1
|
Swain CC, Wischmeier JN, Neifer AE, Lloyd EAR, Neifer KL, Kile KB, Burkett JP. Hereditary convulsions in an outbred prairie vole line. Epilepsy Res 2023; 195:107202. [PMID: 37540927 PMCID: PMC10529651 DOI: 10.1016/j.eplepsyres.2023.107202] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 07/09/2023] [Accepted: 07/31/2023] [Indexed: 08/06/2023]
Abstract
Patients with epilepsy are significantly burdened by the disease due to long-term health risks, the severe side effect profiles of anti-epileptic drugs, and the strong possibility of pharmacoresistant refractory seizures. New animal models of epilepsy with unique characteristics promise to further research to address these ongoing problems. Here, we characterize a newly developed line of prairie voles (Microtus ochrogaster, UTol:HIC or "Toledo" line) that presents with a hereditary, adult-onset, handling-induced convulsion phenotype. Toledo voles were bred for four generations and tested to determine whether the observed phenotype was consistent with epileptic seizures. Toledo voles maintained a stable 22 % incidence of convulsions across generations, with an average age of onset of 12-16 weeks. Convulsions in Toledo voles were reliably evoked by rodent seizure screens and were phenotypically consistent with murine seizures. At the colony level, Toledo voles had a 7-fold increase in risk for sudden unexpected death from unknown causes, which parallels sudden unexpected death in epilepsy (SUDEP) in human patients. Finally, convulsions in Toledo voles were reduced or prevented by treatment with the anti-epileptic drug levetiracetam. Taken in combination, these results suggest that convulsions in Toledo voles may be epileptic seizures. The Toledo prairie vole strain may serve as a new rodent model of epilepsy in an undomesticated, outbred species.
Collapse
Affiliation(s)
- Caroline C Swain
- University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - James N Wischmeier
- University of Toledo College of Natural Sciences and Mathematics, Toledo, OH 43606, USA
| | - Asha E Neifer
- University of Toledo College of Natural Sciences and Mathematics, Toledo, OH 43606, USA
| | | | - Kari L Neifer
- Department of Neurosciences, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA
| | - Kara B Kile
- Department of Physics, University of Toledo College of Natural Sciences and Mathematics, Toledo, OH 43606, USA
| | - James P Burkett
- Department of Neurosciences, University of Toledo College of Medicine and Life Sciences, Toledo, OH 43614, USA.
| |
Collapse
|
2
|
Letts VA, Beyer BJ, Frankel WN. Hidden in plain sight: spike-wave discharges in mouse inbred strains. GENES BRAIN AND BEHAVIOR 2014; 13:519-26. [PMID: 24861780 DOI: 10.1111/gbb.12142] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2014] [Revised: 05/07/2014] [Accepted: 05/17/2014] [Indexed: 11/28/2022]
Abstract
Twenty-seven inbred strains of mice were tested for spike-wave discharge (SWD) activity by video-electroencephalographic recordings over a 24-h recording period. Eight strains had reproducible, frequent SWDs, including five strains (C57BLKS/J, CBA/J, DBA/1J, NOR/LtJ, SM/J) previously undiagnosed for this distinctive phenotype. Eighteen other strains exhibited no such activity. Spike-wave discharges usually occurred while the subject was motionless, and in a significant number of annotated instances coincided with an arrest of the subject's relatively unrestrained locomotor activity, which resumed immediately after the discharge ended. In all five new strains, SWDs were suppressed by ethosuximide administration. From the genealogy of inbred strains, we suggest that two ancestors, A and DBA, transmitted genotypes required for SWD in all positive strains. Together these strains with SWDs provide new opportunities to understand the genetic core susceptibility of this distinctive electroencephalographic activity and to explore its relationship to absence epilepsy, a human disorder for which few genes are known.
