1
|
Laudermilk LT, Tovar A, Homstad AK, Thomas JM, McFadden KM, Tune MK, Cowley DO, Mock JR, Ideraabdullah F, Kelada SNP. Baseline and innate immune response characterization of a Zfp30 knockout mouse strain. Mamm Genome 2020; 31:205-214. [PMID: 32860515 DOI: 10.1007/s00335-020-09847-z] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 08/17/2020] [Indexed: 12/01/2022]
Abstract
Airway neutrophilia is correlated with disease severity in a number of chronic and acute pulmonary diseases, and dysregulation of neutrophil chemotaxis can lead to host tissue damage. The gene Zfp30 was previously identified as a candidate regulator of neutrophil recruitment to the lungs and secretion of CXCL1, a potent neutrophil chemokine, in a genome-wide mapping study using the Collaborative Cross. ZFP30 is a putative transcriptional repressor with a KRAB domain capable of inducing heterochromatin formation. Using a CRISPR-mediated knockout mouse model, we investigated the role that Zfp30 plays in recruitment of neutrophils to the lung using models of allergic airway disease and acute lung injury. We found that the Zfp30 null allele did not affect CXCL1 secretion or neutrophil recruitment to the lungs in response to various innate immune stimuli. Intriguingly, despite the lack of neutrophil phenotype, we found there was a significant reduction in the proportion of live Zfp30 homozygous female mutant mice produced from heterozygous matings. This deviation from the expected Mendelian ratios implicates Zfp30 in fertility or embryonic development. Overall, our results indicate that Zfp30 is an essential gene but does not influence neutrophilic inflammation in this particular knockout model.
Collapse
Affiliation(s)
- Lucas T Laudermilk
- Department of Genetics, University of North Carolina, 120 Mason Farm Road, Chapel Hill, NC, 27599, USA.,Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC, USA
| | - Adelaide Tovar
- Department of Genetics, University of North Carolina, 120 Mason Farm Road, Chapel Hill, NC, 27599, USA.,Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC, USA
| | - Alison K Homstad
- Department of Genetics, University of North Carolina, 120 Mason Farm Road, Chapel Hill, NC, 27599, USA.,Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC, USA
| | - Joseph M Thomas
- Department of Genetics, University of North Carolina, 120 Mason Farm Road, Chapel Hill, NC, 27599, USA
| | - Kathryn M McFadden
- Department of Genetics, University of North Carolina, 120 Mason Farm Road, Chapel Hill, NC, 27599, USA
| | - Miriya K Tune
- Marsico Lung Institute, University of North Carolina, Chapel Hill, NC, USA
| | - Dale O Cowley
- Department of Genetics, University of North Carolina, 120 Mason Farm Road, Chapel Hill, NC, 27599, USA.,Animal Models Core Facility, University of North Carolina, Chapel Hill, NC, USA
| | - Jason R Mock
- Marsico Lung Institute, University of North Carolina, Chapel Hill, NC, USA
| | - Folami Ideraabdullah
- Department of Genetics, University of North Carolina, 120 Mason Farm Road, Chapel Hill, NC, 27599, USA.,Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC, USA.,Department of Nutrition, University of North Carolina, Chapel Hill, NC, USA
| | - Samir N P Kelada
- Department of Genetics, University of North Carolina, 120 Mason Farm Road, Chapel Hill, NC, 27599, USA. .,Curriculum in Genetics and Molecular Biology, University of North Carolina, Chapel Hill, NC, USA. .,Marsico Lung Institute, University of North Carolina, Chapel Hill, NC, USA.
| |
Collapse
|
2
|
Fernandes VE, Ercoli G, Bénard A, Brandl C, Fahnenstiel H, Müller-Winkler J, Weber GF, Denny P, Nitschke L, Andrew PW. The B-cell inhibitory receptor CD22 is a major factor in host resistance to Streptococcus pneumoniae infection. PLoS Pathog 2020; 16:e1008464. [PMID: 32324805 PMCID: PMC7179836 DOI: 10.1371/journal.ppat.1008464] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Accepted: 03/06/2020] [Indexed: 01/29/2023] Open
Abstract
Streptococcus pneumoniae is a major human pathogen, causing pneumonia and sepsis. Genetic components strongly influence host responses to pneumococcal infections, but the responsible loci are unknown. We have previously identified a locus on mouse chromosome 7 from a susceptible mouse strain, CBA/Ca, to be crucial for pneumococcal infection. Here we identify a responsible gene, Cd22, which carries a point mutation in the CBA/Ca strain, leading to loss of CD22 on B cells. CBA/Ca mice and gene-targeted CD22-deficient mice on a C57BL/6 background are both similarly susceptible to pneumococcal infection, as shown by bacterial replication in the lungs, high bacteremia and early death. After bacterial infections, CD22-deficient mice had strongly reduced B cell populations in the lung, including GM-CSF producing, IgM secreting innate response activator B cells, which are crucial for protection. This study provides striking evidence that CD22 is crucial for protection during invasive pneumococcal disease. Streptococcus pneumoniae (known as the pneumococcus) is a human bacterial pathogen responsible for diseases such as pneumonia and sepsis, that cause illness and death in millions of individuals. Susceptibility to pneumococcal infections is associated with genetic components that strongly influence how infected individuals respond to infection, but little is known about the causal gene(s) and the mechanisms of control of the infection. In previous studies we have found strong differences in susceptibility and resistance to pneumococcal infections between mouse strains. In this study we identified a gene, the Cd22 gene, that controls resistance to pneumococcal infection. Mice without the B-cell specific CD22 protein were much more susceptible to infection with S. pneumoniae. We could show that a protective population of B cells that migrates to the lung during pneumococcal infection is missing in Cd22-deficient mice. The study shows to a new role for CD22 and indicates a new potential target for treatment of pneumococcal infections.
