular Sciences and Public Health, University of Padova, 35128 Padova, Italy
| | - Cristina Basso
- Department of Cardiac, Thoracic and Vascular Sciences and Public Health, University of Padova, 35128 Padova, Italy
| | - Domenico Corrado
- Department of Cardiac, Thoracic and Vascular Sciences and Public Health, University of Padova, 35128 Padova, Italy
| |
Collapse
|
6
|
Melillo F, Fabiani D, Santoro A, Oro P, Frecentese F, Salemme L, Tesorio T, Agricola E, De Bonis M, Lorusso R. Multimodality Imaging for Right Ventricular Function Assessment in Severe Tricuspid Regurgitation. J Clin Med 2024; 13:5076. [PMID: 39274289 PMCID: PMC11395915 DOI: 10.3390/jcm13175076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2024] [Revised: 08/20/2024] [Accepted: 08/21/2024] [Indexed: 09/16/2024] Open
Abstract
Severe tricuspid regurgitation (TR) is a pathological condition associated with worse cardiovascular outcomes. In the vicious cycle of right ventricular compensation and maladaptation to TR, the development of right ventricle (RV) dysfunction has significant prognostic implications, especially in patients undergoing surgical or percutaneous treatments. Indeed, RV dysfunction is associated with increased operative morbidity and mortality in both surgical and percutaneously treated patients. In this context, the identification of clinical or subtle right ventricle dysfunction plays a critical role inpatient selection and timing of surgical or percutaneous tricuspid valve intervention. However, in the presence of severe TR, evaluation of RV function is challenging, given the increase in preload that may lead to an overestimation of systolic function for the Frank-Starling law, reduced reliability of pulmonary artery pressure estimation, the sensitivity of RV to afterload that may result in afterload mismatch after treatment. Consequently, conventional echocardiographic indices have some limitations, and the use of speckle tracking for right ventricular free wall longitudinal strain (RV-FWLS) analysis and the use of 3D echocardiography for RV volumes and ejection fraction estimation are showing promising data. Cardiac magnetic resonance (CMR) represents the gold standards for volumes and ejection fraction evaluation and may add further prognostic information. Finally, cardiac computer tomography (CCT) provides measurements of RV and annulus dimensions that are particularly useful in the transcatheter field. Identification of subtle RV dysfunction may need, therefore, more than one imaging technique, which will lead to tip the balance between medical therapy and early intervention towards the latter before disease progression. Therefore, the aim of this review is to describe the main imaging techniques, providing a comprehensive assessment of their role in RV function evaluation in the presence of severe TR.
Collapse
Affiliation(s)
- Francesco Melillo
- Heart and Vascular Centre, Cardiovascular Research Institute, University of Maastricht, 6221 Maastricht, The Netherlands
- Echo Lab, Clinica Montevergine GVM Care and Research, 83013 Mercogliano, Italy
| | - Dario Fabiani
- Echo Lab, Clinica Montevergine GVM Care and Research, 83013 Mercogliano, Italy
| | - Alessandro Santoro
- Intensive Care Unit, Clinica Montevergine GVM Care and Research, 83013 Mercogliano, Italy
| | - Pietro Oro
- Echo Lab, Clinica Montevergine GVM Care and Research, 83013 Mercogliano, Italy
| | | | - Luigi Salemme
- Interventional Cardiology Unit, Clinica Montevergine GVM Care and Research, 83013 Mercogliano, Italy
| | - Tullio Tesorio
- Interventional Cardiology Unit, Clinica Montevergine GVM Care and Research, 83013 Mercogliano, Italy
| | | | - Michele De Bonis
- Heart Valve Centre, IRCCS Ospdeale San Raffaele, 20132 Milan, Italy
| | - Roberto Lorusso
- Heart and Vascular Centre, Cardiovascular Research Institute, University of Maastricht, 6221 Maastricht, The Netherlands
| |
Collapse
|
7
|
Chen BH, Jiang WY, Zheng JY, Dai YS, Shi RY, Wu R, An DA, Tang LL, Xu JR, Zhao L, Wu LM. Prognostic value of right ventricular trabecular complexity in patients with arrhythmogenic cardiomyopathy. Eur Radiol 2024; 34:4883-4896. [PMID: 38189980 DOI: 10.1007/s00330-023-10561-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2023] [Revised: 12/07/2023] [Accepted: 12/14/2023] [Indexed: 01/09/2024]
Abstract
OBJECTIVES The present study aimed to investigate the incremental prognostic value of the right ventricular fractal dimension (FD), a novel marker of myocardial trabecular complexity by cardiac magnetic resonance (CMR) in patients with arrhythmogenic cardiomyopathy (ACM). METHODS Consecutive patients with ACM undergoing CMR were followed up for major cardiac events, including sudden cardiac death, aborted cardiac arrest, and appropriate implantable cardioverter defibrillator intervention. Prognosis prediction was compared by Cox regression analysis. We established a multivariable model supplemented with RV FD and evaluated its discrimination by Harrell's C-statistic. We compared the category-free, continuous net reclassification improvement (cNRI) and integrated discrimination index (IDI) before and after the addition of FD. RESULTS A total of 105 patients were prospectively included from three centers and followed up for a median of 60 (48, 66) months; experienced 36 major cardiac events were recorded. Trabecular FD displayed a strong unadjusted association with major cardiac events (p < 0.05). In the multivariable Cox regression analysis, RV maximal apical FD maintained an independent association with major cardiac events (hazard ratio, 1.31 (1.11-1.55), p < 0.002). The Hosmer-Lemeshow goodness of fit test displayed good fit (X2 = 0.68, p = 0.99). Diagnostic performance was significantly improved after the addition of RV maximal apical FD to the multivariable baseline model, and the continuous net reclassification improvement increased 21% (p = 0.001), and the integrated discrimination index improved 16% (p = 0.045). CONCLUSIONS In patients with ACM, CMR-assessed myocardial trabecular complexity was independently correlated with adverse cardiovascular events and provided incremental prognostic value. CLINICAL RELEVANCE STATEMENT The application of FD values for assessing RV myocardial trabeculae may become an accessible and promising parameter in monitoring and early diagnosis of risk factors for adverse cardiovascular events in patients with ACM. KEY POINTS • Ventricular trabecular morphology, a novel quantitative marker by CMR, has been explored for the first time to determine the severity of ACM. • Patients with higher maximal apical fractal dimension of RV displayed significantly higher cumulative incidence of major cardiac events. • RV maximal apical FD was independently associated with major cardiac events and provided incremental prognostic value in patients with ACM.
