1
|
Presa M, Racine JJ, Dwyer JR, Lamont DJ, Ratiu JJ, Sarsani VK, Chen YG, Geurts A, Schmitz I, Stearns T, Allocco J, Chapman HD, Serreze DV. A Hypermorphic Nfkbid Allele Contributes to Impaired Thymic Deletion of Autoreactive Diabetogenic CD8 + T Cells in NOD Mice. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2018; 201:1907-1917. [PMID: 30127089 PMCID: PMC6143397 DOI: 10.4049/jimmunol.1800465] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2018] [Accepted: 07/23/2018] [Indexed: 11/19/2022]
Abstract
In both NOD mice and humans, the development of type 1 diabetes (T1D) is dependent in part on autoreactive CD8+ T cells recognizing pancreatic β cell peptides presented by often quite common MHC class I variants. Studies in NOD mice previously revealed that the common H2-Kd and/or H2-Db class I molecules expressed by this strain aberrantly lose the ability to mediate the thymic deletion of pathogenic CD8+ T cell responses through interactions with T1D susceptibility genes outside the MHC. A gene(s) mapping to proximal chromosome 7 was previously shown to be an important contributor to the failure of the common class I molecules expressed by NOD mice to mediate the normal thymic negative selection of diabetogenic CD8+ T cells. Using an inducible model of thymic negative selection and mRNA transcript analyses, we initially identified an elevated Nfkbid expression variant as a likely NOD-proximal chromosome 7 region gene contributing to impaired thymic deletion of diabetogenic CD8+ T cells. CRISPR/Cas9-mediated genetic attenuation of Nfkbid expression in NOD mice resulted in improved negative selection of autoreactive diabetogenic AI4 and NY8.3 CD8+ T cells. These results indicated that allelic variants of Nfkbid contribute to the efficiency of intrathymic deletion of diabetogenic CD8+ T cells. However, although enhancing thymic deletion of pathogenic CD8+ T cells, ablating Nfkbid expression surprisingly accelerated T1D onset that was associated with numeric decreases in both regulatory T and B lymphocytes in NOD mice.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Aron Geurts
- Medical College of Wisconsin, Milwaukee, WI 53226
| | - Ingo Schmitz
- Systems-Oriented Immunology and Inflammation Research Group, Helmholtz Centre for Infection Research, 38124 Braunschweig, Germany; and
- Institute of Molecular and Clinical Immunology, Otto-von-Guericke University, 39120 Magdeburg, Germany
| | | | | | | | | |
Collapse
|
2
|
Verma MK, Clemens J, Burzenski L, Sampson SB, Brehm MA, Greiner DL, Shultz LD. A novel hemolytic complement-sufficient NSG mouse model supports studies of complement-mediated antitumor activity in vivo. J Immunol Methods 2017; 446:47-53. [PMID: 28390927 DOI: 10.1016/j.jim.2017.03.021] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 01/23/2017] [Accepted: 03/17/2017] [Indexed: 11/15/2022]
Abstract
Monoclonal antibodies (mAbs) have emerged as a mainstream therapeutic option against cancer. mAbs mediate tumor cell-killing through several mechanisms including complement-dependent cytotoxicity (CDC). However, studies of mAb-mediated CDC against tumor cells remain largely dependent on in vitro systems. Previously developed and widely used NOD-scid IL2rγnull (NSG) mice support enhanced engraftment of many primary human tumors. However, NSG mice have a 2-bp deletion in the coding region of the hemolytic complement (Hc) gene, and it is not possible to evaluate CDC activity in NSG mice. To address this limitation, we generated a novel strain of NSG mice-NSG-Hc1-that have an intact complement system able to generate the membrane attack complex. Utilizing the Daudi Burkitt's human lymphoma cell line, and the anti-human CD20 mAb rituximab, we further demonstrated that the complement system in NSG-Hc1 mice is fully functional. NSG-Hc1 mice expressed CDC activity against Daudi cells in vivo following rituximab treatment and showed longer overall survival compared with rituximab-treated NSG mice that lack hemolytic complement. Our results validate the NSG-Hc1 mouse model as a platform for testing mechanisms underlying CDC in vivo and suggest its potential use to compare complement-dependent and complement-independent cytotoxic activity mediated by therapeutic mAbs.