Collapse
Affiliation(s)
- Vitor E. Fernandes
- Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, United Kingdom
- * E-mail: (VEF); (LN); (PWA)
| | - Giuseppe Ercoli
- Department of Genetics, University of Leicester, Leicester, United Kingdom
| | - Alan Bénard
- Department of Surgery, University Hospital Erlangen, Erlangen, Germany
| | - Carolin Brandl
- Division of Genetics, Department of Biology, University of Erlangen, Erlangen, Germany
| | - Hannah Fahnenstiel
- Division of Genetics, Department of Biology, University of Erlangen, Erlangen, Germany
| | | | - Georg F. Weber
- Department of Surgery, University Hospital Erlangen, Erlangen, Germany
| | - Paul Denny
- Mammalian Genetics Unit, Medical Research Council, Harwell, United Kingdom
| | - Lars Nitschke
- Division of Genetics, Department of Biology, University of Erlangen, Erlangen, Germany
- * E-mail: (VEF); (LN); (PWA)
| | - Peter W. Andrew
- Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, United Kingdom
- * E-mail: (VEF); (LN); (PWA)
| |
Collapse
|
3
|
Jacques LC, Panagiotou S, Baltazar M, Senghore M, Khandaker S, Xu R, Bricio-Moreno L, Yang M, Dowson CG, Everett DB, Neill DR, Kadioglu A. Increased pathogenicity of pneumococcal serotype 1 is driven by rapid autolysis and release of pneumolysin. Nat Commun 2020; 11:1892. [PMID: 32312961 PMCID: PMC7170840 DOI: 10.1038/s41467-020-15751-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 03/23/2020] [Indexed: 12/17/2022] Open
Abstract
Streptococcus pneumoniae serotype 1 is the predominant cause of invasive pneumococcal disease in sub-Saharan Africa, but the mechanism behind its increased invasiveness is not well understood. Here, we use mouse models of lung infection to identify virulence factors associated with severe bacteraemic pneumonia during serotype-1 (ST217) infection. We use BALB/c mice, which are highly resistant to pneumococcal pneumonia when infected with other serotypes. However, we observe 100% mortality and high levels of bacteraemia within 24 hours when BALB/c mice are intranasally infected with ST217. Serotype 1 produces large quantities of pneumolysin, which is rapidly released due to high levels of bacterial autolysis. This leads to substantial levels of cellular cytotoxicity and breakdown of tight junctions between cells, allowing a route for rapid bacterial dissemination from the respiratory tract into the blood. Thus, our results offer an explanation for the increased invasiveness of serotype 1. The mechanisms behind the high invasiveness of Streptococcus pneumoniae serotype 1 are unclear. Here, Jacques et al. show that this feature is due to overproduction and rapid release of pneumolysin, which induces cytotoxicity and breakdown of tight junctions, allowing rapid bacterial dissemination from the respiratory tract into the blood.
Collapse
Affiliation(s)
- Laura C Jacques
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
| | - Stavros Panagiotou
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
| | - Murielle Baltazar
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
| | | | - Shadia Khandaker
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
| | - Rong Xu
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
| | - Laura Bricio-Moreno
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
| | - Marie Yang
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
| | | | - Dean B Everett
- Malawi-Liverpool-Wellcome Trust Clinical Research Programme, University of Malawi, College of Medicine, Blantyre, Malawi
| | - Daniel R Neill
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool, Liverpool, UK
| | - Aras Kadioglu
- Department of Clinical Infection, Microbiology and Immunology, Institute of Infection and Global Health, University of Liverpool, Liverpool, UK.
