1
|
Lu J, Wang J, Wu J, Zhang H, Ma X, Zhu Y, Wang J, Yang Y, Xiao Z, Li M, Zhou X, Ju Z, Xu Q, Ge J, Ding D, Yen T, Zuo C, Guan Y, Zhao Q. Pilot implementation of the revised criteria for staging of Alzheimer's disease by the Alzheimer's Association Workgroup in a tertiary memory clinic. Alzheimers Dement 2024; 20:7831-7846. [PMID: 39287564 PMCID: PMC11567817 DOI: 10.1002/alz.14245] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 08/15/2024] [Accepted: 08/15/2024] [Indexed: 09/19/2024]
Abstract
INTRODUCTION We aimed to evaluate the feasibility of the 2024 Alzheimer's Association Workgroup's integrated clinical-biological staging scheme in outpatient settings within a tertiary memory clinic. METHODS The 2018 syndromal cognitive staging system, coupled with a binary biomarker classification, was implemented for 236 outpatients with cognitive concerns. The 2024 numeric clinical staging framework, incorporating biomarker staging, was specifically applied to 154 individuals within the Alzheimer's disease (AD) continuum. RESULTS The 2024 staging scheme accurately classified 95.5% AD. Among these, 56.5% exhibited concordant clinical and biological stages (canonical), 34.7% demonstrated more advanced clinical stages than biologically expected (susceptible), and 8.8% displayed the inverse pattern (resilient). The susceptible group was characterized by a higher burden of neurodegeneration and inflammation than anticipated from tau, whereas the resilient group showed the opposite. DISCUSSION The 2024 staging scheme is generally feasible. A discrepancy between clinical and biological stages is relatively frequent among symptomatic patients with AD. HIGHLIGHTS The 2024 AA staging scheme is generally feasible in a tertiary memory clinic. A discrepancy between clinical and biological stages is relatively frequent in AD. The mismatch may be influenced by a non-specific pathological process involved in AD. Individual profiles like aging and lifestyles may contribute to such a mismatch. Matched and mismatched cases converge toward similar clinical outcomes.
Collapse
Affiliation(s)
- Jiaying Lu
- Department of Nuclear Medicine & PET CenterHuashan HospitalFudan UniversityXuhui DistrictShanghaiChina
| | - Jing Wang
- Department of Nuclear Medicine & PET CenterHuashan HospitalFudan UniversityXuhui DistrictShanghaiChina
| | - Jie Wu
- Department and Institute of NeurologyHuashan HospitalFudan UniversityJingan DistrictShanghaiChina
| | - Huiwei Zhang
- Department of Nuclear Medicine & PET CenterHuashan HospitalFudan UniversityXuhui DistrictShanghaiChina
| | - Xiaoxi Ma
- Department and Institute of NeurologyHuashan HospitalFudan UniversityJingan DistrictShanghaiChina
| | - Yuhua Zhu
- Department of Nuclear Medicine & PET CenterHuashan HospitalFudan UniversityXuhui DistrictShanghaiChina
| | - Jie Wang
- Department and Institute of NeurologyHuashan HospitalFudan UniversityJingan DistrictShanghaiChina
| | - Yunhao Yang
- Department of Nuclear Medicine & PET CenterHuashan HospitalFudan UniversityXuhui DistrictShanghaiChina
| | - Zhenxu Xiao
- Department and Institute of NeurologyHuashan HospitalFudan UniversityJingan DistrictShanghaiChina
| | - Ming Li
- Department of Nuclear Medicine & PET CenterHuashan HospitalFudan UniversityXuhui DistrictShanghaiChina
| | - Xiaowen Zhou
- Department and Institute of NeurologyHuashan HospitalFudan UniversityJingan DistrictShanghaiChina
| | - Zizhao Ju
- Department of Nuclear Medicine & PET CenterHuashan HospitalFudan UniversityXuhui DistrictShanghaiChina
| | - Qian Xu
- Department of Nuclear Medicine & PET CenterHuashan HospitalFudan UniversityXuhui DistrictShanghaiChina
| | - Jingjie Ge
- Department of Nuclear Medicine & PET CenterHuashan HospitalFudan UniversityXuhui DistrictShanghaiChina
| | - Ding Ding