Collapse
Affiliation(s)
- Mohit K Verma
- The Jackson Laboratory, Bar Harbor, ME, United States
| | - Julia Clemens
- The Jackson Laboratory, Bar Harbor, ME, United States
| | | | | | - Michael A Brehm
- Diabetes Center of Excellence™, Department of Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, United States
| | - Dale L Greiner
- Diabetes Center of Excellence™, Department of Molecular Medicine, University of Massachusetts Medical School, Worcester, MA, United States
| | | |
Collapse
|
3
|
Guimont-Desrochers F, Lesage S. Revisiting the Prominent Anti-Tumoral Potential of Pre-mNK Cells. Front Immunol 2013; 4:446. [PMID: 24376447 PMCID: PMC3858890 DOI: 10.3389/fimmu.2013.00446] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2013] [Accepted: 11/26/2013] [Indexed: 01/06/2023] Open
Abstract
Interferon-producing killer dendritic cells (IKDC) were first described for their outstanding anti-tumoral properties. The “IKDC” terminology implied the description of a novel DC subset and initiated a debate on their cellular lineage origin. This debate shifted the focus away from their notable anti-tumoral potential. IKDC were recently redefined as precursors to mature NK (mNK) cells and consequently renamed pre-mNK cells. Importantly, a putative human equivalent of pre-mNK cells was recently associated with improved disease outcome in cancer patients. It is thus timely to revisit the functional attributes as well as the therapeutic potential of pre-mNK cells in line with their newly defined NK-cell precursor function.
Collapse
Affiliation(s)
- Fanny Guimont-Desrochers
- Immunology-Oncology Section, Maisonneuve-Rosemont Hospital , Montreal, QC , Canada ; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal , Montreal, QC , Canada
| | - Sylvie Lesage
- Immunology-Oncology Section, Maisonneuve-Rosemont Hospital , Montreal, QC , Canada ; Département de Microbiologie, Infectiologie et Immunologie, Université de Montréal , Montreal, QC , Canada
| |
Collapse
|
4
|
Driver JP, Chen YG, Mathews CE. Comparative genetics: synergizing human and NOD mouse studies for identifying genetic causation of type 1 diabetes. Rev Diabet Stud 2012; 9:169-87. [PMID: 23804259 DOI: 10.1900/rds.2012.9.169] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Although once widely anticipated to unlock how human type 1 diabetes (T1D) develops, extensive study of the nonobese diabetic (NOD) mouse has failed to yield effective treatments for patients with the disease. This has led many to question the usefulness of this animal model. While criticism about the differences between NOD and human T1D is legitimate, in many cases disease in both species results from perturbations modulated by the same genes or different genes that function within the same biological pathways. Like in humans, unusual polymorphisms within an MHC class II molecule contributes the most T1D risk in NOD mice. This insight supports the validity of this model and suggests the NOD has been improperly utilized to study how to cure or prevent disease in patients. Indeed, clinical trials are far from administering T1D therapeutics to humans at the same concentration ranges and pathological states that inhibit disease in NOD mice. Until these obstacles are overcome it is premature to label the NOD mouse a poor surrogate to test agents that cure or prevent T1D. An additional criticism of the NOD mouse is the past difficulty in identifying genes underlying T1D using conventional mapping studies. However, most of the few diabetogenic alleles identified to date appear relevant to the human disorder. This suggests that rather than abandoning genetic studies in NOD mice, future efforts should focus on improving the efficiency with which diabetes susceptibility genes are detected. The current review highlights why the NOD mouse remains a relevant and valuable tool to understand the genes and their interactions that promote autoimmune diabetes and therapeutics that inhibit this disease. It also describes a new range of technologies that will likely transform how the NOD mouse is used to uncover the genetic causes of T1D for years to come.