Collapse
Affiliation(s)
- Bing-Hua Chen
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, No. 160 Pujian Road, Shanghai, 200127, People's Republic of China
| | - Wen-Yi Jiang
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, No. 160 Pujian Road, Shanghai, 200127, People's Republic of China
| | - Jin-Yu Zheng
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, No. 160 Pujian Road, Shanghai, 200127, People's Republic of China
| | - Yi-Si Dai
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, No. 160 Pujian Road, Shanghai, 200127, People's Republic of China
| | - Ruo-Yang Shi
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, No. 160 Pujian Road, Shanghai, 200127, People's Republic of China
| | - Rui Wu
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, No. 160 Pujian Road, Shanghai, 200127, People's Republic of China
| | - Dong-Aolei An
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, No. 160 Pujian Road, Shanghai, 200127, People's Republic of China
| | - Lang-Lang Tang
- Department of Radiology, Longyan First Hospital, Affiliated to Fujian Medical University, Longyan, 364000, People's Republic of China
| | - Jian-Rong Xu
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, No. 160 Pujian Road, Shanghai, 200127, People's Republic of China
| | - Lei Zhao
- Department of Radiology, Beijing Anzhen Hospital, Capital Medical University, 2nd Anzhen Road, Chaoyang District, Beijing, 100029, People's Republic of China.
| | - Lian-Ming Wu
- Department of Radiology, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, No. 160 Pujian Road, Shanghai, 200127, People's Republic of China.
| |
Collapse
|
8
|
Mistrulli R, Ferrera A, Salerno L, Vannini F, Guida L, Corradetti S, Addeo L, Valcher S, Di Gioia G, Spera FR, Tocci G, Barbato E. Cardiomyopathy and Sudden Cardiac Death: Bridging Clinical Practice with Cutting-Edge Research. Biomedicines 2024; 12:1602. [PMID: 39062175 PMCID: PMC11275154 DOI: 10.3390/biomedicines12071602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2024] [Revised: 07/10/2024] [Accepted: 07/16/2024] [Indexed: 07/28/2024] Open
Abstract
Sudden cardiac death (SCD) prevention in cardiomyopathies such as hypertrophic (HCM), dilated (DCM), non-dilated left ventricular (NDLCM), and arrhythmogenic right ventricular cardiomyopathy (ARVC) remains a crucial but complex clinical challenge, especially among younger populations. Accurate risk stratification is hampered by the variability in phenotypic expression and genetic heterogeneity inherent in these conditions. This article explores the multifaceted strategies for preventing SCD across a spectrum of cardiomyopathies and emphasizes the integration of clinical evaluations, genetic insights, and advanced imaging techniques such as cardiac magnetic resonance (CMR) in assessing SCD risks. Advanced imaging, particularly CMR, not only enhances our understanding of myocardial architecture but also serves as a cornerstone for identifying at-risk patients. The integration of new research findings with current practices is essential for advancing patient care and improving survival rates among those at the highest risk of SCD. This review calls for ongoing research to refine risk stratification models and enhance the predictive accuracy of both clinical and imaging techniques in the management of cardiomyopathies.
Collapse
Affiliation(s)
- Raffaella Mistrulli
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, 00189 Rome, Italy; (A.F.); (L.S.); (F.V.); (L.G.); (S.C.); (F.R.S.); (G.T.); (E.B.)
- OLV Hospital Aalst, 9300 Aalst, Belgium; (L.A.); (S.V.)
| | - Armando Ferrera
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, 00189 Rome, Italy; (A.F.); (L.S.); (F.V.); (L.G.); (S.C.); (F.R.S.); (G.T.); (E.B.)
| | - Luigi Salerno
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, 00189 Rome, Italy; (A.F.); (L.S.); (F.V.); (L.G.); (S.C.); (F.R.S.); (G.T.); (E.B.)
| | - Federico Vannini
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, 00189 Rome, Italy; (A.F.); (L.S.); (F.V.); (L.G.); (S.C.); (F.R.S.); (G.T.); (E.B.)
| | - Leonardo Guida
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, 00189 Rome, Italy; (A.F.); (L.S.); (F.V.); (L.G.); (S.C.); (F.R.S.); (G.T.); (E.B.)
| | - Sara Corradetti
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, 00189 Rome, Italy; (A.F.); (L.S.); (F.V.); (L.G.); (S.C.); (F.R.S.); (G.T.); (E.B.)
- OLV Hospital Aalst, 9300 Aalst, Belgium; (L.A.); (S.V.)
| | - Lucio Addeo
- OLV Hospital Aalst, 9300 Aalst, Belgium; (L.A.); (S.V.)
- Department of Advanced Biomedical Sciences, University of Naples Federico II, Corso Umberto I, 40, 80138 Naples, Italy
| | - Stefano Valcher
- OLV Hospital Aalst, 9300 Aalst, Belgium; (L.A.); (S.V.)
- Cardiovascular Department, Humanitas University, Via Alessandro Manzoni, 56, 20089 Rozzano, Italy
| | - Giuseppe Di Gioia
- Institute of Sports Medicine and Science, National Italian Olympic Committee, Largo Piero Gabrielli, 1, 00197 Rome, Italy;
| | - Francesco Raffaele Spera
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, 00189 Rome, Italy; (A.F.); (L.S.); (F.V.); (L.G.); (S.C.); (F.R.S.); (G.T.); (E.B.)
| | - Giuliano Tocci
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, 00189 Rome, Italy; (A.F.); (L.S.); (F.V.); (L.G.); (S.C.); (F.R.S.); (G.T.); (E.B.)
| | - Emanuele Barbato
- Department of Clinical and Molecular Medicine, Sapienza University of Rome, 00189 Rome, Italy; (A.F.); (L.S.); (F.V.); (L.G.); (S.C.); (F.R.S.); (G.T.); (E.B.)