- Department and Institute of NeurologyHuashan HospitalFudan UniversityJingan DistrictShanghaiChina
- National Clinical Research Center for Aging and MedicineHuashan HospitalFudan UniversityJingan DistrictShanghaiChina
- National Center for Neurological DisordersHuashan HospitalFudan UniversityJingan DistrictShanghaiChina
| | - Tzu‐Chen Yen
- APRINOIA Therapeutics Co. LtdSuzhou Industrial ParkSuzhouChina
| | - Chuantao Zuo
- Department of Nuclear Medicine & PET CenterHuashan HospitalFudan UniversityXuhui DistrictShanghaiChina
- National Clinical Research Center for Aging and MedicineHuashan HospitalFudan UniversityJingan DistrictShanghaiChina
- National Center for Neurological DisordersHuashan HospitalFudan UniversityJingan DistrictShanghaiChina
- Human Phenome InstituteFudan UniversityPudong DistrictShanghaiChina
| | - Yihui Guan
- Department of Nuclear Medicine & PET CenterHuashan HospitalFudan UniversityXuhui DistrictShanghaiChina
- National Clinical Research Center for Aging and MedicineHuashan HospitalFudan UniversityJingan DistrictShanghaiChina
- National Center for Neurological DisordersHuashan HospitalFudan UniversityJingan DistrictShanghaiChina
| | - Qianhua Zhao
- Department and Institute of NeurologyHuashan HospitalFudan UniversityJingan DistrictShanghaiChina
- National Clinical Research Center for Aging and MedicineHuashan HospitalFudan UniversityJingan DistrictShanghaiChina
- National Center for Neurological DisordersHuashan HospitalFudan UniversityJingan DistrictShanghaiChina
- MOE Frontiers Center for Brain ScienceFudan UniversityXuhui DistrictShanghaiChina
| |
Collapse
|
3
|
Jiang J, Shi R, Lu J, Wang M, Zhang Q, Zhang S, Wang L, Alberts I, Rominger A, Zuo C, Shi K. Detection of individual brain tau deposition in Alzheimer's disease based on latent feature-enhanced generative adversarial network. Neuroimage 2024; 291:120593. [PMID: 38554780 DOI: 10.1016/j.neuroimage.2024.120593] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2023] [Revised: 03/17/2024] [Accepted: 03/25/2024] [Indexed: 04/02/2024] Open
Abstract
OBJECTIVE The conventional methods for interpreting tau PET imaging in Alzheimer's disease (AD), including visual assessment and semi-quantitative analysis of fixed hallmark regions, are insensitive to detect individual small lesions because of the spatiotemporal neuropathology's heterogeneity. In this study, we proposed a latent feature-enhanced generative adversarial network model for the automatic extraction of individual brain tau deposition regions. METHODS The latent feature-enhanced generative adversarial network we propose can learn the distribution characteristics of tau PET images of cognitively normal individuals and output the abnormal distribution regions of patients. This model was trained and validated using 1131 tau PET images from multiple centres (with distinct races, i.e., Caucasian and Mongoloid) with different tau PET ligands. The overall quality of synthetic imaging was evaluated using structural similarity (SSIM), peak signal to noise ratio (PSNR), and mean square error (MSE). The model was compared to the fixed templates method for diagnosing and predicting AD. RESULTS The reconstructed images archived good quality, with SSIM = 0.967 ± 0.008, PSNR = 31.377 ± 3.633, and MSE = 0.0011 ± 0.0007 in the independent test set. The model showed higher classification accuracy (AUC = 0.843, 95 % CI = 0.796-0.890) and stronger correlation with clinical scales (r = 0.508, P < 0.0001). The model also achieved superior predictive performance in the survival analysis of cognitive decline, with a higher hazard ratio: 3.662, P < 0.001. INTERPRETATION The LFGAN4Tau model presents a promising new approach for more accurate detection of individualized tau deposition. Its robustness across tracers and races makes it a potentially reliable diagnostic tool for AD in practice.