| |
Collapse
|
4
|
Ma Z, Zhu H, Su Y, Meng Y, Lin H, He K, Fan H. Screening of Streptococcus Suis serotype 2 resistance genes with GWAS and transcriptomic microarray analysis. BMC Genomics 2018; 19:907. [PMID: 30541452 PMCID: PMC6292034 DOI: 10.1186/s12864-018-5339-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Accepted: 11/29/2018] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Swine streptococcosis has caused great economic loss in the swine industry, and the major pathogen responsible for this disease is Streptococcus Suis serotype 2 (SS2). Disease resistance breeding is a fundamental way of resolving this problem. With the development of GWAS and transcriptomic microarray technology, we now have powerful research tools to identify SS2 resistance genes. RESULTS In this research, we generated an F2 generation of SS2 resistant C57BL/6 and SS2 susceptive A/J mice. With the F2 generation of these two mice strains and GWAS analysis, we identified 286 significant mouse genome SNPs sites associated with the SS2 resistance trait. Gene expression profiles for C57BL/6 and A/J were analyzed under SS2 infection pressure by microarray. In total, 251 differentially expressed genes were identified between these two mouse strains during SS2 infection. After combining the GWAS and gene expression profile data, we located two genes that were significantly associated with SS2 resistance, which were the UBA domain containing 1 gene (Ubac1) and Epsin 1 gene (Epn 1). GO classification and over-representation analysis revealed nine up-regulated related to immune function, which could potentially be involved in the C57BL/6 SS2 resistance trait. CONCLUSION This is the first study to use both SNP chip and gene express profile chip for SS2 resistance gene identification in mouse, and these results will contribute to swine SS2 resistance breeding.
Collapse
Affiliation(s)
- Zhe Ma
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.,Ministry of Agriculture Key Laboratory of Animal Bacteriology, Nanjing, 210095, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China
| | - Haodan Zhu
- Jiangsu Academy Agricultural Sciences, Nanjing, 210095, China
| | - Yiqi Su
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.,Ministry of Agriculture Key Laboratory of Animal Bacteriology, Nanjing, 210095, China
| | - Yu Meng
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.,Ministry of Agriculture Key Laboratory of Animal Bacteriology, Nanjing, 210095, China
| | - Huixing Lin
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China.,Ministry of Agriculture Key Laboratory of Animal Bacteriology, Nanjing, 210095, China.,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China
| | - Kongwang He
- Jiangsu Academy Agricultural Sciences, Nanjing, 210095, China
| | - Hongjie Fan
- MOE Joint International Research Laboratory of Animal Health and Food Safety, College of Veterinary Medicine, Nanjing Agricultural University, Nanjing, 210095, China. .,Ministry of Agriculture Key Laboratory of Animal Bacteriology, Nanjing, 210095, China. .,Jiangsu Co-innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou, 225009, China.
| |
Collapse
|
5
|
Differential Regulation of Zfp30 Expression in Murine Airway Epithelia Through Altered Binding of ZFP148 to rs51434084. G3-GENES GENOMES GENETICS 2018; 8:687-693. [PMID: 29242385 PMCID: PMC5919737 DOI: 10.1534/g3.117.300507] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Neutrophil chemotaxis to the airways is a key aspect of host response to microbes and a feature of multiple pulmonary diseases including asthma. Tight regulation of this recruitment is critical to prevent unwanted host tissue damage and inflammation. Using a mouse (Mus musculus) model of asthma applied to the Collaborative Cross population, we previously identified a lung gene expression quantitative trait locus (eQTL) for Zinc finger protein 30 (Zfp30) that was also a QTL for neutrophil recruitment and the hallmark neutrophil chemokine CXCL1. The Zfp30 eQTL is defined by three functionally distinct haplotypes. In this study, we searched for causal genetic variants that underlie the Zfp30 eQTL to gain a better understanding of this candidate repressor's regulation. First, we identified a putative regulatory region spanning 500 bp upstream of Zfp30, which contains 10 SNPs that form five haplotypes. In reporter gene assays in vitro, these haplotypes recapitulated the three previously identified in vivo expression patterns. Second, using site-directed mutagenesis followed by reporter gene assays, we identified a single variant, rs51434084, which explained the majority of variation in expression between two out of three haplotype groups. Finally, using a combination of in silico predictions and electrophoretic mobility shift assays, we identified ZFP148 as a transcription factor that differentially binds to the Zfp30 promoter region harboring rs51434084. In conclusion, we provide evidence in support of rs51434084 being a causal variant for the Zfp30 eQTL, and have identified a mechanism by which this variant alters Zfp30 expression, namely differential binding of ZFP148.
Collapse
|
6
|
Abstract
Allergic asthma is a complex disease characterized in part by granulocytic inflammation of the airways. In addition to eosinophils, neutrophils (PMN) are also present, particularly in cases of severe asthma. We sought to identify the genetic determinants of neutrophilic inflammation in a mouse model of house dust mite (HDM)-induced asthma. We applied an HDM model of allergic asthma to the eight founder strains of the Collaborative Cross (CC) and 151 incipient lines of the CC (preCC). Lung lavage fluid was analyzed for PMN count and the concentration of CXCL1, a hallmark PMN chemokine. PMN and CXCL1 were strongly correlated in preCC mice. We used quantitative trait locus (QTL) mapping to identify three variants affecting PMN, one of which colocalized with a QTL for CXCL1 on chromosome (Chr) 7. We used lung eQTL data to implicate a variant in the gene Zfp30 in the CXCL1/PMN response. This genetic variant regulates both CXCL1 and PMN by altering Zfp30 expression, and we model the relationships between the QTL and these three endophenotypes. We show that Zfp30 is expressed in airway epithelia in the normal mouse lung and that altering Zfp30 expression in vitro affects CXCL1 responses to an immune stimulus. Our results provide strong evidence that Zfp30 is a novel regulator of neutrophilic airway inflammation.