| |
Collapse
|
9
|
Mattesi G, Pergola V, Bariani R, Martini M, Motta R, Perazzolo Marra M, Rigato I, Bauce B. Multimodality imaging in arrhythmogenic cardiomyopathy - From diagnosis to management. Int J Cardiol 2024; 407:132023. [PMID: 38583594 DOI: 10.1016/j.ijcard.2024.132023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 03/03/2024] [Accepted: 04/04/2024] [Indexed: 04/09/2024]
Abstract
Arrhythmogenic Cardiomyopathy (AC), an inherited cardiac disorder characterized by myocardial fibrofatty replacement, carries a significant risk of sudden cardiac death (SCD) due to ventricular arrhythmias. A comprehensive multimodality imaging approach, including echocardiography, cardiac magnetic resonance imaging (CMR), and cardiac computed tomography (CCT), allows for accurate diagnosis, effective risk stratification, vigilant monitoring, and appropriate intervention, leading to improved patient outcomes and the prevention of SCD. Echocardiography is primary tool ventricular morphology and function assessment, CMR provides detailed visualization, CCT is essential in early stages for excluding congenital anomalies and coronary artery disease. Echocardiography is preferred for follow-up, with CMR capturing changes over time. The strategic use of these imaging methods aids in confirming AC, differentiating it from other conditions, tracking its progression, managing complications, and addressing end-stage scenarios.
Collapse
Affiliation(s)
| | | | - Riccardo Bariani
- Department of Cardiac, Thoracic and Vascular Sciences and Public Health, University of Padova, Italy
| | - Marika Martini
- Department of Cardiac, Thoracic and Vascular Sciences and Public Health, University of Padova, Italy
| | | | - Martina Perazzolo Marra
- Department of Cardiac, Thoracic and Vascular Sciences and Public Health, University of Padova, Italy
| | | | - Barbara Bauce
- Department of Cardiac, Thoracic and Vascular Sciences and Public Health, University of Padova, Italy
| |
Collapse
|
10
|
Zathar Z, Shah N, Desai N, Patel PA. Arrhythmogenic Cardiomyopathy: Current Updates and Future Challenges. Rev Cardiovasc Med 2024; 25:208. [PMID: 39076315 PMCID: PMC11270059 DOI: 10.31083/j.rcm2506208] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2024] [Revised: 03/27/2024] [Accepted: 04/23/2024] [Indexed: 07/31/2024] Open
Abstract
Arrhythmogenic cardiomyopathy (ACM) epitomises a genetic anomaly hallmarked by a relentless fibro-fatty transmogrification of cardiac myocytes. Initially typified as a right ventricular-centric disease, contemporary observations elucidate a frequent occurrence of biventricular and left-dominant presentations. The diagnostic labyrinth of ACM emerges from its clinical and imaging properties, often indistinguishable from other cardiomyopathies. Precision in diagnosis, however, is paramount and unlocks the potential for early therapeutic interventions and vital cascade screening for at-risk individuals. Adherence to the criteria established by the 2010 task force remains the cornerstone of ACM diagnosis, demanding a multifaceted assessment incorporating electrophysiological, imaging, genetic, and histological data. Reflecting the evolution of our understanding, these criteria have undergone several revisions to encapsulate the expanding spectrum of ACM phenotypes. This review seeks to crystallise the genetic foundation of ACM, delineate its clinical and radiographic manifestations, and offer an analytical perspective on the current diagnostic criteria. By synthesising these elements, we aim to furnish practitioners with a strategic, evidence-based algorithm to accurately diagnose ACM, thereby optimising patient management and mitigating the intricate challenges of this multifaceted disorder.
Collapse
Affiliation(s)
- Zafraan Zathar
- Department of Cardiology, Worcestershire Acute Hospitals NHS Trust, WR5 1DD Worcester, UK
| | - Nihit Shah
- Department of Cardiology, Royal Wolverhampton NHS Trust, WV10 0QP Wolverhampton, UK
| | - Nimai Desai
- Department of Cardiology, University Hospital Birmingham NHS Trust, B15 2GW Birmingham, UK
| | - Peysh A Patel
- Department of Cardiology, University Hospital Birmingham NHS Trust, B15 2GW Birmingham, UK
| |
Collapse
|
11
|
Forleo C, Carella MC, Basile P, Mandunzio D, Greco G, Napoli G, Carulli E, Dicorato MM, Dentamaro I, Santobuono VE, Memeo R, Latorre MD, Baggiano A, Mushtaq S, Ciccone MM, Pontone G, Guaricci AI. The Role of Magnetic Resonance Imaging in Cardiomyopathies in the Light of New Guidelines: A Focus on Tissue Mapping. J Clin Med 2024; 13:2621. [PMID: 38731153 PMCID: PMC11084160 DOI: 10.3390/jcm13092621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 04/27/2024] [Accepted: 04/28/2024] [Indexed: 05/13/2024] Open
Abstract
Cardiomyopathies (CMPs) are a group of myocardial disorders that are characterized by structural and functional abnormalities of the heart muscle. These abnormalities occur in the absence of coronary artery disease (CAD), hypertension, valvular disease, and congenital heart disease. CMPs are an increasingly important topic in the field of cardiovascular diseases due to the complexity of their diagnosis and management. In 2023, the ESC guidelines on cardiomyopathies were first published, marking significant progress in the field. The growth of techniques such as cardiac magnetic resonance imaging (CMR) and genetics has been fueled by the development of multimodal imaging approaches. For the diagnosis of CMPs, a multimodal imaging approach, including CMR, is recommended. CMR has become the standard for non-invasive analysis of cardiac morphology and myocardial function. This document provides an overview of the role of CMR in CMPs, with a focus on tissue mapping. CMR enables the characterization of myocardial tissues and the assessment of cardiac functions. CMR sequences and techniques, such as late gadolinium enhancement (LGE) and parametric mapping, provide detailed information on tissue composition, fibrosis, edema, and myocardial perfusion. These techniques offer valuable insights for early diagnosis, prognostic evaluation, and therapeutic guidance of CMPs. The use of quantitative CMR markers enables personalized treatment plans, improving overall patient outcomes. This review aims to serve as a guide for the use of these new tools in clinical practice.
