1
|
Shaikh Qureshi WM, Hentges KE. Functions of cilia in cardiac development and disease. Ann Hum Genet 2024; 88:4-26. [PMID: 37872827 PMCID: PMC10952336 DOI: 10.1111/ahg.12534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 09/08/2023] [Accepted: 10/02/2023] [Indexed: 10/25/2023]
Abstract
Errors in embryonic cardiac development are a leading cause of congenital heart defects (CHDs), including morphological abnormalities of the heart that are often detected after birth. In the past few decades, an emerging role for cilia in the pathogenesis of CHD has been identified, but this topic still largely remains an unexplored area. Mouse forward genetic screens and whole exome sequencing analysis of CHD patients have identified enrichment for de novo mutations in ciliary genes or non-ciliary genes, which regulate cilia-related pathways, linking cilia function to aberrant cardiac development. Key events in cardiac morphogenesis, including left-right asymmetric development of the heart, are dependent upon cilia function. Cilia dysfunction during left-right axis formation contributes to CHD as evidenced by the substantial proportion of heterotaxy patients displaying complex CHD. Cilia-transduced signaling also regulates later events during heart development such as cardiac valve formation, outflow tract septation, ventricle development, and atrioventricular septa formation. In this review, we summarize the role of motile and non-motile (primary cilia) in cardiac asymmetry establishment and later events during heart development.
Collapse
Affiliation(s)
- Wasay Mohiuddin Shaikh Qureshi
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine, and Health, Manchester Academic Health Science CentreUniversity of ManchesterManchesterUK
| | - Kathryn E. Hentges
- Division of Evolution, Infection and Genomics, School of Biological Sciences, Faculty of Biology, Medicine, and Health, Manchester Academic Health Science CentreUniversity of ManchesterManchesterUK
| |
Collapse
|
2
|
Imran Naseer M, Abdulrahman Abdulkareem A, Yousef Muthaffar O, Chaudhary AG. Exome sequencing reveled a compound heterozygous mutations in RTTN gene causing developmental delay and primary microcephaly. Saudi J Biol Sci 2021; 28:2824-2829. [PMID: 34012324 PMCID: PMC8116967 DOI: 10.1016/j.sjbs.2021.02.014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2020] [Revised: 01/26/2021] [Accepted: 02/01/2021] [Indexed: 11/27/2022] Open
Abstract
RTTN (Rotatin) (OMIM 614833) is a large centrosomal protein coding gene. RTTN mutations are responsible for syndromic forms of malformation of brain development, leading to polymicrogyria, microcephaly, primordial dwarfism, seizure along with many other malformations. In this study we have identified a compound heterozygous mutation in RTTN gene having NM_173630 c.5225A > G p.His1742Arg in exon 39 and NM_173630 c.6038G > T p.Cys2013Phe in exon 45 of a consanguineous Saudi family leading to brain malformation, seizure, developmental delay, dysmorphic feature and microcephaly. Whole exome sequencing (WES) techniques was used to identify the causative mutation in the affected members of the family. WES data analysis was done and obtained data were further confirmed by using Sanger sequencing analysis. Moreover, the mutation was ruled out in 100 healthy control from normal population. To the best of our knowledge the novel compound heterozygous mutation observed in this study is the first report from Saudi Arabia. The identified compound heterozygous mutation will further explain the role of RTTN gene in development of microcephaly and neurodevelopmental disorders.