Collapse
|
7
|
Jonczyk MS, Simon M, Kumar S, Fernandes VE, Sylvius N, Mallon AM, Denny P, Andrew PW. Genetic factors regulating lung vasculature and immune cell functions associate with resistance to pneumococcal infection. PLoS One 2014; 9:e89831. [PMID: 24594938 PMCID: PMC3940657 DOI: 10.1371/journal.pone.0089831] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2013] [Accepted: 01/27/2014] [Indexed: 02/06/2023] Open
Abstract
Streptococcus pneumoniae is an important human pathogen responsible for high mortality and morbidity worldwide. The susceptibility to pneumococcal infections is controlled by as yet unknown genetic factors. To elucidate these factors could help to develop new medical treatments and tools to identify those most at risk. In recent years genome wide association studies (GWAS) in mice and humans have proved successful in identification of causal genes involved in many complex diseases for example diabetes, systemic lupus or cholesterol metabolism. In this study a GWAS approach was used to map genetic loci associated with susceptibility to pneumococcal infection in 26 inbred mouse strains. As a result four candidate QTLs were identified on chromosomes 7, 13, 18 and 19. Interestingly, the QTL on chromosome 7 was located within S. pneumoniae resistance QTL (Spir1) identified previously in a linkage study of BALB/cOlaHsd and CBA/CaOlaHsd F2 intercrosses. We showed that only a limited number of genes encoded within the QTLs carried phenotype-associated polymorphisms (22 genes out of several hundred located within the QTLs). These candidate genes are known to regulate TGFβ signalling, smooth muscle and immune cells functions. Interestingly, our pulmonary histopathology and gene expression data demonstrated, lung vasculature plays an important role in resistance to pneumococcal infection. Therefore we concluded that the cumulative effect of these candidate genes on vasculature and immune cells functions as contributory factors in the observed differences in susceptibility to pneumococcal infection. We also propose that TGFβ-mediated regulation of fibroblast differentiation plays an important role in development of invasive pneumococcal disease. Gene expression data submitted to the NCBI Gene Expression Omnibus Accession No: GSE49533 SNP data submitted to NCBI dbSNP Short Genetic Variation http://www.ncbi.nlm.nih.gov/projects/SNP/snp_viewTable.cgi?handle=MUSPNEUMONIA.
Collapse
Affiliation(s)
- Magda S. Jonczyk
- Department of Infection Immunity and Inflammation, University of Leicester, Leicester, United Kingdom
| | - Michelle Simon
- MRC Harwell, Mammalian Genetics Unit, Oxford, United Kingdom
| | - Saumya Kumar
- MRC Harwell, Mammalian Genetics Unit, Oxford, United Kingdom
| | - Vitor E. Fernandes
- Department of Infection Immunity and Inflammation, University of Leicester, Leicester, United Kingdom
| | - Nicolas Sylvius
- Department of Genetics, University of Leicester, Leicester, United Kingdom
| | | | - Paul Denny
- MRC Harwell, Mammalian Genetics Unit, Oxford, United Kingdom
| | - Peter W. Andrew
- Department of Infection Immunity and Inflammation, University of Leicester, Leicester, United Kingdom
- * E-mail:
| |
Collapse
|
8
|
Wisby L, Fernandes VE, Neill DR, Kadioglu A, Andrew PW, Denny P. Spir2; a novel QTL on chromosome 4 contributes to susceptibility to pneumococcal infection in mice. BMC Genomics 2013; 14:242. [PMID: 23577770 PMCID: PMC3751763 DOI: 10.1186/1471-2164-14-242] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Accepted: 04/04/2013] [Indexed: 11/10/2022] Open
Abstract
Background Streptococcus pneumoniae causes over one million deaths worldwide annually, despite recent developments in vaccine and antibiotic therapy. Host susceptibility to pneumococcal infection and disease is controlled by a combination of genetic and environmental influences, but current knowledge remains limited. Results In order to identify novel host genetic variants as predictive risk factors or as potential targets for prophylaxis, we have looked for quantitative trait loci in a mouse model of invasive pneumococcal disease. We describe a novel locus, called Streptococcus pneumoniae infection resistance 2 (Spir2) on Chr4, which influences time to morbidity and the development of bacteraemia post-infection. Conclusions The two quantitative trait loci we have identified (Spir1 and Spir2) are linked significantly to both bacteraemia and survival time. This may mean that the principle cause of death, in our model of pneumonia, is bacteraemia and the downstream inflammatory effects it precipitates in the host.