Collapse
Affiliation(s)
- Cinzia Forleo
- University Cardiologic Unit, Interdisciplinary Department of Medicine, Polyclinic University Hospital, 70124 Bari, Italy; (C.F.); (M.C.C.); (P.B.); (D.M.); (G.G.); (G.N.); (E.C.); (M.M.D.); (I.D.); (V.E.S.); (R.M.); (M.D.L.); (M.M.C.)
| | - Maria Cristina Carella
- University Cardiologic Unit, Interdisciplinary Department of Medicine, Polyclinic University Hospital, 70124 Bari, Italy; (C.F.); (M.C.C.); (P.B.); (D.M.); (G.G.); (G.N.); (E.C.); (M.M.D.); (I.D.); (V.E.S.); (R.M.); (M.D.L.); (M.M.C.)
| | - Paolo Basile
- University Cardiologic Unit, Interdisciplinary Department of Medicine, Polyclinic University Hospital, 70124 Bari, Italy; (C.F.); (M.C.C.); (P.B.); (D.M.); (G.G.); (G.N.); (E.C.); (M.M.D.); (I.D.); (V.E.S.); (R.M.); (M.D.L.); (M.M.C.)
| | - Donato Mandunzio
- University Cardiologic Unit, Interdisciplinary Department of Medicine, Polyclinic University Hospital, 70124 Bari, Italy; (C.F.); (M.C.C.); (P.B.); (D.M.); (G.G.); (G.N.); (E.C.); (M.M.D.); (I.D.); (V.E.S.); (R.M.); (M.D.L.); (M.M.C.)
| | - Giulia Greco
- University Cardiologic Unit, Interdisciplinary Department of Medicine, Polyclinic University Hospital, 70124 Bari, Italy; (C.F.); (M.C.C.); (P.B.); (D.M.); (G.G.); (G.N.); (E.C.); (M.M.D.); (I.D.); (V.E.S.); (R.M.); (M.D.L.); (M.M.C.)
| | - Gianluigi Napoli
- University Cardiologic Unit, Interdisciplinary Department of Medicine, Polyclinic University Hospital, 70124 Bari, Italy; (C.F.); (M.C.C.); (P.B.); (D.M.); (G.G.); (G.N.); (E.C.); (M.M.D.); (I.D.); (V.E.S.); (R.M.); (M.D.L.); (M.M.C.)
| | - Eugenio Carulli
- University Cardiologic Unit, Interdisciplinary Department of Medicine, Polyclinic University Hospital, 70124 Bari, Italy; (C.F.); (M.C.C.); (P.B.); (D.M.); (G.G.); (G.N.); (E.C.); (M.M.D.); (I.D.); (V.E.S.); (R.M.); (M.D.L.); (M.M.C.)
| | - Marco Maria Dicorato
- University Cardiologic Unit, Interdisciplinary Department of Medicine, Polyclinic University Hospital, 70124 Bari, Italy; (C.F.); (M.C.C.); (P.B.); (D.M.); (G.G.); (G.N.); (E.C.); (M.M.D.); (I.D.); (V.E.S.); (R.M.); (M.D.L.); (M.M.C.)
| | - Ilaria Dentamaro
- University Cardiologic Unit, Interdisciplinary Department of Medicine, Polyclinic University Hospital, 70124 Bari, Italy; (C.F.); (M.C.C.); (P.B.); (D.M.); (G.G.); (G.N.); (E.C.); (M.M.D.); (I.D.); (V.E.S.); (R.M.); (M.D.L.); (M.M.C.)
| | - Vincenzo Ezio Santobuono
- University Cardiologic Unit, Interdisciplinary Department of Medicine, Polyclinic University Hospital, 70124 Bari, Italy; (C.F.); (M.C.C.); (P.B.); (D.M.); (G.G.); (G.N.); (E.C.); (M.M.D.); (I.D.); (V.E.S.); (R.M.); (M.D.L.); (M.M.C.)
| | - Riccardo Memeo
- University Cardiologic Unit, Interdisciplinary Department of Medicine, Polyclinic University Hospital, 70124 Bari, Italy; (C.F.); (M.C.C.); (P.B.); (D.M.); (G.G.); (G.N.); (E.C.); (M.M.D.); (I.D.); (V.E.S.); (R.M.); (M.D.L.); (M.M.C.)
| | - Michele Davide Latorre
- University Cardiologic Unit, Interdisciplinary Department of Medicine, Polyclinic University Hospital, 70124 Bari, Italy; (C.F.); (M.C.C.); (P.B.); (D.M.); (G.G.); (G.N.); (E.C.); (M.M.D.); (I.D.); (V.E.S.); (R.M.); (M.D.L.); (M.M.C.)
| | - Andrea Baggiano
- Department of Perioperative Cardiology and Cardiovascular Imaging, Centro Cardiologico Monzino, IRCCS, 20138 Milan, Italy; (A.B.); (S.M.); (G.P.)
| | - Saima Mushtaq
- Department of Perioperative Cardiology and Cardiovascular Imaging, Centro Cardiologico Monzino, IRCCS, 20138 Milan, Italy; (A.B.); (S.M.); (G.P.)
| | - Marco Matteo Ciccone
- University Cardiologic Unit, Interdisciplinary Department of Medicine, Polyclinic University Hospital, 70124 Bari, Italy; (C.F.); (M.C.C.); (P.B.); (D.M.); (G.G.); (G.N.); (E.C.); (M.M.D.); (I.D.); (V.E.S.); (R.M.); (M.D.L.); (M.M.C.)
| | - Gianluca Pontone
- Department of Perioperative Cardiology and Cardiovascular Imaging, Centro Cardiologico Monzino, IRCCS, 20138 Milan, Italy; (A.B.); (S.M.); (G.P.)
- Department of Biomedical, Surgical and Dental Sciences, University of Milan, 20138 Milan, Italy
| | - Andrea Igoren Guaricci
- University Cardiologic Unit, Interdisciplinary Department of Medicine, Polyclinic University Hospital, 70124 Bari, Italy; (C.F.); (M.C.C.); (P.B.); (D.M.); (G.G.); (G.N.); (E.C.); (M.M.D.); (I.D.); (V.E.S.); (R.M.); (M.D.L.); (M.M.C.)