Collapse
Affiliation(s)
- Muhammad Imran Naseer
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, 21589 Jeddah, Saudi Arabia
| | - Angham Abdulrahman Abdulkareem
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Biochemistry, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
| | | | - Adeel G Chaudhary
- Center of Excellence in Genomic Medicine Research, King Abdulaziz University, Jeddah, Saudi Arabia.,Department of Medical Laboratory Technology, Faculty of Applied Medical Sciences, King Abdulaziz University, 21589 Jeddah, Saudi Arabia.,Center for Innovation in Personalized Medicine, King Abdulaziz University, 21589 Jeddah, Saudi Arabia
| |
Collapse
|
3
|
Vandervore LV, Schot R, Kasteleijn E, Oegema R, Stouffs K, Gheldof A, Grochowska MM, van der Sterre MLT, van Unen LMA, Wilke M, Elfferich P, van der Spek PJ, Heijsman D, Grandone A, Demmers JAA, Dekkers DHW, Slotman JA, Kremers GJ, Schaaf GJ, Masius RG, van Essen AJ, Rump P, van Haeringen A, Peeters E, Altunoglu U, Kalayci T, Poot RA, Dobyns WB, Bahi-Buisson N, Verheijen FW, Jansen AC, Mancini GMS. Heterogeneous clinical phenotypes and cerebral malformations reflected by rotatin cellular dynamics. Brain 2019; 142:867-884. [PMID: 30879067 PMCID: PMC6439326 DOI: 10.1093/brain/awz045] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 11/26/2018] [Accepted: 01/07/2019] [Indexed: 12/16/2022] Open
Abstract
Recessive mutations in RTTN, encoding the protein rotatin, were originally identified as cause of polymicrogyria, a cortical malformation. With time, a wide variety of other brain malformations has been ascribed to RTTN mutations, including primary microcephaly. Rotatin is a centrosomal protein possibly involved in centriolar elongation and ciliogenesis. However, the function of rotatin in brain development is largely unknown and the molecular disease mechanism underlying cortical malformations has not yet been elucidated. We performed both clinical and cell biological studies, aimed at clarifying rotatin function and pathogenesis. Review of the 23 published and five unpublished clinical cases and genomic mutations, including the effect of novel deep intronic pathogenic mutations on RTTN transcripts, allowed us to extrapolate the core phenotype, consisting of intellectual disability, short stature, microcephaly, lissencephaly, periventricular heterotopia, polymicrogyria and other malformations. We show that the severity of the phenotype is related to residual function of the protein, not only the level of mRNA expression. Skin fibroblasts from eight affected individuals were studied by high resolution immunomicroscopy and flow cytometry, in parallel with in vitro expression of RTTN in HEK293T cells. We demonstrate that rotatin regulates different phases of the cell cycle and is mislocalized in affected individuals. Mutant cells showed consistent and severe mitotic failure with centrosome amplification and multipolar spindle formation, leading to aneuploidy and apoptosis, which could relate to depletion of neuronal progenitors often observed in microcephaly. We confirmed the role of rotatin in functional and structural maintenance of primary cilia and determined that the protein localized not only to the basal body, but also to the axoneme, proving the functional interconnectivity between ciliogenesis and cell cycle progression. Proteomics analysis of both native and exogenous rotatin uncovered that rotatin interacts with the neuronal (non-muscle) myosin heavy chain subunits, motors of nucleokinesis during neuronal migration, and in human induced pluripotent stem cell-derived bipolar mature neurons rotatin localizes at the centrosome in the leading edge. This illustrates the role of rotatin in neuronal migration. These different functions of rotatin explain why RTTN mutations can lead to heterogeneous cerebral malformations, both related to proliferation and migration defects.
Collapse
Affiliation(s)
- Laura V Vandervore
- Department of Clinical Genetics, Erasmus University Medical Center (Erasmus MC), CA Rotterdam, The Netherlands.,Neurogenetics Research Group, Research Cluster Reproduction, Genetics and Regenerative Medicine, Vrije Universiteit Brussel, Brussels, Belgium.,Center for Medical Genetics, UZ Brussel, Brussels, Belgium
| | - Rachel Schot
- Department of Clinical Genetics, Erasmus University Medical Center (Erasmus MC), CA Rotterdam, The Netherlands
| | - Esmee Kasteleijn
- Department of Clinical Genetics, Erasmus University Medical Center (Erasmus MC), CA Rotterdam, The Netherlands
| | - Renske Oegema
- Department of Clinical Genetics, Erasmus University Medical Center (Erasmus MC), CA Rotterdam, The Netherlands.,Department of Pathology, Clinical Bio-informatics, Erasmus University Medical Center (Erasmus MC), CA Rotterdam, The Netherlands