Collapse
Affiliation(s)
- Laura Wisby
- MRC Mammalian Genetics Unit, Harwell, Oxon OX11 0RD, UK
| | | | | | | | | | | |
Collapse
|
9
|
Neill DR, Fernandes VE, Wisby L, Haynes AR, Ferreira DM, Laher A, Strickland N, Gordon SB, Denny P, Kadioglu A, Andrew PW. T regulatory cells control susceptibility to invasive pneumococcal pneumonia in mice. PLoS Pathog 2012; 8:e1002660. [PMID: 22563306 PMCID: PMC3334885 DOI: 10.1371/journal.ppat.1002660] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Accepted: 03/05/2012] [Indexed: 11/18/2022] Open
Abstract
Streptococcus pneumoniae is an important human pathogen responsible for a spectrum of diseases including pneumonia. Immunological and pro-inflammatory processes induced in the lung during pneumococcal infection are well documented, but little is known about the role played by immunoregulatory cells and cytokines in the control of such responses. We demonstrate considerable differences in the immunomodulatory cytokine transforming growth factor (TGF)-β between the pneumococcal pneumonia resistant BALB/c and susceptible CBA/Ca mouse strains. Immunohistochemistry and flow cytometry reveal higher levels of TGF-β protein in BALB/c lungs during pneumococcal pneumonia that correlates with a rapid rise in lung Foxp3+Helios+ T regulatory cells. These cells have protective functions during pneumococcal pneumonia, because blocking their induction with an inhibitor of TGF-β impairs BALB/c resistance to infection and aids bacterial dissemination from lungs. Conversely, adoptive transfer of T regulatory cells to CBA/Ca mice, prior to infection, prolongs survival and decreases bacterial dissemination from lungs to blood. Importantly, strong T regulatory cell responses also correlate with disease-resistance in outbred MF1 mice, confirming the importance of immunoregulatory cells in controlling protective responses to the pneumococcus. This study provides exciting new evidence for the importance of immunomodulation during pulmonary pneumococcal infection and suggests that TGF-β signalling is a potential target for immunotherapy or drug design. Streptococcus pneumoniae is a major human bacterial pathogen that causes a wide range of diseases including pneumonia, meningitis, sepsis and ear infections. The bacterium is responsible for around 1.2 million deaths per year, mostly in high-risk groups such as children, the elderly and those with a weakened immune system. Infection with the pneumococcus can induce a wide-variety of immune responses and disease symptoms and it is not known why some people are more resistant to infection than others. Here, we identify an important role in natural resistance against pneumococcal pneumonia for a group of cells – known as T regulatory cells – that control the immune response to pneumococcal infection. In mice, strong T regulatory cell responses correlate with resistance to invasive pneumococcal pneumonia. Disease-resistance can be boosted by administering T regulatory cells to highly susceptible mice or inhibited by blocking the activity of these cells in resistant mice. These results advance our understanding of the host immunity differences that underpin resistance to pneumococcal pneumonia and offer hope that in the future we might boost resistance in susceptible individuals through modulation of their immune system.
Collapse
Affiliation(s)
- Daniel R. Neill
- Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, United Kingdom
| | - Vitor E. Fernandes
- Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, United Kingdom
| | - Laura Wisby
- MRC Harwell, Mammalian Genetics Unit, Harwell Science and Innovation Campus, Oxfordshire, United Kingdom
| | - Andrew R. Haynes
- MRC Harwell, Mammalian Genetics Unit, Harwell Science and Innovation Campus, Oxfordshire, United Kingdom
| | - Daniela M. Ferreira
- Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, United Kingdom
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, United Kingdom
| | - Ameera Laher
- Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, United Kingdom
| | - Natalie Strickland
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, United Kingdom
| | - Stephen B. Gordon
- Liverpool School of Tropical Medicine, Pembroke Place, Liverpool, United Kingdom
| | - Paul Denny
- MRC Harwell, Mammalian Genetics Unit, Harwell Science and Innovation Campus, Oxfordshire, United Kingdom
| | - Aras Kadioglu
- Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, United Kingdom
- * E-mail: (AK); (PWA)
| | - Peter W. Andrew
- Department of Infection, Immunity and Inflammation, University of Leicester, Leicester, United Kingdom
- * E-mail: (AK); (PWA)
| |
Collapse
|
10
|
Sellers RS, Clifford CB, Treuting PM, Brayton C. Immunological variation between inbred laboratory mouse strains: points to consider in phenotyping genetically immunomodified mice. Vet Pathol 2011; 49:32-43. [PMID: 22135019 DOI: 10.1177/0300985811429314] [Citation(s) in RCA: 198] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Inbred laboratory mouse strains are highly divergent in their immune response patterns as a result of genetic mutations and polymorphisms. The generation of genetically engineered mice (GEM) has, in the past, used embryonic stem (ES) cells for gene targeting from various 129 substrains followed by backcrossing into more fecund mouse strains. Although common inbred mice are considered "immune competent," many have variations in their immune system-some of which have been described-that may affect the phenotype. Recognition of these immune variations among commonly used inbred mouse strains is essential for the accurate interpretation of expected phenotypes or those that may arise unexpectedly. In GEM developed to study specific components of the immune system, accurate evaluation of immune responses must take into consideration not only the gene of interest but also how the background strain and microbial milieu contribute to the manifestation of findings in these mice. This article discusses points to consider regarding immunological differences between the common inbred laboratory mouse strains, particularly in their use as background strains in GEM.