| |
Collapse
|
12
|
Galizia MS, Attili AK, Truesdell WR, Smith ED, Helms AS, Sulaiman AMA, Madamanchi C, Agarwal PP. Imaging Features of Arrhythmogenic Cardiomyopathies. Radiographics 2024; 44:e230154. [PMID: 38512728 PMCID: PMC10995833 DOI: 10.1148/rg.230154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 08/09/2023] [Accepted: 08/28/2023] [Indexed: 03/23/2024]
Abstract
Arrhythmogenic cardiomyopathy (ACM) is a genetic disease characterized by replacement of ventricular myocardium with fibrofatty tissue, predisposing the patient to ventricular arrhythmias and/or sudden cardiac death. Most cases of ACM are associated with pathogenic variants in genes that encode desmosomal proteins, an important cell-to-cell adhesion complex present in both the heart and skin tissue. Although ACM was first described as a disease predominantly of the right ventricle, it is now acknowledged that it can also primarily involve the left ventricle or both ventricles. The original right-dominant phenotype is traditionally diagnosed using the 2010 task force criteria, a multifactorial algorithm divided into major and minor criteria consisting of structural criteria based on two-dimensional echocardiographic, cardiac MRI, or right ventricular angiographic findings; tissue characterization based on endomyocardial biopsy results; repolarization and depolarization abnormalities based on electrocardiographic findings; arrhythmic features; and family history. Shortfalls in the task force criteria due to the modern understanding of the disease have led to development of the Padua criteria, which include updated criteria for diagnosis of the right-dominant phenotype and new criteria for diagnosis of the left-predominant and biventricular phenotypes. In addition to incorporating cardiac MRI findings of ventricular dilatation, systolic dysfunction, and regional wall motion abnormalities, the new Padua criteria emphasize late gadolinium enhancement at cardiac MRI as a key feature in diagnosis and imaging-based tissue characterization. Conditions to consider in the differential diagnosis of the right-dominant phenotype include various other causes of right ventricular dilatation such as left-to-right shunts and variants of normal right ventricular anatomy that can be misinterpreted as abnormalities. The left-dominant phenotype can mimic myocarditis at imaging and clinical examination. Additional considerations for the differential diagnosis of ACM, particularly for the left-dominant phenotype, include sarcoidosis and dilated cardiomyopathy. ©RSNA, 2024 Test Your Knowledge questions for this article are available in the supplemental material.
Collapse
Affiliation(s)
- Mauricio S Galizia
- From the Department of Radiology (M.S.G., A.K.A., W.R.T., P.P.A.) and Division of Cardiovascular Medicine, Department of Internal Medicine (E.D.S., A.S.H., A.M.A.S., C.M.), Michigan Medicine, University of Michigan, 1500 E Medical Center Dr, Ann Arbor, MI 48109
| | - Anil K Attili
- From the Department of Radiology (M.S.G., A.K.A., W.R.T., P.P.A.) and Division of Cardiovascular Medicine, Department of Internal Medicine (E.D.S., A.S.H., A.M.A.S., C.M.), Michigan Medicine, University of Michigan, 1500 E Medical Center Dr, Ann Arbor, MI 48109
| | - William R Truesdell
- From the Department of Radiology (M.S.G., A.K.A., W.R.T., P.P.A.) and Division of Cardiovascular Medicine, Department of Internal Medicine (E.D.S., A.S.H., A.M.A.S., C.M.), Michigan Medicine, University of Michigan, 1500 E Medical Center Dr, Ann Arbor, MI 48109
| | - Eric D Smith
- From the Department of Radiology (M.S.G., A.K.A., W.R.T., P.P.A.) and Division of Cardiovascular Medicine, Department of Internal Medicine (E.D.S., A.S.H., A.M.A.S., C.M.), Michigan Medicine, University of Michigan, 1500 E Medical Center Dr, Ann Arbor, MI 48109
| | - Adam S Helms
- From the Department of Radiology (M.S.G., A.K.A., W.R.T., P.P.A.) and Division of Cardiovascular Medicine, Department of Internal Medicine (E.D.S., A.S.H., A.M.A.S., C.M.), Michigan Medicine, University of Michigan, 1500 E Medical Center Dr, Ann Arbor, MI 48109
| | - Abdulbaset M A Sulaiman
- From the Department of Radiology (M.S.G., A.K.A., W.R.T., P.P.A.) and Division of Cardiovascular Medicine, Department of Internal Medicine (E.D.S., A.S.H., A.M.A.S., C.M.), Michigan Medicine, University of Michigan, 1500 E Medical Center Dr, Ann Arbor, MI 48109
| | - Chaitanya Madamanchi
- From the Department of Radiology (M.S.G., A.K.A., W.R.T., P.P.A.) and Division of Cardiovascular Medicine, Department of Internal Medicine (E.D.S., A.S.H., A.M.A.S., C.M.), Michigan Medicine, University of Michigan, 1500 E Medical Center Dr, Ann Arbor, MI 48109
| | - Prachi P Agarwal
- From the Department of Radiology (M.S.G., A.K.A., W.R.T., P.P.A.) and Division of Cardiovascular Medicine, Department of Internal Medicine (E.D.S., A.S.H., A.M.A.S., C.M.), Michigan Medicine, University of Michigan, 1500 E Medical Center Dr, Ann Arbor, MI 48109
| |
Collapse
|
13
|
Corrado D, Anastasakis A, Basso C, Bauce B, Blomström-Lundqvist C, Bucciarelli-Ducci C, Cipriani A, De Asmundis C, Gandjbakhch E, Jiménez-Jáimez J, Kharlap M, McKenna WJ, Monserrat L, Moon J, Pantazis A, Pelliccia A, Perazzolo Marra M, Pillichou K, Schulz-Menger J, Jurcut R, Seferovic P, Sharma S, Tfelt-Hansen J, Thiene G, Wichter T, Wilde A, Zorzi A. Proposed diagnostic criteria for arrhythmogenic cardiomyopathy: European Task Force consensus report. Int J Cardiol 2024; 395:131447. [PMID: 37844667 DOI: 10.1016/j.ijcard.2023.131447] [Citation(s) in RCA: 26] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 10/10/2023] [Accepted: 10/13/2023] [Indexed: 10/18/2023]
Abstract
Arrhythmogenic cardiomyopathy (ACM) is a heart muscle disease characterized by prominent "non-ischemic" myocardial scarring predisposing to ventricular electrical instability. Diagnostic criteria for the original phenotype, arrhythmogenic right ventricular cardiomyopathy (ARVC), were first proposed in 1994 and revised in 2010 by an international Task Force (TF). A 2019 International Expert report appraised these previous criteria, finding good accuracy for diagnosis of ARVC but a lack of sensitivity for identification of the expanding phenotypic disease spectrum, which includes left-sided variants, i.e., biventricular (ABVC) and arrhythmogenic left ventricular cardiomyopathy (ALVC). The ARVC phenotype together with these left-sided variants are now more appropriately named ACM. The lack of diagnostic criteria for the left ventricular (LV) phenotype has resulted in clinical under-recognition of ACM patients over the 4 decades since the disease discovery. In 2020, the "Padua criteria" were proposed for both right- and left-sided ACM phenotypes. The presently proposed criteria represent a refinement of the 2020 Padua criteria and have been developed by an expert European TF to improve the diagnosis of ACM with upgraded and internationally recognized criteria. The growing recognition of the diagnostic role of CMR has led to the incorporation of myocardial tissue characterization findings for detection of myocardial scar using the late‑gadolinium enhancement (LGE) technique to more fully characterize right, biventricular and left disease variants, whether genetic or acquired (phenocopies), and to exclude other "non-scarring" myocardial disease. The "ring-like' pattern of myocardial LGE/scar is now a recognized diagnostic hallmark of ALVC. Additional diagnostic criteria regarding LV depolarization and repolarization ECG abnormalities and ventricular arrhythmias of LV origin are also provided. These proposed upgrading of diagnostic criteria represents a working framework to improve management of ACM patients.