Collapse
Affiliation(s)
- V A Letts
- The Jackson Laboratory, Bar Harbor, ME, USA
| | | | | |
Collapse
|
3
|
Carballosa-Gonzalez MM, Muñoz LJ, López-Alburquerque T, Pardal-Fernández JM, Nava E, de Cabo C, Sancho C, López DE. EEG characterization of audiogenic seizures in the hamster strain GASH:Sal. Epilepsy Res 2013; 106:318-25. [PMID: 23916142 DOI: 10.1016/j.eplepsyres.2013.07.001] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2013] [Revised: 06/27/2013] [Accepted: 07/02/2013] [Indexed: 12/16/2022]
Abstract
The study was performed to characterize GASH:SAL audiogenic seizures as true epileptic activity based on electroencephalographic markers acquired with a wireless implanted radiotelemetry system. We analyzed cortical EEG patterns synchronized with video recordings of convulsive behavior of the GASH:Sal hamster following an acoustic stimulus. All GASH:Sal presented archetypal motor symptoms comparable to current animal models of generalized tonic-clonic epilepsy. Seizures consisted of an initial bout of wild running, followed by opisthotonus, tonic-clonic convulsions, tonic limb extension, and terminated in postictal depression. EEG patterns correlated with behavior and displayed phase appropriate spike-wave complexes, low-amplitude desynchronized activity, and high frequency large-amplitude peaks. Our results confirm that electroencephalographic profiles of the audiogenic seizures of the hamster GASH:Sal are parallel to EEG patterns of other animal models of generalized tonic-clonic seizures. Therefore, this animal may serve as an appropriate model for epilepsy research.
Collapse
Affiliation(s)
- Melissa M Carballosa-Gonzalez
- Instituto de Neurociencias de Castilla y León/IBSAL, C/ Pintor Fernando Gallego, n° 1, 37007 Salamanca, Spain; The Miami Project to Cure Paralysis, University of Miami Miller School of Medicine, 1095 NW 14th Terrace, Room 2-34, Miami, FL 33136, USA
| | | | | | | | | | | | | | | |
Collapse
|
4
|
Etholm L, Bahonjic E, Walaas SI, Kao HT, Heggelund P. Neuroethologically delineated differences in the seizure behavior of synapsin 1 and synapsin 2 knock-out mice. Epilepsy Res 2012; 99:252-9. [PMID: 22236379 DOI: 10.1016/j.eplepsyres.2011.12.004] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2011] [Revised: 11/25/2011] [Accepted: 12/01/2011] [Indexed: 10/14/2022]
Abstract
The highly homologous nerve terminal phosphoproteins synapsin I and synapsin II have been linked to the pathogenesis of epilepsy through associations between synapsin gene mutations and epileptic disease in humans and to the observation of handling induced seizures in mice genetically depleted of one or both of these proteins. Whereas seizure behavior in mice lacking both synapsin I and synapsin II is well characterized, the seizure behavior in mice lacking either is less well studied. Through so called neuroethologically based analyses of fully established seizure behavior in Synapsin 1 and 2 knock-out mice (Syn1KO and Syn2KO mice) aged 4 1/2 months, this study reveals significant differences in the seizure behavior of the two genotypes: whereas Syn1KO mice show both partial and generalized forebrain seizure activity, Syn2KO mice show only fully generalized forebrain seizures. Analysis of seizure behavior at earlier stages shows that the mature seizure pattern in Syn2KO mice establishes rapidly from the age of ∼2 months, when Syn1KO partial seizures are rare, and Syn1KO generalized seizures are almost absent. The specific behavioral phenotypes of the two strains suggest that the slight differences in structure, function and expression of these highly related proteins could be important factors during seizure generating neural activity.
Collapse
Affiliation(s)
- Lars Etholm
- Section of Clinical Neurophysiology, Department of Neurology, Oslo University Hospital - Rikshospitalet, Oslo, Norway.
| | | | | | | | | |
Collapse
|
5
|
Ferraro TN, Smith GG, Ballard D, Zhao H, Schwebel CL, Gupta A, Rappaport EF, Ruiz SE, Lohoff FW, Doyle GA, Berrettini WH, Buono RJ. Quantitative trait loci for electrical seizure threshold mapped in C57BLKS/J and C57BL/10SnJ mice. GENES BRAIN AND BEHAVIOR 2010; 10:309-15. [PMID: 21129161 DOI: 10.1111/j.1601-183x.2010.00668.x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
We mapped the quantitative trait loci (QTL) that contribute to the robust difference in maximal electroshock seizure threshold (MEST) between C57BLKS/J (BKS) and C57BL10S/J (B10S) mice. BKS, B10S, BKS × B10S F1 and BKS × B10S F2 intercross mice were tested for MEST at 8-9 weeks of age. Results of F2 testing showed that, in this cross, MEST is a continuously distributed trait determined by polygenic inheritance. Mice from the extremes of the trait distribution were genotyped using microarray technology. MEST correlated significantly with body weight and sex; however, because of the high correlation between these factors, the QTL mapping was conditioned on sex alone. A sequential series of statistical analyses was used to map QTLs including single-point, multipoint and multilocus methods. Two QTLs reached genome-wide levels of significance based upon an empirically determined permutation threshold: chromosome 6 (LOD = 6.0 at ∼69 cM) and chromosome 8 (LOD = 5.7 at ∼27 cM). Two additional QTLs were retained in a multilocus regression model: chromosome 3 (LOD = 2.1 at ∼68 cM) and chromosome 5 (LOD = 2.7 at ∼73 cM). Together the four QTLs explain one third of the total phenotypic variance in the mapping population. Lack of overlap between the major MEST QTLs mapped here in BKS and B10S mice and those mapped previously in C57BL/6J and DBA/2J mice (strains that are closely related to BKS and B10S) suggest that BKS and B10S represent a new polygenic mouse model for investigating susceptibility to seizures.