Collapse
Affiliation(s)
- R S Sellers
- Albert Einstein College of Medicine, 1301 Morris Park Ave, Room 158, Bronx, NY 10461, USA.
| | | | | | | |
Collapse
|
11
|
Analysis of murine genetic predisposition to pneumococcal infection reveals a critical role of alveolar macrophages in maintaining the sterility of the lower respiratory tract. Infect Immun 2011; 79:1842-7. [PMID: 21321074 DOI: 10.1128/iai.01143-10] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The study of pathogenic mechanisms of disease can be greatly facilitated by studying genetic differences in susceptibility to infection. In the present study, we compared the severity of pneumococcal infection in C57BL/6 (B6) and 129Sv mice. The results showed that 129Sv mice were remarkably more susceptible to pneumococcal infection than B6 mice. Bacterial clearance, proinflammatory mediators, leukocyte recruitment, and phagocyte activities were measured to examine potential immune factors associated with differences in susceptibility to pneumococcal infection. The greater susceptibility of 129Sv mice was associated only with inadequate alveolar macrophage bacterial killing, as indicated by significantly decreased initial bacterial clearance from the respiratory tract. Effective pneumococcal clearance was not dependent upon Toll-like receptor 2 (TLR2) expression, oxidative stress, or matrix metallopeptidase 12 (MMP-12) expression. Furthermore, phagocytosis analysis suggested that the deficiency found in 129Sv alveolar macrophages was not due to a lack of bacterial recognition but, rather, to reduced bacterial uptake. In conclusion, our findings indicate a crucial role of alveolar macrophage phagocytosis during innate defense against pneumococcal infection, which may explain the association of host genetic risk factors with predisposition to pneumococcal infection.
Collapse
|
12
|
SYSGENET: a meeting report from a new European network for systems genetics. Mamm Genome 2010; 21:331-6. [PMID: 20623354 PMCID: PMC2923724 DOI: 10.1007/s00335-010-9273-7] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2010] [Accepted: 06/24/2010] [Indexed: 12/22/2022]
Abstract
The first scientific meeting of the newly established European SYSGENET network took place at the Helmholtz Centre for Infection Research (HZI) in Braunschweig, April 7-9, 2010. About 50 researchers working in the field of systems genetics using mouse genetic reference populations (GRP) participated in the meeting and exchanged their results, phenotyping approaches, and data analysis tools for studying systems genetics. In addition, the future of GRP resources and phenotyping in Europe was discussed.
Collapse
|
13
|
Brown KL, Falsafi R, Kum W, Hamill P, Gardy JL, Davidson DJ, Turvey S, Finlay BB, Speert DP, Hancock REW. Robust TLR4-induced gene expression patterns are not an accurate indicator of human immunity. J Transl Med 2010; 8:6. [PMID: 20105294 PMCID: PMC2843650 DOI: 10.1186/1479-5876-8-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2009] [Accepted: 01/27/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Activation of Toll-like receptors (TLRs) is widely accepted as an essential event for defence against infection. Many TLRs utilize a common signalling pathway that relies on activation of the kinase IRAK4 and the transcription factor NFkappaB for the rapid expression of immunity genes. METHODS 21 K DNA microarray technology was used to evaluate LPS-induced (TLR4) gene responses in blood monocytes from a child with an IRAK4-deficiency. In vitro responsiveness to LPS was confirmed by real-time PCR and ELISA and compared to the clinical predisposition of the child and IRAK4-deficient mice to Gram negative infection. RESULTS We demonstrated that the vast majority of LPS-responsive genes in IRAK4-deficient monocytes were greatly suppressed, an observation that is consistent with the described role for IRAK4 as an essential component of TLR4 signalling. The severely impaired response to LPS, however, is inconsistent with a remarkably low incidence of Gram negative infections observed in this child and other children with IRAK4-deficiency. This unpredicted clinical phenotype was validated by demonstrating that IRAK4-deficient mice had a similar resistance to infection with Gram negative S. typhimurium as wildtype mice. A number of immunity genes, such as chemokines, were expressed at normal levels in human IRAK4-deficient monocytes, indicating that particular IRAK4-independent elements within the repertoire of TLR4-induced responses are expressed. CONCLUSIONS Sufficient defence to Gram negative immunity does not require IRAK4 or a robust, 'classic' inflammatory and immune response.