Collapse
Affiliation(s)
- Jiehui Jiang
- Institute of Biomedical Engineering, School of Life Sciences, Shanghai University, Shanghai, China.
| | - Rong Shi
- School of Information and Communication Engineering, Shanghai University, Shanghai, China
| | - Jiaying Lu
- Department of Nuclear Medicine & PET Center, Huashan Hospital, Fudan University, Shanghai, China; National Research Center for Aging and Medicine and National Center for Neurological Disorders, Huashan Hospital, Fudan University, Shanghai, China
| | - Min Wang
- Institute of Biomedical Engineering, School of Life Sciences, Shanghai University, Shanghai, China.
| | - Qi Zhang
- School of Information and Communication Engineering, Shanghai University, Shanghai, China
| | - Shuoyan Zhang
- School of Information and Communication Engineering, Shanghai University, Shanghai, China
| | - Luyao Wang
- Institute of Biomedical Engineering, School of Life Sciences, Shanghai University, Shanghai, China
| | - Ian Alberts
- Department of Nuclear Medicine, Inselspital, University of Bern, Bern, Switzerland
| | - Axel Rominger
- Department of Nuclear Medicine, Inselspital, University of Bern, Bern, Switzerland
| | - Chuantao Zuo
- Department of Nuclear Medicine & PET Center, Huashan Hospital, Fudan University, Shanghai, China; National Research Center for Aging and Medicine and National Center for Neurological Disorders, Huashan Hospital, Fudan University, Shanghai, China; Human Phenome Institute, Fudan University, Shanghai, China.
| | - Kuangyu Shi
- Department of Nuclear Medicine, Inselspital, University of Bern, Bern, Switzerland; Department of Informatics, Technical University of Munich, Munich, Germany
| |
Collapse
|
4
|
Wang M, Lu J, Zhang Y, Zhang Q, Wang L, Wu P, Brendel M, Rominger A, Shi K, Zhao Q, Jiang J, Zuo C. Characterization of tau propagation pattern and cascading hypometabolism from functional connectivity in Alzheimer's disease. Hum Brain Mapp 2024; 45:e26689. [PMID: 38703095 PMCID: PMC11069321 DOI: 10.1002/hbm.26689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Revised: 03/16/2024] [Accepted: 04/08/2024] [Indexed: 05/06/2024] Open
Abstract
Tau pathology and its spatial propagation in Alzheimer's disease (AD) play crucial roles in the neurodegenerative cascade leading to dementia. However, the underlying mechanisms linking tau spreading to glucose metabolism remain elusive. To address this, we aimed to examine the association between pathologic tau aggregation, functional connectivity, and cascading glucose metabolism and further explore the underlying interplay mechanisms. In this prospective cohort study, we enrolled 79 participants with 18F-Florzolotau positron emission tomography (PET), 18F-fluorodeoxyglucose PET, resting-state functional, and anatomical magnetic resonance imaging (MRI) images in the hospital-based Shanghai Memory Study. We employed generalized linear regression and correlation analyses to assess the associations between Florzolotau accumulation, functional connectivity, and glucose metabolism in whole-brain and network-specific manners. Causal mediation analysis was used to evaluate whether functional connectivity mediates the association between pathologic tau and cascading glucose metabolism. We examined 22 normal controls and 57 patients with AD. In the AD group, functional connectivity was associated with Florzolotau covariance (β = .837, r = 0.472, p < .001) and glucose covariance (β = 1.01, r = 0.499, p < .001). Brain regions with higher tau accumulation tend to be connected to other regions with high tau accumulation through functional connectivity or metabolic connectivity. Mediation analyses further suggest that functional connectivity partially modulates the influence of tau accumulation on downstream glucose metabolism (mediation proportion: 49.9%). Pathologic tau may affect functionally connected neurons directly, triggering downstream glucose metabolism changes. This study sheds light on the intricate relationship between tau pathology, functional connectivity, and downstream glucose metabolism, providing critical insights into AD pathophysiology and potential therapeutic targets.