Collapse
Affiliation(s)
- T N Ferraro
- Department of Psychiatry, University of Pennsylvania, Philadelphia, PA 19104-3403, USA.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
6
|
Etholm L, Arabadzisz D, Lipp HP, Heggelund P. Seizure logging: A new approach to synchronized cable-free EEG and video recordings of seizure activity in mice. J Neurosci Methods 2010; 192:254-60. [PMID: 20708034 DOI: 10.1016/j.jneumeth.2010.08.003] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2010] [Accepted: 08/02/2010] [Indexed: 11/18/2022]
Abstract
We describe a new cable-free, non-telemetric method for synchronized electrophysiological and video recordings of seizure activity in freely moving mice. The electrophysiological recordings were made by a head-mounted 4-channel data-logging device, allowing the mouse to move freely in its cage, and even to be moved from cage to cage under ongoing recording. Seizures were studied in Synapsin I/II double knock-out (SynDKO) mice, a genetically engineered mouse line that shows seizures upon daily handling procedures such as tail lifting during cage changes, much in resemblance to the more studied El mouse. The ability to elicit seizures through daily handling in SynDKO mice undergoing electrophysiological recording is a significant improvement in comparison to the traditional cable-based set-up. Furthermore, with its four channels and a sample rate of up to 500Hz, the data-logging device opens for more varied electrophysiological studies than other available cable-free systems.
Collapse
Affiliation(s)
- Lars Etholm
- Institute of Basic Medical Sciences, Department of Physiology, University of Oslo, Norway.
| | | | | | | |
Collapse
|
7
|
Frankel WN, Yang Y, Mahaffey CL, Beyer BJ, O'Brien TP. Szt2, a novel gene for seizure threshold in mice. GENES BRAIN AND BEHAVIOR 2009; 8:568-76. [PMID: 19624305 DOI: 10.1111/j.1601-183x.2009.00509.x] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In a chemical mutagenesis screen we identified Szt2 (seizure threshold 2) as a gene that confers low seizure threshold to mice and may also enhance epileptogenesis. The semidominant phenotype was mapped to Chromosome 4 and narrowed further to a critical interval of approximately 650 kb. A novel large (> 10 kb) transcript in the critical interval was found to have fourfold increased steady-state expression at the RNA level in Szt2 homozygous mutant brain. The corresponding 72 exon gene encodes a 378-kD protein with no significant or suggestive sequence similarities to any other protein. The mutant allele of Szt2 contains a splice donor mutation after exon 32, predicting transcriptional read-through, translational frameshift and premature stop. A second Szt2 allele, containing a gene-trap mutation in exon 21, also conferred a low seizure threshold and increased RNA expression, but unlike the original allele, some gene-trap homozygotes died embryonically. Szt2 is transcribed in many tissues, with the highest expression in brain, and it is also expressed during embryonic development. Szt2 is highly conserved in evolution, with a clear, single orthologue found in all land vertebrates and in many invertebrates. Interestingly, in mammals the Szt2 gene resides in a highly conserved head-to-head configuration with Med8 (which encodes a Mediator complex subunit), separated by only 91 nt. While the biological function of Szt2 remains unknown, its high conservation, unique structure and effect on seizure threshold suggest that it serves an important role in the central nervous system.