Collapse
Affiliation(s)
- John P Driver
- Department of Animal Science, University of Florida, Gainesville, FL 32610, USA
| | | | | |
Collapse
|
5
|
Holmes N, Cooke A. Genetic analysis of type 1 diabetes: embryonic stem cells as new tools to unlock biological mechanisms in type 1 diabetes. Rev Diabet Stud 2012; 9:137-47. [PMID: 23804257 DOI: 10.1900/rds.2012.9.137] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The nonobese diabetic (NOD) mouse has provided an important animal model for studying the mechanism and genetics of type 1 diabetes over the past 30 years. Arguably, the bio-breeding (BB) rat model may be an even closer phenotypic mimic of the typical human disease. A large number of distinct genetic traits which influence diabetes development have been defined through an extraordinary effort, most conspicuously in the mouse model. However, in both NOD and BB models the lack of availability of robust means for experimental genetic manipulation has restricted our understanding of the mechanisms underlying this spontaneous autoimmune disease. Recent developments in the derivation of embryonic stem (ES) cells have the potential to transform this picture. We argue here that targeting of NOD strain ES cells can bring much needed certainty to our present understanding of the genetics of type 1 diabetes in the NOD mouse. In addition, ES cells can play important roles in the future, in both the NOD mouse and BB rat models, through the generation of new tools to investigate the mechanisms by which genetic variation acts to promote diabetes.
Collapse
Affiliation(s)
- Nick Holmes
- Department of Pathology, University of Cambridge, Tennis Court Road, Cambridge CB2 1QP, UK.
| | | |
Collapse
|
6
|
Davies TJ, Fairchild PJ. Optimization of protocols for derivation of mouse embryonic stem cell lines from refractory strains, including the non obese diabetic mouse. Stem Cells Dev 2011; 21:1688-700. [PMID: 21933027 DOI: 10.1089/scd.2011.0427] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
The derivation of pluripotent embryonic stem cells (ESCs) from a variety of genetic backgrounds remains a desirable objective in the generation of mice functionally deficient in genes of interest and the modeling of human disease. Nevertheless, disparity in the ease with which different strains of mice yield ESC lines has long been acknowledged. Indeed, the generation of bona fide ESCs from the non obese diabetic (NOD) mouse, a well-characterized model of human type I diabetes, has historically proved especially difficult to achieve. Here, we report the development of protocols for the derivation of novel ESC lines from C57Bl/6 mice based on the combined use of high concentrations of leukemia inhibitory factor and serum-replacement, which is equally applicable to fresh and cryo-preserved embryos. Further, we demonstrate the success of this approach using Balb/K and CBA/Ca mice, widely considered to be refractory strains. CBA/Ca ESCs contributed to the somatic germ layers of chimeras and displayed a very high competence at germline transmission. Importantly, we were able to use the same protocol for the derivation of ESC lines from nonpermissive NOD mice. These ESCs displayed a normal karyotype that was robustly stable during long-term culture, were capable of forming teratomas in vivo and germline competent chimeras after injection into recipient blastocysts. Further, these novel ESC lines efficiently formed embryoid bodies in vitro and could be directed in their differentiation along the dendritic cell lineage, thus illustrating their potential application to the generation of cell types of relevance to the pathogenesis of type I diabetes.
Collapse
Affiliation(s)
- Timothy J Davies
- Sir William Dunn School of Pathology, University of Oxford, Oxford, United Kingdom
| | | |
Collapse
|
7
|
Thayer TC, Wilson SB, Mathews CE. Use of nonobese diabetic mice to understand human type 1 diabetes. Endocrinol Metab Clin North Am 2010; 39:541-61. [PMID: 20723819 PMCID: PMC2925291 DOI: 10.1016/j.ecl.2010.05.001] [Citation(s) in RCA: 54] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In 1922, Leonard Thompson received the first injections of insulin prepared from the pancreas of canine test subjects. From pancreatectomized dogs to the more recent development of animal models that spontaneously develop autoimmune syndromes, animal models have played a meaningful role in furthering diabetes research. Of these animals, the nonobese diabetic (NOD) mouse is the most widely used for research in type 1 diabetes (T1D) because the NOD shares several genetic and immunologic traits with the human form of the disease. In this article, the authors discuss the similarities and differences in NOD and human T1D and the potential role of NOD mice in future preclinical studies, aiming to provide a better understanding of the genetic and immune defects that lead to T1D.