Collapse
Affiliation(s)
- Domenico Corrado
- Department of Cardio-Thoraco-Vascular Sciences and Public Health, University of Padua Medical School, Italy.
| | - Aris Anastasakis
- Unit of Inherited and Rare Cardiovascular Diseases, Onassis Cardiac Surgery Center, Athens, Greece
| | - Cristina Basso
- Department of Cardio-Thoraco-Vascular Sciences and Public Health, University of Padua Medical School, Italy
| | - Barbara Bauce
- Department of Cardio-Thoraco-Vascular Sciences and Public Health, University of Padua Medical School, Italy
| | - Carina Blomström-Lundqvist
- Department of Cardiology, School of Medical Sciences, Faculty of Medicine and Health, Örebro University, Örebro, Sweden
| | | | - Alberto Cipriani
- Department of Cardio-Thoraco-Vascular Sciences and Public Health, University of Padua Medical School, Italy
| | - Carlo De Asmundis
- Heart Rhythm Management Centre, Postgraduate Program in Cardiac Electrophysiology and Pacing, Universitair Ziekenhuis, Brussel - Vrije Universiteit Brussel, Belgium
| | - Estelle Gandjbakhch
- Sorbonne Universitè, APHP, Centre de Référence des Maladies Cardiaques héréditaires Groupe Hospitalier Pitié Salpêtrière-Charles Foix, Paris, France
| | | | - Maria Kharlap
- Department of cardiac arrhythmias, National Centre for Therapy and Preventive Medicine, Moscow, Petroverigsky, Russia
| | - William J McKenna
- Institute of Cardiovascular Science, University College London, United Kingdom
| | - Lorenzo Monserrat
- Cardiovascular Genetics, Medical Department, Dilemma Solutions SL, A Coruña, Spain
| | - James Moon
- CMR Service, Barts Heart Centre, University College London, United Kingdom
| | - Antonis Pantazis
- Inherited Cardiovascular Conditions services, The Royal Brompton and Harefield Hospitals, London, United Kingdom
| | | | - Martina Perazzolo Marra
- Department of Cardio-Thoraco-Vascular Sciences and Public Health, University of Padua Medical School, Italy
| | - Kalliopi Pillichou
- Department of Cardio-Thoraco-Vascular Sciences and Public Health, University of Padua Medical School, Italy
| | - Jeanette Schulz-Menger
- Charité, Universitätsmedizin Berlin, Campus Buch - ECRC and Helios Clinics, DZHK Partnersite Berlin, Germany
| | - Ruxandra Jurcut
- Expert Center for Rare Genetic Cardiovascular Diseases, Institute for Cardiovascular Diseases "Prof.dr.C.C.Iliescu", UMF "Carol Davila", Bucharest, Romania
| | - Petar Seferovic
- University of Belgrade, Faculty of Medicine and Heart Failure Center, Belgrade University Medical Center, Belgrade
| | - Sanjay Sharma
- Cardiology Clinical Academic Group, St. George's, University of London, United Kingdom
| | - Jacob Tfelt-Hansen
- Section of Genetics, Department of Forensic Medicine, Faculty of Medical Sciences, University of Copenhagen, Denmark; Department of Cardiology, The Heart Centre, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Gaetano Thiene
- University of Padua Medical School, ARCA Associazione Ricerche Cardiopatie Aritmiche ETS, Padova, Italy
| | - Thomas Wichter
- Dept. of Internal Medicine / Cardiology, Heart Center Osnabrück - Bad Rothenfelde, Niels-Stensen-Kliniken, Marienhospital Osnabrück, Osnabrück, Germany
| | - Arthur Wilde
- Amsterdam UMC location University of Amsterdam, Department of Cardiology, Amsterdam, the Netherlands
| | - Alessandro Zorzi
- Department of Cardio-Thoraco-Vascular Sciences and Public Health, University of Padua Medical School, Italy
| |
Collapse
|
14
|
Varrenti M, Preda A, Frontera A, Baroni M, Gigli L, Vargiu S, Colombo G, Carbonaro M, Paolucci M, Giordano F, Guarracini F, Mazzone P. Arrhythmogenic Cardiomyopathy: Definition, Classification and Arrhythmic Risk Stratification. J Clin Med 2024; 13:456. [PMID: 38256590 PMCID: PMC10816644 DOI: 10.3390/jcm13020456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/08/2024] [Accepted: 01/11/2024] [Indexed: 01/24/2024] Open
Abstract
Arrhythmogenic cardiomyopathy (ACM) is a heart disease characterized by a fibrotic replacement of myocardial tissue and a consequent predisposition to ventricular arrhythmic events, especially in the young. Post-mortem studies and the subsequent diffusion of cardiac MRI have shown that left ventricular involvement in arrhythmogenic cardiomyopathy is common and often develops early. Regarding the arrhythmic risk stratification, the current scores underestimate the arrhythmic risk of patients with arrhythmogenic cardiomyopathy with left involvement. Indeed, the data on arrhythmic risk stratification in this group of patients are contradictory and not exhaustive, with the consequence of not correctly identifying patients at a high arrhythmic risk who deserve protection from arrhythmic death. We propose a literature review on arrhythmic risk stratification in patients with ACM and left involvement to identify the main features associated with an increased arrhythmic risk in this group of patients.