Collapse
Affiliation(s)
- W N Frankel
- The Jackson Laboratory, Bar Harbor, Maine, USA.
| | | | | | | | | |
Collapse
|
8
|
Frankel WN. Genetics of complex neurological disease: challenges and opportunities for modeling epilepsy in mice and rats. Trends Genet 2009; 25:361-7. [PMID: 19665252 DOI: 10.1016/j.tig.2009.07.001] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2009] [Revised: 06/29/2009] [Accepted: 07/02/2009] [Indexed: 11/19/2022]
Abstract
Currently, approximately 20 genetic variants are known to cause Mendelian forms of human epilepsy, leaving a vast heritability undefined. Rodent models for genetically complex epilepsy have been studied for many years, but only recently have strong candidate genes emerged, including Cacna1 g in the GAERS rat model of absence epilepsy and Kcnj10 in the low seizure threshold of DBA/2 mice. In parallel, a growing number of mouse mutations studied on multiple strain backgrounds reveal the impact of genetic modifiers on seizure severity, incidence or form--perhaps mimicking the complexity seen in humans. The field of experimental genetics in rodents is poised to study discrete epilepsy mutations on a diverse choice of strain backgrounds to develop better models and identify modifiers. But, it must find the right balance between embracing the strain diversity available, with the ability to detect and characterize genetic effects. Using alternative strain backgrounds when studying epilepsy mutations will enhance the modeling of epilepsy as a complex genetic disease.
Collapse
Affiliation(s)
- Wayne N Frankel
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA.
| |
Collapse
|
9
|
Bergren SK, Rutter ED, Kearney JA. Fine mapping of an epilepsy modifier gene on mouse Chromosome 19. Mamm Genome 2009; 20:359-66. [PMID: 19513789 DOI: 10.1007/s00335-009-9193-6] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2009] [Accepted: 05/08/2009] [Indexed: 11/25/2022]
Abstract
Mutations in voltage-gated sodium channels are associated with several types of human epilepsy. Variable expressivity and penetrance are common features of inherited epilepsy caused by sodium channel mutations, suggesting that genetic modifiers may influence clinical severity. The mouse model Scn2a(Q54) has an epilepsy phenotype due to a mutation in Scn2a that results in elevated persistent sodium current. Phenotype severity in Scn2a(Q54) mice is dependent on the genetic background. Congenic C57BL/6J.Q54 mice have delayed onset and low seizure frequency compared to (C57BL/6J x SJL/J)F1.Q54 mice. Previously, we identified two modifier loci that influence the Scn2a(Q54) epilepsy phenotype: Moe1 (modifier of epilepsy 1) on Chromosome 11 and Moe2 on Chromosome 19. We have constructed interval-specific congenic strains to further refine the position of Moe2 on Chromosome 19 to a 5-Mb region. Sequencing and expression analyses of genes in the critical interval suggested two potential modifier candidates: (1) voltage-gated potassium channel subunit subfamily V, member 2 (Kcnv2), and (2) SWI/SNF-related, matrix-associated, actin-dependent regulator of chromatin, subfamily a, member 2 (Smarca2). Based on its biological role in regulating membrane excitability and the association between ion channel variants and seizures, Kcnv2 is a strong functional candidate for Moe2. Modifier genes affecting the epilepsy phenotype of Scn2a(Q54) mice may contribute to variable expressivity and penetrance in human epilepsy patients with sodium channel mutations.
Collapse
Affiliation(s)
- Sarah K Bergren
- Department of Human Genetics, University of Michigan, Ann Arbor, MI 48109, USA
| | | | | |
Collapse
|
10
|
Kohlrausch FB, Salatino-Oliveira A, Gama CS, Lobato MI, Belmonte-de-Abreu P, Hutz MH. G-protein gene 825C>T polymorphism is associated with response to clozapine in Brazilian schizophrenics. Pharmacogenomics 2009; 9:1429-36. [PMID: 18855531 DOI: 10.2217/14622416.9.10.1429] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
AIMS Clozapine treatment of schizophrenia is effective only in 30-60% of individuals. Since genetic factors are believed to play a significant role in the variation of response to antipsychotics, the aim of the present study was to verify the effect of a G-protein gene polymorphism on clozapine response and clozapine-induced generalized seizures in Brazilian patients with schizophrenia. PATIENTS & METHODS In total, 121 schizophrenic patients in treatment with clozapine were genotyped for the 825C>T polymorphism it the GNB3 gene using PCR. RESULTS Homozygosity for the T825 allele was more frequent among nonresponders (chi(2) = 7.708; p = 0.021), and carriers of this allele had a higher risk to present a convulsion episode (chi(2) = 7.279; p = 0.007). These results were confirmed after controlling for covariates by logistic regression. CONCLUSION Our data suggest an influence of the 825C>T polymorphism on clozapine response in persons with schizophrenia and also on a specific neurological side effect (generalized seizures) under clozapine treatment.