Collapse
Affiliation(s)
- Terri C Thayer
- Department of Pathology, Immunology, and Laboratory Medicine, The University of Florida College of Medicine, Gainesville, FL 32610, USA
| | | | | |
Collapse
|
8
|
Driver JP, Serreze DV, Chen YG. Mouse models for the study of autoimmune type 1 diabetes: a NOD to similarities and differences to human disease. Semin Immunopathol 2010; 33:67-87. [DOI: 10.1007/s00281-010-0204-1] [Citation(s) in RCA: 138] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2010] [Accepted: 03/18/2010] [Indexed: 01/12/2023]
|
9
|
Burt RA, Watkins L, Tan IKL, Wang N, Quirk F, Mackin L, Morgan P, Zhang JG, Berzins SP, Morahan G, Brodnicki TC. An NZW-derived interval on chromosome 7 moderates sialadenitis, but not insulitis in congenic nonobese diabetic mice. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2010; 184:859-68. [PMID: 20007538 PMCID: PMC9800181 DOI: 10.4049/jimmunol.0903149] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Autoimmune lymphocytic infiltration of the salivary glands, termed sialadenitis, is a pathologic feature of Sjögren's syndrome (SjS) that is also prominent in nonobese diabetic (NOD) mice. Genetic factors regulate sialadenitis, and a previous (NOD x NZW)F2 study detected linkage to murine chromosome (Chr) 7. The locus, subsequently annotated as Ssial3, maps to the distal end of Chr7 and overlaps a region associated with type 1 diabetes susceptibility in NOD mice. To examine whether Ssial3 could contribute to both diseases, or was specific for SjS, we generated a congenic mouse strain that harbored an NZW-derived Chr7 interval on the NOD genetic background. This congenic strain exhibited reduced sialadenitis compared with NOD mice and confirmed Ssial3. This reduction, however, did not ameliorate saliva abnormalities associated with SjS-like disease in NOD mice, nor were congenic mice protected against insulitis (lymphocytic infiltration of the pancreatic islets) or diabetes onset. Thus, the Ssial3 locus appears to have a tissue-specific effect for which the NZW allele is unable to prevent other autoimmune traits in the NOD mouse. Anomalous increases for antinuclear Ab production and frequency of marginal-zone B cells were also identified in congenic mice, indicating that the NZW-derived Chr7 interval has a complex effect on the NOD immune system.
Collapse
Affiliation(s)
- Rachel A. Burt
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville VIC 3052, Australia
| | - Laura Watkins
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville VIC 3052, Australia, Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Iris Kwee Ling Tan
- St Vincent’s Institute of Medical Research, 41 Victoria Parade, Fitzroy VIC 3065, Australia, Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Nancy Wang
- St Vincent’s Institute of Medical Research, 41 Victoria Parade, Fitzroy VIC 3065, Australia, Department of Medical Biology, University of Melbourne, Parkville, VIC 3010, Australia
| | - Fiona Quirk
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville VIC 3052, Australia
| | - Leanne Mackin
- St Vincent’s Institute of Medical Research, 41 Victoria Parade, Fitzroy VIC 3065, Australia
| | - Phillip Morgan
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville VIC 3052, Australia
| | - Jian-Guo Zhang
- The Walter and Eliza Hall Institute of Medical Research, 1G Royal Parade, Parkville VIC 3052, Australia
| | - Stuart P. Berzins
- Department of Microbiology and Immunology, University of Melbourne, Parkville VIC 3010, Australia
| | - Grant Morahan
- Centre for Diabetes Research, The Western Australian Institute for Medical Research, and Centre for Medical Research, University of Western Australia, Perth, WA 6000, Australia
| | - Thomas C. Brodnicki
- St Vincent’s Institute of Medical Research, 41 Victoria Parade, Fitzroy VIC 3065, Australia,Address correspondence and reprint requests to Dr. Thomas C Brodnicki, St Vincent’s Institute of Medical Research, 41 Victoria Parade, Fitzroy VIC 3065, Australia.