Collapse
Affiliation(s)
- Marisa Varrenti
- Electrophysiology Unit, De Gasperis Cardio Center, Niguarda Hospital, 20162 Milan, Italy (M.C.); (F.G.); (P.M.)
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Moisa SM, Spoiala EL, Cinteza E, Vatasescu R, Butnariu LI, Brinza C, Burlacu A. Arrhythmogenic Right Ventricular Cardiomyopathy in Children: A Systematic Review. Diagnostics (Basel) 2024; 14:175. [PMID: 38248052 PMCID: PMC10814764 DOI: 10.3390/diagnostics14020175] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 01/09/2024] [Accepted: 01/11/2024] [Indexed: 01/23/2024] Open
Abstract
Arrhythmogenic right ventricular cardiomyopathy (ARVC) is an inherited disease characterized by the progressive replacement of the normal myocardium by fibroadipocytic tissue. The importance of an early diagnosis is supported by a higher risk of sudden cardiac death in the pediatric population. We reviewed the literature on diagnosis, risk stratification, and prognosis in the pediatric population with ARVC. In case reports which analyzed children with ARVC, the most common sign was ventricular tachycardia, frequently presenting as dizziness, syncope, or even cardiac arrest. Currently, there is no gold standard for diagnosing ARVC in children. Nevertheless, genetic analysis may provide a proper diagnosis tool for asymptomatic cases. Although risk stratification is recommended in patients with ARVC, a validated prediction model for risk stratification in children is still lacking; thus, it is a matter of further research. In consequence, even though ARVC is a relatively rare condition in children, it negatively impacts the survival and clinical outcomes of the patients. Therefore, appropriate and validated diagnostic and risk stratification tools are crucial for the early detection of children with ARVC, ensuring a prompt therapeutic intervention.
Collapse
Affiliation(s)
- Stefana Maria Moisa
- Pediatrics Department, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
- “Sfanta Maria” Clinical Emergency Hospital for Children, 700309 Iasi, Romania;
| | - Elena Lia Spoiala
- Pediatrics Department, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
| | - Eliza Cinteza
- Pediatrics Department, Faculty of Medicine, “Carol Davila” University of Medicine and Pharmacy, 700115 Bucharest, Romania;
- “Marie Curie” Clinical Emergency Hospital for Children, 41451 Bucharest, Romania
| | - Radu Vatasescu
- Cardio-Thoracic Department, “Carol Davila” University of Medicine and Pharmacy, 020021 Bucharest, Romania
- Clinical Emergency Hospital, 050098 Bucharest, Romania
| | - Lacramioara Ionela Butnariu
- “Sfanta Maria” Clinical Emergency Hospital for Children, 700309 Iasi, Romania;
- Genetics Department, Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania
| | - Crischentian Brinza
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
- Institute of Cardiovascular Diseases “Prof. Dr. George I.M. Georgescu”, 700503 Iasi, Romania
| | - Alexandru Burlacu
- Faculty of Medicine, “Grigore T. Popa” University of Medicine and Pharmacy, 700115 Iasi, Romania;
- Institute of Cardiovascular Diseases “Prof. Dr. George I.M. Georgescu”, 700503 Iasi, Romania
| |
Collapse
|
16
|
Cabral M, Fernandes S, Ruivo C, Martins H, Morais J. Recognizing a "Hot Phase" of An Arrhythmogenic Left Ventricular Cardiomyopathy: A Case Report. J Saudi Heart Assoc 2023; 35:232-234. [PMID: 37881594 PMCID: PMC10597597 DOI: 10.37616/2212-5043.1348] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 09/11/2023] [Accepted: 09/15/2023] [Indexed: 10/27/2023] Open
Abstract
A 35-year-old male, with a medical history of acute myocarditis, presented with palpitations. Further investigation revealed non-sustained ventricular tachycardia and a slightly reduced left ventricular systolic function. Cardiac magnetic resonance showed extended late gadolinium enhancement of the left ventricle and fat infiltration. Genetic testing was positive for a pathogenic desmoplakin mutation, fulfilling the criteria of arrhythmogenic left ventricular cardiomyopathy. In conclusion, the authors described a case of a mimicked acute myocarditis at a young age in a patient with an arrhythmogenic left ventricular cardiomyopathy. Therefore, the genetic study is essential for both diagnosis and management.
Collapse
Affiliation(s)
| | - Sara Fernandes
- Cardiology Department, Santo Antonio University Hospital Center, Porto,
Portugal
| | - Catarina Ruivo
- Cardiology Department, Leiria Hospital Centre, Leiria,
Portugal
| | - Hélia Martins
- Cardiology Department, Leiria Hospital Centre, Leiria,
Portugal
| | - João Morais
- Cardiology Department, Leiria Hospital Centre, Leiria,
Portugal
- CiTechCare (Center for Innovative Care and Health Technology), Leiria,
Portugal
| |
Collapse
|
17
|
Graziano F, Cipriani A, Balla D, Bondarev S, Marra MP, Bauce B, Vágó H, Corrado D, Zorzi A. Evolving spectrum of arrhythmogenic cardiomyopathy: Implications for Sports Cardiology. Clin Cardiol 2023; 46:1072-1081. [PMID: 37357443 PMCID: PMC10540004 DOI: 10.1002/clc.24069] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 06/06/2023] [Accepted: 06/09/2023] [Indexed: 06/27/2023] Open
Abstract
Arrhythmogenic cardiomyopathy (ACM) is a genetic heart muscle disease, structurally characterized by progressive fibro-fatty replacement of the normal myocardium and clinically by ventricular arrhythmias (VAs). Predominantly thanks to the use of cardiac magnetic resonance, we have learnt that the spectrum of the disease encompasses not only the classical right ventricular phenotype, but also biventricular and left dominant variants. Sport activity contributes to the phenotypic expression and progression of ACM and may trigger life-threatening VAs and sudden cardiac death (SCD). We conducted a review of the literature about ACM and its implications in Sport Cardiology and summarized the main findings in this topic. Early identification of affected athletes through preparticipation screening (PPS) is fundamental but, while classical right-ventricular or biventricular phenotypes are usually suspected because of electrocardiogram (ECG) and echocardiographic abnormalities, variants with predominant left ventricular involvement are often characterized by normal ECG and unremarkable echocardiography. Usually the only manifestations of such variants are exercise-induced VAs and for this reason exercise testing may empower the diagnostic yield of the PPS. Patients with ACM are not eligible to competitive sports activity, but low-to-moderate intensity physical activity under medical supervision is possible in most cases.