Collapse
Affiliation(s)
- Kelly L Brown
- Centre for Microbial Diseases and Immunity Research, Department of Microbiology and Immunology, University of British Columbia, Vancouver, British Columbia, V6T 1Z3, Canada.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Ripoll VM, Kadioglu A, Cox R, Hume DA, Denny P. Macrophages from BALB/c and CBA/Ca mice differ in their cellular responses to Streptococcus pneumoniae. J Leukoc Biol 2009; 87:735-41. [PMID: 20028774 DOI: 10.1189/jlb.0509359] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Affiliation(s)
- Vera M Ripoll
- Mammalian Genetics Unit, Medical Research Council, Harwell, Oxfordshire OX11 0RD, UK.
| | | | | | | | | |
Collapse
|
15
|
Increased susceptibility for superinfection with Streptococcus pneumoniae during influenza virus infection is not caused by TLR7-mediated lymphopenia. PLoS One 2009; 4:e4840. [PMID: 19290047 PMCID: PMC2654096 DOI: 10.1371/journal.pone.0004840] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2008] [Accepted: 02/17/2009] [Indexed: 11/19/2022] Open
Abstract
Influenza A virus (IAV) causes respiratory tract infections leading to recurring epidemics with high rates of morbidity and mortality. In the past century IAV induced several world-wide pandemics, the most aggressive occurring in 1918 with a death toll of 20-50 million cases. However, infection with IAV alone is rarely fatal. Instead, death associated with IAV is usually mediated by superinfection with bacteria, mainly Streptococcus pneumoniae. The reasons for this increased susceptibility to bacterial superinfection have not been fully elucidated. We previously demonstrated that triggering of TLR7 causes immune incompetence in mice by induction of lymphopenia. IAV is recognized by TLR7 and infections can lead to lymphopenia. Since lymphocytes are critical to protect from S. pneumoniae it has long been speculated that IAV-induced lymphopenia might mediate increased susceptibility to superinfection. Here we show that sub-lethal pre-infections of mice with IAV-PR8/A/34 strongly increased their mortality in non-lethal SP infections, surprisingly despite the absence of detectable lymphopenia. In contrast to SP-infection alone co-infected animals were unable to control the exponential growth of SP. However, lymphopenia forced by TLR7-triggering or antibody-mediated neutropenia did not increase SP-susceptibility or compromise the ability to control SP growth. Thus, the immune-incompetence caused by transient lympho- or leukopenia is not sufficient to inhibit potent antibacterial responses of the host and mechanisms distinct from leukodepletion must account for increased bacterial superinfection during viral defence.
Collapse
|
16
|
Abstract
SUMMARY Streptococcus pneumoniae is a colonizer of human nasopharynx, but it is also an important pathogen responsible for high morbidity, high mortality, numerous disabilities, and high health costs throughout the world. Major diseases caused by S. pneumoniae are otitis media, pneumonia, sepsis, and meningitis. Despite the availability of antibiotics and vaccines, pneumococcal infections still have high mortality rates, especially in risk groups. For this reason, there is an exceptionally extensive research effort worldwide to better understand the diseases caused by the pneumococcus, with the aim of developing improved therapeutics and vaccines. Animal experimentation is an essential tool to study the pathogenesis of infectious diseases and test novel drugs and vaccines. This article reviews both historical and innovative laboratory pneumococcal animal models that have vastly added to knowledge of (i) mechanisms of infection, pathogenesis, and immunity; (ii) efficacies of antimicrobials; and (iii) screening of vaccine candidates. A comprehensive description of the techniques applied to induce disease is provided, the advantages and limitations of mouse, rat, and rabbit models used to mimic pneumonia, sepsis, and meningitis are discussed, and a section on otitis media models is also included. The choice of appropriate animal models for in vivo studies is a key element for improved understanding of pneumococcal disease.
Collapse
|
17
|
Hollingsworth JW, Whitehead G, Berman KG, Tekippe EM, Gilmour MI, Larkin JE, Quackenbush J, Schwartz DA. Genetic basis of murine antibacterial defense to streptococcal lung infection. Immunogenetics 2007; 59:713-24. [PMID: 17701033 DOI: 10.1007/s00251-007-0242-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2007] [Accepted: 07/03/2007] [Indexed: 12/14/2022]
Abstract
To evaluate the effect of genetic background on antibacterial defense to streptococcal infection, eight genetically diverse strains of mice (A/J, DBA/2J, CAST/Ei, FVB/NJ, BALB/cJ, C57BL/6J, 129/SvImJ, and C3H/HeJ) and tlr2-deficient mice (C57BL/6(tlr2-/-)) were infected with three doses of Streptococcus zooepidemicus (500, 5,000, or 50,000 colony-forming units) by alveolar challenge. There was a range of susceptibility between the strains at each dose and time point (6, 24, and 96 h). At the lowest dose, the 129/SvImJ and C3H/HeJ strains had significantly higher bacterial counts at all time points after infection, when compared to A/J, DBA/2J, CAST/Ei, FVB/NJ, which were resistant to infection at the low dose of innoculum. At the medium dose, 129/SvImJ and C3H/HeJ had higher bacterial counts, while A/J, DBA/2J, and BALB/cJ showed reduced streptococcal growth. After the highest dose of Streptococcus, there were minimal differences between strains, suggesting the protective impact of modifier genes can be overcome. TLR2-deficient animals contained increased bacterial load with reduced cytokines after 96 h when compared to C57BL/6J controls suggesting a role of innate immunity in late antibacterial defense. Overall, we identify vulnerable (129/SvlmJ and C3H/HeJ) and resistant (A/J, FVB, and DBA) mouse strains to streptococcal lung infection, which demonstrate divergent genetic expression profiles. These results demonstrate that innate differences in pulmonary host defense to S. zooepidemicus are dependent on host genetic factors.