| |
Collapse
|
10
|
Regnault B, Osorio Y Fortea J, Miao D, Eisenbarth G, Melanitou E. Early over expression of messenger RNA for multiple genes, including insulin, in the Pancreatic Lymph Nodes of NOD mice is associated with Islet Autoimmunity. BMC Med Genomics 2009; 2:63. [PMID: 19799787 PMCID: PMC2763872 DOI: 10.1186/1755-8794-2-63] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2009] [Accepted: 10/02/2009] [Indexed: 01/30/2023] Open
Abstract
BACKGROUND Autoimmune diabetes (T1D) onset is preceded by a long inflammatory process directed against the insulin-secreting beta cells of the pancreas. Deciphering the early autoimmune mechanisms represents a challenge due to the absence of clinical signs at early disease stages. The aim of this study was to identify genes implicated in the early steps of the autoimmune process, prior to inflammation, in T1D. We have previously established that insulin autoantibodies (E-IAA) predict early diabetes onset delineating an early phenotypic check point (window 1) in disease pathogenesis. We used this sub-phenotype and applied differential gene expression analysis in the pancreatic lymph nodes (PLN) of 5 weeks old Non Obese Diabetic (NOD) mice differing solely upon the presence or absence of E-IAA. Analysis of gene expression profiles has the potential to provide a global understanding of the disease and to generate novel hypothesis concerning the initiation of the autoimmune process. METHODS Animals have been screened weekly for the presence of E-IAA between 3 and 5 weeks of age. E-IAA positive or negative NOD mice at least twice were selected and RNAs isolated from the PLN were used for microarray analysis. Comparison of transcriptional profiles between positive and negative animals and functional annotations of the resulting differentially expressed genes, using software together with manual literature data mining, have been performed. RESULTS The expression of 165 genes was modulated between E-IAA positive and negative PLN. In particular, genes coding for insulin and for proteins known to be implicated in tissue remodelling and Th1 immunity have been found to be highly differentially expressed. Forty one genes showed over 5 fold differences between the two sets of samples and 30 code for extracellular proteins. This class of proteins represents potential diagnostic markers and drug targets for T1D. CONCLUSION Our data strongly suggest that the immune related mechanisms taking place at this early age in the PLN, correlate with homeostatic changes influencing tissue integrity of the adjacent pancreatic tissue. Functional analysis of the identified genes suggested that similar mechanisms might be operating during pre-inflammatory processes deployed in tissues i) hosting parasitic microorganisms and ii) experiencing unrestricted invasion by tumour cells.
Collapse
Affiliation(s)
- Béatrice Regnault
- Immunophysiology and Intracellular Parasitism Unit, Department of Parasitology and Mycology, 75015 Paris, France.
| | | | | | | | | |
Collapse
|
11
|
Leiter EH, Reifsnyder PC, Wallace R, Li R, King B, Churchill GC. NOD x 129.H2(g7) backcross delineates 129S1/SvImJ-derived genomic regions modulating type 1 diabetes development in mice. Diabetes 2009; 58:1700-3. [PMID: 19336673 PMCID: PMC2699846 DOI: 10.2337/db09-0120] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/27/2009] [Accepted: 03/25/2009] [Indexed: 12/01/2022]
Abstract
OBJECTIVE Introduction of genes targeted in 129/Sv embryonic stem (ES) cells into NOD mice brings about linked genes that may modulate type 1 diabetes. Our objective was to identify 129S1/SvJ non-MHC regions contributing type 1 diabetes resistance or susceptibility in backcross to NOD/LtJ. RESEARCH DESIGN AND METHODS After congenic transfer of the NOD H2(g7) haplotype onto 129S1/Sv, 310 females were produced by NOD x (NOD x 129.H2(g7))F1 backcross (N2). A genome scan for quantitative trait locus (QTL) affecting clinical diabetes, age of diabetes onset, and insulitis severity was performed using subphenotype characteristics to improve power and resolution for detection of diabetes susceptibility loci. RESULTS Thirty-six of 310 (11.6%) N2 females developed type 1 diabetes between 14 and 40 weeks. Significant evidence of linkage for only a single previously reported Idd complex locus (Idd10/17/18, chromosome [Chr] 3) was indicated for clinical diabetes. The quantitative traits of insulitis either alone or combined with age at type 1 diabetes onset were significantly linked to known Idd regions on Chr 1 (Idd5 region), Chr 4 (Idd9 region), Chr 8 (Idd22), Chr 11 (Idd4.3), and proximal Chr 17 (Idd16 region). Significant 129S1/Sv resistance contributions were identified on Chr 1, 15 (two loci), and 19, with suggestive evidence for additional novel 129/Sv resistance QTL on Chr 5 and 17 and susceptibility on Chr 2. CONCLUSIONS The 129S1/SvJ genome harbors collections of both known and potentially novel non-MHC Idd loci. Investigators targeting 129/Sv genes mapping within chromosomal regions reported herein or elsewhere in the genome need to exclude potential contributions from linked Idd loci by generating a NOD.129 control strain expressing the nontargeted allele.