Collapse
Affiliation(s)
- Francesca Graziano
- Department of Cardiac, Thoracic and Vascular Sciences and Public HealthUniversity of PaduaPadovaItaly
| | - Alberto Cipriani
- Department of Cardiac, Thoracic and Vascular Sciences and Public HealthUniversity of PaduaPadovaItaly
| | - Dorottya Balla
- Department of Sports MedicineSemmelweis UniversityBudapestHungary
| | - Sergei Bondarev
- Department of Cardiac, Thoracic and Vascular Sciences and Public HealthUniversity of PaduaPadovaItaly
| | - Martina Perazzolo Marra
- Department of Cardiac, Thoracic and Vascular Sciences and Public HealthUniversity of PaduaPadovaItaly
| | - Barbara Bauce
- Department of Cardiac, Thoracic and Vascular Sciences and Public HealthUniversity of PaduaPadovaItaly
| | - Hajnalka Vágó
- Department of Sports MedicineSemmelweis UniversityBudapestHungary
- Heart and Vascular CenterSemmelweis UniversityBudapestHungary
| | - Domenico Corrado
- Department of Cardiac, Thoracic and Vascular Sciences and Public HealthUniversity of PaduaPadovaItaly
| | - Alessandro Zorzi
- Department of Cardiac, Thoracic and Vascular Sciences and Public HealthUniversity of PaduaPadovaItaly
| |
Collapse
|
18
|
Brandão M, Bariani R, Rigato I, Bauce B. Desmoplakin Cardiomyopathy: Comprehensive Review of an Increasingly Recognized Entity. J Clin Med 2023; 12:jcm12072660. [PMID: 37048743 PMCID: PMC10095332 DOI: 10.3390/jcm12072660] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2023] [Revised: 03/20/2023] [Accepted: 03/28/2023] [Indexed: 04/05/2023] Open
Abstract
Desmoplakin (DSP) is a desmosomal protein that plays an essential role for cell-to-cell adhesion within the cardiomyocytes. The first association between DSP genetic variants and the presence of a myocardial disease referred to patients with Carvajal syndrome. Since then, several reports have linked the DSP gene to familial forms of arrhythmogenic (ACM) and dilated cardiomyopathies. Left-dominant ACM is the most common phenotype in individuals carrying DSP variants. More recently, a new entity—“Desmoplakin cardiomyopathy”—was described as a distinct form of cardiomyopathy characterized by frequent left ventricular involvement with extensive fibrosis, high arrhythmic risk, and episodes of acute myocardial injury. The purpose of this review was to summarize the available evidence on DSP cardiomyopathy and to identify existing gaps in knowledge that need clarification from upcoming research.
Collapse
Affiliation(s)
- Mariana Brandão
- Cardiology Department, Centro Hospitalar Vila Nova de Gaia/Espinho, 4430-000 Vila Nova de Gaia, Portugal
| | - Riccardo Bariani
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, 35122 Padova, Italy
| | - Ilaria Rigato
- Azienda Ospedaliera/Universita’ di Padova, Via Giustiniani, 2-Padova, 35128 Padova, Italy
| | - Barbara Bauce
- Department of Cardiac, Thoracic, Vascular Sciences and Public Health, University of Padova, 35122 Padova, Italy
| |
Collapse
|
19
|
Martini B, Martini N, De Mattia L, Buja G. Delayed depolarization and histologic abnormalities underlie the Brugada syndrome. Pacing Clin Electrophysiol 2023; 46:172-181. [PMID: 36542434 DOI: 10.1111/pace.14650] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Revised: 12/01/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022]
Abstract
Brugada syndrome (BrS) is a controversial disease whose pathophysiology is still far from being fully understood. Unlike other cardiological disorders, a definite etiology has not yet been established so that it could be summarized under two main chapters: "functional" or "organic", "repolarization" or "depolarization" disorder. Despite initial descriptions leaned towards the organic substrate and delayed depolarization features, functional and repolarization theories have attracted most of the Cardiological attention for many years. Data from electrocardiography, endocavitary tracings, electroanatomic mapping and histopathology, however, demonstrated that BrS is mainly characterized by structural myocardial changes mostly at the right ventricular outflow tract (RVOT), but also at the right ventricle (RV) and by delayed conduction at the same sites. Conduction disorders at different levels may also be present and identify patients at high risk for major arrhythmic events. The aim of the present review is to provide the current state of art of the pathophysiology of BrS, focusing on electro-vectorcardiography and electrophysiological features, histopathology, echocardiography, and cardiac magnetic resonance imaging (CMRI).
Collapse
Affiliation(s)
| | - Nicolò Martini
- Department of Cardio-Thoraco-Vascular Sciences and Public Health, University of Padua, Padua, Italy
| | | | - Gianfranco Buja
- Department of Cardio-Thoraco-Vascular Sciences and Public Health, University of Padua, Padua, Italy
| |
Collapse
|
20
|
Certainties and Uncertainties of Cardiac Magnetic Resonance Imaging in Athletes. J Cardiovasc Dev Dis 2022; 9:jcdd9100361. [PMID: 36286312 PMCID: PMC9604894 DOI: 10.3390/jcdd9100361] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 10/06/2022] [Accepted: 10/07/2022] [Indexed: 11/16/2022] Open
Abstract
Prolonged and intensive exercise induces remodeling of all four cardiac chambers, a physiological process which is coined as the “athlete’s heart”. This cardiac adaptation, however, shows overlapping features with non-ischemic cardiomyopathies, such as dilated, arrhythmogenic and hypertrophic cardiomyopathy, also associated with athlete’s sudden cardiac death. Cardiac magnetic resonance (CMR) is a well-suited, highly reproducible imaging modality that can help differentiate athlete’s heart from cardiomyopathy. CMR allows accurate characterization of the morphology and function of cardiac chambers, providing full coverage of the ventricles. Moreover, it permits an in-depth understanding of the myocardial changes through specific techniques such as mapping or late gadolinium enhancement. In this narrative review, we will focus on the certainties and uncertainties of the role of CMR in sports cardiology. The main aspects of physiological adaptation due to regular and intensive sports activity and the application of CMR in highly trained athletes will be summarized.
Collapse
|