| | - Katrien Stouffs
- Neurogenetics Research Group, Research Cluster Reproduction, Genetics and Regenerative Medicine, Vrije Universiteit Brussel, Brussels, Belgium.,Center for Medical Genetics, UZ Brussel, Brussels, Belgium
| | - Alexander Gheldof
- Neurogenetics Research Group, Research Cluster Reproduction, Genetics and Regenerative Medicine, Vrije Universiteit Brussel, Brussels, Belgium.,Center for Medical Genetics, UZ Brussel, Brussels, Belgium
| | - Martyna M Grochowska
- Department of Clinical Genetics, Erasmus University Medical Center (Erasmus MC), CA Rotterdam, The Netherlands
| | - Marianne L T van der Sterre
- Department of Clinical Genetics, Erasmus University Medical Center (Erasmus MC), CA Rotterdam, The Netherlands
| | - Leontine M A van Unen
- Department of Clinical Genetics, Erasmus University Medical Center (Erasmus MC), CA Rotterdam, The Netherlands
| | - Martina Wilke
- Department of Clinical Genetics, Erasmus University Medical Center (Erasmus MC), CA Rotterdam, The Netherlands
| | - Peter Elfferich
- Department of Clinical Genetics, Erasmus University Medical Center (Erasmus MC), CA Rotterdam, The Netherlands
| | - Peter J van der Spek
- Dipartimento della Donna, del Bambino, di Chirurgia Generale e Specialistica, Seconda Università degli studi della Campania "L. Vanvitelli", Naples, Italy
| | - Daphne Heijsman
- Department of Clinical Genetics, Erasmus University Medical Center (Erasmus MC), CA Rotterdam, The Netherlands.,Dipartimento della Donna, del Bambino, di Chirurgia Generale e Specialistica, Seconda Università degli studi della Campania "L. Vanvitelli", Naples, Italy
| | - Anna Grandone
- Department of Molecular Genetics, Proteomics Center, Erasmus University Medical Center (Erasmus MC), CA Rotterdam, The Netherlands
| | - Jeroen A A Demmers
- Department of Pathology, Optical Imaging Center, Erasmus University Medical Center (Erasmus MC), CA Rotterdam, The Netherlands
| | - Dick H W Dekkers
- Department of Pathology, Optical Imaging Center, Erasmus University Medical Center (Erasmus MC), CA Rotterdam, The Netherlands
| | - Johan A Slotman
- Center for Lysosomal and Metabolic Diseases, Erasmus Medical Center (Erasmus MC), 3015 CN Rotterdam, The Netherlands
| | - Gert-Jan Kremers
- Center for Lysosomal and Metabolic Diseases, Erasmus Medical Center (Erasmus MC), 3015 CN Rotterdam, The Netherlands
| | - Gerben J Schaaf
- Department of Clinical Genetics, Erasmus University Medical Center (Erasmus MC), CA Rotterdam, The Netherlands.,Department of Genetics, University of Groningen, University Medical Center Groningen, RB, Groningen, The Netherlands
| | - Roy G Masius
- Department of Clinical Genetics, Erasmus University Medical Center (Erasmus MC), CA Rotterdam, The Netherlands
| | - Anton J van Essen
- Department of Clinical Genetics, LUMC, Leiden University Medical Center, Postzone K-5-R, Postbus 9600, RC Leiden, The Netherlands
| | - Patrick Rump
- Department of Clinical Genetics, LUMC, Leiden University Medical Center, Postzone K-5-R, Postbus 9600, RC Leiden, The Netherlands
| | - Arie van Haeringen
- Department of Pediatric Neurology, Juliana Hospital, Els Borst-Eilersplein 275, 2545 AA Den Haag, The Netherlands
| | - Els Peeters
- Department of Medical genetics, Istanbul Medical Faculty, Istanbul University, Topkapı Mahallesi, Turgut Özal Millet Cd, 34093 Fatih/İstanbul, Turkey
| | - Umut Altunoglu
- Department of Cell biology, Erasmus University Medical Center (Erasmus MC), CA Rotterdam, The Netherlands
| | - Tugba Kalayci
- Department of Cell biology, Erasmus University Medical Center (Erasmus MC), CA Rotterdam, The Netherlands
| | - Raymond A Poot
- Department of Pediatrics, University of Washington, Seattle, WA, USA
| | - William B Dobyns
- Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA, USA.,Imagine Institute, INSERM UMR-1163, Laboratory Genetics and Embryology of Congenital Malformations, Paris Descartes University, Institut des Maladies Génétiques 24, Boulevard de Montparnasse, Paris, France
| | - Nadia Bahi-Buisson
- Pediatric Neurology Unit, Department of Pediatrics, UZ Brussel, Brussels, Belgium
| | - Frans W Verheijen
- Department of Clinical Genetics, Erasmus University Medical Center (Erasmus MC), CA Rotterdam, The Netherlands
| | - Anna C Jansen
- Neurogenetics Research Group, Research Cluster Reproduction, Genetics and Regenerative Medicine, Vrije Universiteit Brussel, Brussels, Belgium.,Center for Medical Genetics, UZ Brussel, Brussels, Belgium
| | - Grazia M S Mancini
- Department of Clinical Genetics, Erasmus University Medical Center (Erasmus MC), CA Rotterdam, The Netherlands