Collapse
Affiliation(s)
- Min Wang
- School of Life SciencesShanghai UniversityShanghaiChina
| | - Jiaying Lu
- Department of Nuclear Medicine & PET Center, Huashan HospitalFudan UniversityShanghaiChina
- National Clinical Research Center for Aging and Medicine, Huashan HospitalFudan UniversityShanghaiChina
- National Center for Neurological Disorders, Huashan HospitalFudan UniversityShanghaiChina
| | - Ying Zhang
- School of Life SciencesShanghai UniversityShanghaiChina
| | - Qi Zhang
- School of Life SciencesShanghai UniversityShanghaiChina
| | - Luyao Wang
- School of Life SciencesShanghai UniversityShanghaiChina
| | - Ping Wu
- Department of Nuclear Medicine & PET Center, Huashan HospitalFudan UniversityShanghaiChina
- National Clinical Research Center for Aging and Medicine, Huashan HospitalFudan UniversityShanghaiChina
- National Center for Neurological Disorders, Huashan HospitalFudan UniversityShanghaiChina
| | | | - Axel Rominger
- Department of Nuclear Medicine, InselspitalBern University Hospital, University of BernBernSwitzerland
| | - Kuangyu Shi
- Department of Nuclear Medicine, InselspitalBern University Hospital, University of BernBernSwitzerland
- Computer Aided Medical Procedures, School of Computation, Information and TechnologyTechnical University of MunichMunichGermany
| | - Qianhua Zhao
- National Clinical Research Center for Aging and Medicine, Huashan HospitalFudan UniversityShanghaiChina
- National Center for Neurological Disorders, Huashan HospitalFudan UniversityShanghaiChina
- Department of Neurology, Huashan HospitalFudan UniversityShanghaiChina
| | - Jiehui Jiang
- School of Life SciencesShanghai UniversityShanghaiChina
| | - Chuantao Zuo
- Department of Nuclear Medicine & PET Center, Huashan HospitalFudan UniversityShanghaiChina
- National Clinical Research Center for Aging and Medicine, Huashan HospitalFudan UniversityShanghaiChina
- National Center for Neurological Disorders, Huashan HospitalFudan UniversityShanghaiChina
- Human Phenome InstituteFudan UniversityShanghaiChina
| |
Collapse
|
5
|
Li Q, Wang J, Cui R, Yuan J. Identifying Mixed Dementia With Lewy Bodies and Alzheimer Disease Using Multitracer PET Imaging: A Case Study. Clin Nucl Med 2024; 49:364-365. [PMID: 38350092 DOI: 10.1097/rlu.0000000000005081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/15/2024]
Abstract
ABSTRACT We reported imaging findings with complex signs that were corresponded with both dementia with Lewy bodies (DLB) and Alzheimer disease (AD) in the case of a 78-year-old woman. Initially suspected as DLB due to cognitive and movement issues, diagnostic support included the cingulate island sign on 18 F-FDG PET, positive 131 I-MIBG cardiac scintigraphy, and DAT PET. However, MRI indicated hippocampal atrophy, and 18 F-FDG PET showed hypometabolism in the medial temporal lobe, suggesting the possibility of concomitant AD. Subsequent detection of β-amyloid pathology and tau accumulation in the brain further supported the concurrent presence of AD pathology.
Collapse
Affiliation(s)
| | - Junshan Wang
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | | | - Jing Yuan
- Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
6
|
Lu J, Clement C, Hong J, Wang M, Li X, Cavinato L, Yen TC, Jiao F, Wu P, Wu J, Ge J, Sun Y, Brendel M, Lopes L, Rominger A, Wang J, Liu F, Zuo C, Guan Y, Zhao Q, Shi K. Improved interpretation of 18F-florzolotau PET in progressive supranuclear palsy using a normalization-free deep-learning classifier. iScience 2023; 26:107426. [PMID: 37564702 PMCID: PMC10410511 DOI: 10.1016/j.isci.2023.107426] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 05/28/2023] [Accepted: 07/17/2023] [Indexed: 08/12/2023] Open
Abstract
While 18F-florzolotau tau PET is an emerging biomarker for progressive supranuclear palsy (PSP), its interpretation has been hindered by a lack of consensus on visual reading and potential biases in conventional semi-quantitative analysis. As clinical manifestations and regions of elevated 18F-florzolotau binding are highly overlapping in PSP and the Parkinsonian type of multiple system atrophy (MSA-P), developing a reliable discriminative classifier for 18F-florzolotau PET is urgently needed. Herein, we developed a normalization-free deep-learning (NFDL) model for 18F-florzolotau PET, which achieved significantly higher accuracy for both PSP and MSA-P compared to semi-quantitative classifiers. Regions driving the NFDL classifier's decision were consistent with disease-specific topographies. NFDL-guided radiomic features correlated with clinical severity of PSP. This suggests that the NFDL model has the potential for early and accurate differentiation of atypical parkinsonism and that it can be applied in various scenarios due to not requiring subjective interpretation, MR-dependent, and reference-based preprocessing.