Collapse
|
12
|
Guimont-Desrochers F, Cappello ZJ, Chagnon M, McDuffie M, Lesage S. Cutting edge: genetic characterization of IFN-producing killer dendritic cells. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2009; 182:5193-7. [PMID: 19380763 PMCID: PMC2697453 DOI: 10.4049/jimmunol.0803969] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The combined phenotypic expression of CD11c(low)B220(+)CD122(+)DX5(+) has been used to define a novel cell type termed IFN-producing killer dendritic cells (IKDC). IKDC readily produce IFN-gamma and demonstrate spontaneous cytotoxic activity toward tumors, suggesting that a modulation of IKDC number may be beneficial in cancer treatment. We examined various mouse strains and found that IKDC number was highly variable between the different strains. A linkage analysis associated the distal arm of chromosome 7 with variations in IKDC number. The genetic contribution of chromosome 7 to the regulation of IKDC number was confirmed through the use of congenic mice. We further demonstrate that IKDC proportion is regulated by intrinsic hematopoietic factors. We discuss the role of various candidate genes in the regulation of this newly described cell type and its implication in therapy.
Collapse
Affiliation(s)
- Fanny Guimont-Desrochers
- Dept of Microbiology and Immunology, University of Montreal and Maisonneuve-Rosemont Hospital, Research Center
| | | | - Miguel Chagnon
- Dept. of Mathematics and Statistics, Univeristy of Montreal
| | - Marcia McDuffie
- Dept. of Microbiology, University of Virginia
- Dept. of Medicine, University of Virginia
| | - Sylvie Lesage
- Dept of Microbiology and Immunology, University of Montreal and Maisonneuve-Rosemont Hospital, Research Center
| |
Collapse
|
13
|
Ridgway WM, Peterson LB, Todd JA, Rainbow DB, Healy B, Burren OS, Wicker LS. Gene-gene interactions in the NOD mouse model of type 1 diabetes. Adv Immunol 2009; 100:151-75. [PMID: 19111166 DOI: 10.1016/s0065-2776(08)00806-7] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Human genome wide association studies (GWAS) have recently identified at least four new, non-MHC-linked candidate genes or gene regions causing type one diabetes (T1D), highlighting the need for functional models to investigate how susceptibility alleles at multiple common genes interact to mediate disease. Progress in localizing genes in congenic strains of the nonobese diabetic (NOD) mouse has allowed the reproducible testing of gene functions and gene-gene interactions that can be reflected biologically as intrapathway interactions, for example, IL-2 and its receptor CD25, pathway-pathway interactions such as two signaling pathways within a cell, or cell-cell interactions. Recent studies have identified likely causal genes in two congenic intervals associated with T1D, Idd3, and Idd5, and have documented the occurrence of gene-gene interactions, including "genetic masking", involving the genes encoding the critical immune molecules IL-2 and CTLA-4. The demonstration of gene-gene interactions in congenic mouse models of T1D has major implications for the understanding of human T1D since such biological interactions are highly likely to exist for human T1D genes. Although it is difficult to detect most gene-gene interactions in a population in which susceptibility and protective alleles at many loci are randomly segregating, their existence as revealed in congenic mice reinforces the hypothesis that T1D alleles can have strong biological effects and that such genes highlight pathways to consider as targets for immune intervention.
Collapse
Affiliation(s)
- William M Ridgway
- University of Pittsburgh School of Medicine, 725 SBST, Pittsburgh, Pennsylvania, USA
| | | | | | | | | | | | | |
Collapse
|
14
|
Serreze DV, Choisy-Rossi CM, Grier AE, Holl TM, Chapman HD, Gahagan JR, Osborne MA, Zhang W, King BL, Brown A, Roopenian D, Marron MP. Through regulation of TCR expression levels, an Idd7 region gene(s) interactively contributes to the impaired thymic deletion of autoreactive diabetogenic CD8+ T cells in nonobese diabetic mice. THE JOURNAL OF IMMUNOLOGY 2008; 180:3250-9. [PMID: 18292549 DOI: 10.4049/jimmunol.180.5.3250] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/29/2023]
Abstract
When expressed in NOD, but not C57BL/6 (B6) genetic background mice, the common class I variants encoded by the H2g7 MHC haplotype aberrantly lose the ability to mediate the thymic deletion of autoreactive CD8+ T cells contributing to type 1 diabetes (T1D). This indicated some subset of the T1D susceptibility (Idd) genes located outside the MHC of NOD mice interactively impair the negative selection of diabetogenic CD8+ T cells. In this study, using both linkage and congenic strain analyses, we demonstrate contributions from a polymorphic gene(s) in the previously described Idd7 locus on the proximal portion of Chromosome 7 predominantly, but not exclusively, determines the extent to which H2g7 class I molecules can mediate the thymic deletion of diabetogenic CD8+ T cells as illustrated using the AI4 TCR transgenic system. The polymorphic Idd7 region gene(s) appears to control events that respectively result in high vs low expression of the AI4 clonotypic TCR alpha-chain on developing thymocytes in B6.H2g7 and NOD background mice. This expression difference likely lowers levels of the clonotypic AI4 TCR in NOD, but not B6.H2g7 thymocytes, below the threshold presumably necessary to induce a signaling response sufficient to trigger negative selection upon Ag engagement. These findings provide further insight to how susceptibility genes, both within and outside the MHC, may interact to elicit autoreactive T cell responses mediating T1D development in both NOD mice and human patients.