Collapse
Affiliation(s)
- John W Hollingsworth
- Division of Pulmonary, Allergy, and Critical Care Medicine, Duke University Medical Center, P.O. Box 3136, Durham, NC 27710, USA.
| | | | | | | | | | | | | | | |
Collapse
|
18
|
Kiank C, Holtfreter B, Starke A, Mundt A, Wilke C, Schütt C. Stress susceptibility predicts the severity of immune depression and the failure to combat bacterial infections in chronically stressed mice. Brain Behav Immun 2006; 20:359-68. [PMID: 16330179 DOI: 10.1016/j.bbi.2005.10.151] [Citation(s) in RCA: 66] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2005] [Revised: 09/23/2005] [Accepted: 10/24/2005] [Indexed: 11/30/2022] Open
Abstract
Chronic psychological stress has been suggested to play a role in disorders in which the immune system unexpectedly fails to respond in a protective manner. Chronic combined acoustic and restraint stress compromises the anti-bacterial defense mechanisms of female BALB/c mice. The immunodeficiency is characterized by an apoptotic loss of lymphocytes, reduced ex vivo-inducibility of TNF but increased inducibility of IL10, reduced T-cell proliferation, and impaired phagocyte functions. Stressed mice develop depression-like behavior that was monitored by a stress severity score (SSS). Besides a strain (BALB/c>CBA) and gender (male>female) dependent susceptibility to chronic stress, inbred mice have an individual coping ability. Importantly, the individual SSS strongly correlates with Escherichia coli dissemination after infection as well as with IL10-inducibility and circulating corticosterone levels of each animal.
Collapse
Affiliation(s)
- C Kiank
- Department of Immunology, University of Greifswald, Germany
| | | | | | | | | | | |
Collapse
|
19
|
Oggioni MR, Iannelli F, Ricci S, Chiavolini D, Parigi R, Trappetti C, Claverys JP, Pozzi G. Antibacterial activity of a competence-stimulating peptide in experimental sepsis caused by Streptococcus pneumoniae. Antimicrob Agents Chemother 2005; 48:4725-32. [PMID: 15561850 PMCID: PMC529211 DOI: 10.1128/aac.48.12.4725-4732.2004] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Streptococcus pneumoniae, a major cause of human disease, produces a 17-mer autoinducer peptide pheromone (competence-stimulating peptide [CSP]) for the control of competence for genetic transformation. Due to previous work linking CSP to stress phenotypes, we set up an in vivo sepsis model to assay its effect on virulence. Our data demonstrate a significant increase in the rates of survival of mice, reductions of blood S. pneumoniae counts, and prolonged times to death for mice treated with CSP. In vitro the dose of CSP used in the animal model produced a transitory inhibition of growth. When a mutant with a mutation in the CSP sensor histidine kinase was assayed, no bacteriostatic phenotype was detected in vitro and no change in disease outcome was observed in vivo. The data demonstrate that CSP, which induces in vitro a temporary growth arrest through stimulation of its cognate histidine kinase receptor, is able to block systemic disease in mice. This therapeutic effect is novel, in that the drug-like effect is obtained by stimulation, rather than inhibition, of a bacterial drug target.
Collapse
Affiliation(s)
- Marco R Oggioni
- Laboratorio di Microbiologia Molecolare e Biotecnologia, Dipartimento di Biologia Molecolare, Università di Siena, Siena, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
20
|
Horín P, Smola J, Matiasovic J, Vyskocil M, Lukeszová L, Tomanová K, Králík P, Glasnák V, Schröffelová D, Knoll A, Sedlinská M, Krenková L, Jahn P. Polymorphisms in equine immune response genes and their associations with infections. Mamm Genome 2004; 15:843-50. [PMID: 15520887 DOI: 10.1007/s00335-004-2356-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2003] [Accepted: 05/26/2004] [Indexed: 10/26/2022]
Abstract
Polymorphic markers identified in the horse genes encoding the interleukin 12 p40 subunit, interferon gamma, tumor necrosis factor receptor 1, and inducible nitric oxide synthase were identified and tested, along with additional markers, for associations with two important horse infections: Rhodococcus equi and Lawsonia intracellularis. Eight immune response-related and 14 microsatellite loci covering 12 out of 31 equine autosomes were used for the association analysis. Markers located on horse Chromosomes Eca10 and 15 were significantly associated with the presence of high numbers of R. equi in transtracheal aspirates. Significant associations of markers located on Eca9, 15, and 21 with fecal shedding of Lawsonia intracellularis were found. Marginal associations with tumor necrosis factor alpha, interferon gamma, and other genes suggested that variations in immune response-related genes could underlie the phenotypic variation observed.
Collapse
Affiliation(s)
- Petr Horín
- Faculty of Veterinary Medicine, Institute of Animal Genetics, Palackého 1/3, 61242 Brno, Czech Republic.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|