Collapse
Affiliation(s)
- Fabiana B Kohlrausch
- Universidade Federal do Rio Grande do Sul, Departamento de Genética, Instituto de Biociências, Caixa Postal 15053, 91501-970 Porto Alegre, RS, Brazil
| | | | | | | | | | | |
Collapse
|
11
|
Moy SS, Nadler JJ, Young NB, Nonneman RJ, Segall SK, Andrade GM, Crawley JN, Magnuson TR. Social approach and repetitive behavior in eleven inbred mouse strains. Behav Brain Res 2008; 191:118-29. [PMID: 18440079 PMCID: PMC2441761 DOI: 10.1016/j.bbr.2008.03.015] [Citation(s) in RCA: 183] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2007] [Revised: 03/12/2008] [Accepted: 03/14/2008] [Indexed: 01/13/2023]
Abstract
Core symptoms of autism include deficits in social interaction, impaired communication, and restricted, repetitive behaviors. The repetitive behavior domain encompasses abnormal motoric stereotypy, an inflexible insistence on sameness, and resistance to change. In recent years, many genetic mouse models of autism and related disorders have been developed, based on candidate genes for disease susceptibility. The present studies are part of an ongoing initiative to develop appropriate behavioral tasks for the evaluation of mouse models relevant to autism. We have previously reported profiles for sociability, preference for social novelty, and resistance to changes in a learned pattern of behavior, as well as other functional domains, for 10 inbred mouse strains of divergent genetic backgrounds. The present studies extend this multi-component behavioral characterization to several additional strains: C58/J, NOD/LtJ, NZB/B1NJ, PL/J, SJL/J, SWR/J, and the wild-derived PERA/EiJ. C58/J, NOD/LtJ, NZB/B1NJ, SJL/J, and PERA/EiJ demonstrated low sociability, measured by time spent in proximity to an unfamiliar conspecific, with 30-60% of mice from these strains showing social avoidance. In the Morris water maze, NZB/B1NJ had a persistent bias for the quadrant where the hidden platform was located during acquisition, even after 9 days of reversal training. A particularly interesting profile was found for C58/J, which had low social preference, poor performance in the T-maze, and overt motoric stereotypy. Overall, this set of tasks and observational methods provides a strategy for evaluating novel mouse models in behavioral domains relevant to the autism phenotype.
Collapse
Affiliation(s)
- Sheryl S Moy
- Neurodevelopmental Disorders Research Center, CB#7146, University of North Carolina School of Medicine, Chapel Hill, NC 27599, United States.
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Kaneda H, Taguma K, Suzuki C, Ozaki A, Nakamura C, Hachisu A, Kobayashi K, Wakana S, Shiroishi T. An optimal embryo transfer condition for the effective production of DBA/2J mice. Exp Anim 2008; 56:385-8. [PMID: 18075200 DOI: 10.1538/expanim.56.385] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
The DBA/2J mouse strain is a standard laboratory strain that is widely used for biomedical research. This strain, however, suffers from poor reproductive performance. In addition, the conditions for reliable embryo transfer (ET) of this strain have not been elucidated. The intention of this study was to determine the optimal number of embryos for transfer that allow the effective production of DBA/2J offspring. In the experiment, 7 to 15 embryos per oviduct were transferred into pseudopregnant ICR females. A relatively high success rate for pup production was observed when a large number of DBA/2J embryos (30 embryos per female) were transferred. This result shows that the ET efficiency of the DBA/2J strain can be improved by increasing the number of transferred embryos.
Collapse
Affiliation(s)
- Hideki Kaneda
- Functional Genomics Research Group, RIKEN Genomic Sciences Center, Ibaraki, Japan
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Frankel WN, Beyer B, Maxwell CR, Pretel S, Letts VA, Siegel SJ. Development of a new genetic model for absence epilepsy: spike-wave seizures in C3H/He and backcross mice. J Neurosci 2006; 25:3452-8. [PMID: 15800200 PMCID: PMC6724901 DOI: 10.1523/jneurosci.0231-05.2005] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
To characterize the genetic basis of spike-wave discharges (SWDs) detected by electroencephalography (EEG) in C3H/He mice, substrains of C3H mice were evaluated by EEG and sensitivity to ethosuximide. Crosses with the SWD-negative strain C57BL/6J were performed to map the underlying gene(s). C3H/He substrains exhibited a modest incidence (average of 19 SWDs per hour) of 7-8 Hz SWDs when at rest, compared with the C3HeB/Fe subline (four SWDs per hour). In the mapping backcross, however, many mice showed a very high incidence (50-220 SWDs per hour) throughout the recording period. SWDs were first detected at 3.5 weeks of age, were associated with behavioral arrest, were suppressed by ethosuximide, and were strongest in the cerebral cortex and thalamus. The major C3H determinant of SWDs, spkw1 (spike-wave 1), mapped to chromosome (Chr 9), and together with a C57BL/6J determinant on Chr 8, spkw2, accounted for more than one-half of the phenotypic variation in the backcross mice. The modest SWD incidence in C3H/He mice and the high incidence in backcrosses implies that SWD could be a confounding variable for other behaviors. Because C3H/He mice have no other brain abnormalities, they are an attractive alternative for studying idiopathic absence epilepsy.