Collapse
Affiliation(s)
- Jiaying Lu
- Department of Nuclear Medicine & PET Center & National Center for Neurological Disorders & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200235, China
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
| | - Christoph Clement
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
| | - Jimin Hong
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
| | - Min Wang
- Institute of Biomedical Engineering, School of Life Science, Shanghai University, Shanghai 200444, China
- Department of Informatics, Technical University of Munich, 80333 Munich, Germany
| | - Xinyi Li
- Department of Neurology & National Center for Neurological Disorders & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200400, China
| | - Lara Cavinato
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
- MOX - Modeling and Scientific Computing, Department of Mathematics, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan, Italy
| | - Tzu-Chen Yen
- APRINOIA Therapeutics Co., Ltd, Suzhou 215122, China
| | - Fangyang Jiao
- Department of Nuclear Medicine & PET Center & National Center for Neurological Disorders & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200235, China
| | - Ping Wu
- Department of Nuclear Medicine & PET Center & National Center for Neurological Disorders & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200235, China
| | - Jianjun Wu
- Department of Neurology & National Center for Neurological Disorders & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200400, China
| | - Jingjie Ge
- Department of Nuclear Medicine & PET Center & National Center for Neurological Disorders & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200235, China
| | - Yimin Sun
- Department of Neurology & National Center for Neurological Disorders & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200400, China
| | - Matthias Brendel
- Department of Nuclear Medicine, University of Munich, 80539 Munich, Germany
| | - Leonor Lopes
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
| | - Axel Rominger
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
| | - Jian Wang
- Department of Neurology & National Center for Neurological Disorders & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200400, China
| | - Fengtao Liu
- Department of Neurology & National Center for Neurological Disorders & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200400, China
| | - Chuantao Zuo
- Department of Nuclear Medicine & PET Center & National Center for Neurological Disorders & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200235, China
- Human Phenome Institute, Fudan University, Shanghai 200433, China
| | - Yihui Guan
- Department of Nuclear Medicine & PET Center & National Center for Neurological Disorders & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200235, China
| | - Qianhua Zhao
- Department of Neurology & National Center for Neurological Disorders & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200400, China
| | - Kuangyu Shi
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
- Department of Informatics, Technical University of Munich, 80333 Munich, Germany
| | - for the Progressive Supranuclear Palsy Neuroimage Initiative (PSPNI)
- Department of Nuclear Medicine & PET Center & National Center for Neurological Disorders & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200235, China
- Department of Nuclear Medicine, Inselspital, Bern University Hospital, University of Bern, 3010 Bern, Switzerland
- Institute of Biomedical Engineering, School of Life Science, Shanghai University, Shanghai 200444, China
- Department of Informatics, Technical University of Munich, 80333 Munich, Germany
- Department of Neurology & National Center for Neurological Disorders & National Clinical Research Center for Aging and Medicine, Huashan Hospital, Fudan University, Shanghai 200400, China
- MOX - Modeling and Scientific Computing, Department of Mathematics, Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milan, Italy
- APRINOIA Therapeutics Co., Ltd, Suzhou 215122, China
- Department of Nuclear Medicine, University of Munich, 80539 Munich, Germany
- Human Phenome Institute, Fudan University, Shanghai 200433, China
| |
Collapse
|