Collapse
|
15
|
Diabetic modifier QTLs in F(2) intercrosses carrying homozygous transgene of TGF-beta. Mamm Genome 2007; 19:15-25. [PMID: 18160996 DOI: 10.1007/s00335-007-9080-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2007] [Accepted: 11/02/2007] [Indexed: 01/09/2023]
Abstract
When the homozygous active form of porcine TGF-beta1 transgene (Tgf/Tgf) (under control of the rat glucagon promoter) is introduced into the nonobese diabetic mouse (NOD) genetic background, the mice develop endocrine and exocrine pancreatic hypoplasia, low serum insulin concentrations, and impaired glucose tolerance. To identify genetic modifiers of the diabetic phenotypes, we crossed hemizygous NOD-Tgf with DBA/2J mice (D2) or C3H/HeJ mice (C3H) and used the "transgenic mice" for quantitative trait loci (QTL) analysis. Genome-wide scans of F(2)-D Tgf/Tgf (D2 x NOD) and F(2)-C Tgf/Tgf (C3H x NOD), homozygous for the TGF-beta1 transgene, identified six statistically significant modifier QTLs: one QTL (Tdn1) in F(2)-D Tgf/Tgf, and five QTLs (Tcn1 to Tcn5) in F(2)-C Tgf/Tgf. Tdn1 (Chr 13, LOD = 4.39), and Tcn3 (Chr 2, LOD = 4.94) showed linkage to body weight at 8 weeks of age. Tcn2 (Chr 7, LOD = 4.38) and Tcn4 (Chr 14, LOD = 3.99 and 3.78) showed linkage to blood glucose (BG) concentrations in ipGTT at 30, 0, and 120 min, respectively. Tcn1 (Chr 1, LOD = 4.41) and Tcn5 (Chr 18, LOD = 4.99) showed linkage to serum insulin concentrations in ipGTT at 30 min. Tcn2 includes the candidate gene, uncoupling protein 2 (Ucp2), and shows linkage to Ucp2 mRNA levels in the soleus muscle (LOD = 4.90). Identification of six QTLs for diabetes-related traits in F(2)-D Tgf/Tgf and F(2)-C Tgf/Tgf raises the possibility of identifying candidate susceptibility genes and new targets for drug development for human type 2 diabetes.