Collapse
|
14
|
McColl CD, Jacoby AS, Shine J, Iismaa TP, Bekkers JM. Galanin receptor-1 knockout mice exhibit spontaneous epilepsy, abnormal EEGs and altered inhibition in the hippocampus. Neuropharmacology 2006; 50:209-18. [PMID: 16243364 DOI: 10.1016/j.neuropharm.2005.09.001] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2004] [Revised: 07/16/2005] [Accepted: 09/02/2005] [Indexed: 11/19/2022]
Abstract
Galanin is a widely-distributed neuropeptide that acts as an endogenous anticonvulsant. We have recently generated a galanin receptor type 1 knockout mouse (Galr1(-/-)) that develops spontaneous seizures. Our aim here was to characterize the seizures by making electroencephalogram (EEG) recordings from this animal, and also to elucidate the cellular basis of its epileptic phenotype by studying the neurophysiology of CA1 pyramidal neurons in acute hippocampal slices. EEGs showed that major seizures had a partial onset with secondary generalization, and that paroxysms of spike-and-slow waves occurred and were associated with hypoactivity. The interictal EEG was also abnormal, with a marked excess of spike-and-slow waves. Slice experiments showed that resting potential, input resistance, intrinsic excitability, paired-pulse facilitation of excitatory and inhibitory postsynaptic currents (EPSCs and IPSCs), stimulus--response plots for EPSCs, and several properties of spontaneous miniature EPSCs and IPSCs were all unchanged in the mutant mouse compared with wildtype. However, the frequency of miniature IPSCs was significantly reduced in the mutants. These results suggest that impaired synaptic inhibition in the hippocampus may contribute to the local onset of seizures in the Galr1(-/-) mouse.
Collapse
Affiliation(s)
- Craig D McColl
- Division of Neuroscience, John Curtin School of Medical Research, The Australian National University, Building 54, Canberra ACT 0200, Australia
| | | | | | | | | |
Collapse
|
15
|
Bergren SK, Chen S, Galecki A, Kearney JA. Genetic modifiers affecting severity of epilepsy caused by mutation of sodium channelScn2a. Mamm Genome 2005; 16:683-90. [PMID: 16245025 DOI: 10.1007/s00335-005-0049-4] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2005] [Accepted: 05/20/2005] [Indexed: 10/25/2022]
Abstract
Mutations in the voltage-gated sodium channels SCN 1 A and SCN 2 A are responsible for several types of human epilepsy. Variable expressivity among family members is a common feature of these inherited epilepsies, suggesting that genetic modifiers may influence the clinical manifestation of epilepsy. The transgenic mouse model Scn 2 a(Q 54) has an epilepsy phenotype as a result of a mutation in Scn 2 a that slows channel inactivation. The mice display progressive epilepsy that begins with short-duration partial seizures that appear to originate in the hippocampus. The partial seizures become more frequent and of longer duration with age and often induce secondary generalized seizures. Clinical severity of the Scn 2 a(Q 54) phenotype is influenced by genetic background. Congenic C57BL/6J.Q 54 mice exhibit decreased incidence of spontaneous seizures, delayed seizure onset, and longer survival in comparison with [C57BL/6J x SJL/J]F(1).Q 54 mice. This observation indicates that strain SJL/J carries dominant modifier alleles at one or more loci that determine the severity of the epilepsy phenotype. Genome-wide interval mapping in an N(2) backcross revealed two modifier loci on Chromosomes 11 and 19 that influence the clinical severity of of this sodium channel-induced epilepsy. Modifier genes affecting clinical severity in the Scn 2 a(Q 54) mouse model may contribute to the variable expressivity seen in epilepsy patients with sodium channel mutations.
Collapse
Affiliation(s)
- Sarah K Bergren
- Department of Human Genetics, University of Michigan Medical School, Ann Arbor, Michigan 48109, USA
| | | | | | | |
Collapse
|