Collapse
|
16
|
Chen J, Chen YG, Reifsnyder PC, Schott WH, Lee CH, Osborne M, Scheuplein F, Haag F, Koch-Nolte F, Serreze DV, Leiter EH. Targeted disruption of CD38 accelerates autoimmune diabetes in NOD/Lt mice by enhancing autoimmunity in an ADP-ribosyltransferase 2-dependent fashion. THE JOURNAL OF IMMUNOLOGY 2006; 176:4590-9. [PMID: 16585549 DOI: 10.4049/jimmunol.176.8.4590] [Citation(s) in RCA: 50] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Ubiquitously expressed CD38 and T cell-expressed ADP-ribosyltransferase 2 (ART2) are ectoenzymes competing for NAD substrate. CD38 exerts pleiotropic actions in hemopoietic and nonhemopoietic compartments via effects on calcium mobilization. ART2 is an ADP-ribosyltransferase on naive CD4+ and CD8+ T cells. ART2-catalyzed ADP-ribosylation of the P2X7 purinoreceptor elicits apoptosis. Transfer of a genetically disrupted CD38 allele into the autoimmune diabetes-prone NOD/Lt background accelerated diabetes onset in both sexes, whereas transfer of a disrupted ART2 complex had no effect. However, the fact that the accelerated pathogenesis mediated by CD38 deficiency required ART2 activity was demonstrated by combining both ART2 and CD38 deficiencies. Reciprocal bone marrow reconstitution studies demonstrated accelerated diabetes only when CD38-deficient bone marrow was transferred into CD38-deficient recipients. Neither decreases in beta cell function nor viability were indicated. Rather, the balance between T-effectors and T-regulatory cells was disturbed in CD38-deficient but ART2-intact NOD mice. In these mice, significant reductions in total viable CD8+ T cells were observed. This was accompanied by an age-dependent increase in a diabetogenic CD8 clonotype. This in turn correlated with impaired T-regulatory development (10-fold reduction in Foxp3 mRNA expression). These changes were corrected when CD38 deficiency was combined with ART2 deficiency. Both ART2-deficient and CD38/ART2 combined deficient T cells were resistant to NAD-induced killing in vitro, whereas CD38-deficient but ART2-intact T cells showed increased sensitivity, particularly the CD4+ CD25+ subset. Unexpectedly, diabetes development in the combined CD38/ART2 stock was strongly suppressed, possibly through epistatic interactions between genes linked to the targeted CD38 on Chromosome 5 and the ART2 complex on Chromosome 7.
Collapse
MESH Headings
- ADP Ribose Transferases/genetics
- ADP Ribose Transferases/metabolism
- ADP-ribosyl Cyclase 1/deficiency
- ADP-ribosyl Cyclase 1/genetics
- Animals
- Apoptosis
- Autoimmunity
- Bone Marrow Transplantation
- CD8-Positive T-Lymphocytes/immunology
- CD8-Positive T-Lymphocytes/metabolism
- CD8-Positive T-Lymphocytes/pathology
- Diabetes Mellitus, Type 1/enzymology
- Diabetes Mellitus, Type 1/etiology
- Diabetes Mellitus, Type 1/genetics
- Diabetes Mellitus, Type 1/immunology
- Epistasis, Genetic
- Female
- Insulin/blood
- Insulin/metabolism
- Insulin Secretion
- Islets of Langerhans/immunology
- Islets of Langerhans/pathology
- Male
- Membrane Glycoproteins/deficiency
- Membrane Glycoproteins/genetics
- Mice
- Mice, Inbred NOD
- Mice, Knockout
- Mice, SCID
- NAD/metabolism
- T-Lymphocytes, Regulatory/immunology
- T-Lymphocytes, Regulatory/metabolism
Collapse
Affiliation(s)
- Jing Chen
- The Jackson Laboratory, Bar Harbor, ME 04609, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Abstract
Embryonic stem (ES) cells are derived from preimplantation stage mouse embryos at the time when they have reached the blastocyst stage. It is at this point that the first steps of differentiation take place during mammalian embryonic development. The individual blastomeres now start to organize themselves into three distinct locations, each encompassing a different cell type: outside epithelial cells, trophectoderm; cells at the blastocele surface of the inner cell mass (ICM), the primitive endoderm; and inside cells of the ICM, the primitive ectoderm. ES cells originate from the third population, the primitive ectoderm, which is a transiently existing group of cells in the embryo. Primitive ectoderm cells diminish within a day as the embryo is entering into the next steps of differentiation. ES cells, however, while retaining the property of their origin in terms of developmental potential, also have the ability to self-renew. It is hence important to realize that ES cells do not exist in vivo; they should be regarded simply as tissue culture artifact. Nevertheless, these powerful cells have the potential to differentiate into all the cells of the embryo proper and postnatal animal. Furthermore, they retain the limitation of their origin through their inability to contribute to the trophectoderm lineage (the trophoblast of the placenta) and the lineages of the primitive endoderm, the visceral and parietal endoderm. Due to these unique features, we must admit that even if we regard ES cells as products of in vitro culture and should not compare them to true somatic stem cells found in the adult organism, they certainly offer us a fantastic tool for genetic, developmental, and disease studies.
Collapse
Affiliation(s)
- Andras Nagy
- Mount Sinai Hospital, Samuel Lunenfeld Research Institute, Toronto, Ontario, Canada
| | | |
Collapse
|