| |
Collapse
|
4
|
Zakaria M, Fatima A, Klar J, Wikström J, Abdullah U, Ali Z, Akram T, Tariq M, Ahmad H, Schuster J, Baig SM, Dahl N. Primary microcephaly, primordial dwarfism, and brachydactyly in adult cases with biallelic skipping of RTTN exon 42. Hum Mutat 2019; 40:899-903. [PMID: 30927481 DOI: 10.1002/humu.23755] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2018] [Revised: 02/27/2019] [Accepted: 03/24/2019] [Indexed: 11/11/2022]
Abstract
Biallelic and pathogenic variants in the RTTN gene, encoding the centrosomal protein Rotatin, are associated with variable degrees of neurodevelopmental abnormalities, microcephaly, and extracranial malformations. To date, no reported case has reached their third decade. Herein, we report on a consanguineous family with three adult members, age 43, 57, and 60 years respectively, with primary microcephaly, developmental delay, primordial dwarfism, and brachydactyly segregating a homozygous splice site variant NM_173630.3:c.5648-5T>A in RTTN. The variant RTTN allele results in a nonhypomorphic skipping of exon 42 and a frameshift [(NP_775901.3:p.Ala1883Glyfs*6)]. Brain MRI of one affected individual showed markedly reduced volume of cerebral lobes and enlarged sulci but without signs of neural migration defects. Our assessment of three adult cases with a biallelic RTTN variant shows that a predicted shortened Rotatin, lacking the C-terminal end, are associated with stationary clinical features into the seventh decade. Furthermore, our report adds brachydactyly to the phenotypic spectrum in this pleiotropic entity.
Collapse
Affiliation(s)
- Muhammad Zakaria
- Human Molecular Genetics Laboratory, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan.,Department of Immunology, Genetics, and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden.,Centre for Human Genetics, Hazara University, Mansehra, Pakistan
| | - Ambrin Fatima
- Department of Immunology, Genetics, and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Joakim Klar
- Department of Immunology, Genetics, and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Johan Wikström
- Department of Radiology, Uppsala University, Uppsala, Sweden
| | - Uzma Abdullah
- Human Molecular Genetics Laboratory, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan
| | - Zafar Ali
- Human Molecular Genetics Laboratory, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan
| | - Talia Akram
- Human Molecular Genetics Laboratory, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan
| | - Muhammad Tariq
- Human Molecular Genetics Laboratory, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan
| | - Habib Ahmad
- Department of Botany, Islamia College University Peshawar, Peshawar, Khyber Pakhtunkhwa, Pakistan
| | - Jens Schuster
- Department of Immunology, Genetics, and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| | - Shahid M Baig
- Human Molecular Genetics Laboratory, National Institute for Biotechnology and Genetic Engineering (NIBGE), Faisalabad, Pakistan
| | - Niklas Dahl
- Department of Immunology, Genetics, and Pathology, Science for Life Laboratory, Uppsala University, Uppsala, Sweden
| |
Collapse
|
5
|
Functional characterization of biallelic RTTN variants identified in an infant with microcephaly, simplified gyral pattern, pontocerebellar hypoplasia, and seizures. Pediatr Res 2018; 84:435-441. [PMID: 29967526 PMCID: PMC6258334 DOI: 10.1038/s41390-018-0083-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/12/2017] [Revised: 05/15/2018] [Accepted: 05/25/2018] [Indexed: 01/06/2023]
Abstract
BACKGROUND Biallelic deleterious variants in RTTN, which encodes rotatin, are associated with primary microcephaly, polymicrogyria, seizures, intellectual disability, and primordial dwarfism in human infants. METHODS AND RESULTS We performed exome sequencing of an infant with primary microcephaly, pontocerebellar hypoplasia, and intractable seizures and his healthy, unrelated parents. We cultured the infant's fibroblasts to determine primary ciliary phenotype. RESULTS We identified biallelic variants in RTTN in the affected infant: a novel missense variant and a rare, intronic variant that results in aberrant transcript splicing. Cultured fibroblasts from the infant demonstrated reduced length and number of primary cilia. CONCLUSION Biallelic variants in RTTN cause primary microcephaly in infants. Functional characterization of primary cilia length and number can be used to determine pathogenicity of RTTN variants.
Collapse
|
6
|
Grandone A, Torella A, Santoro C, Giugliano T, Del Vecchio Blanco F, Mutarelli M, Cirillo M, Cirillo G, Piluso G, Capristo C, Festa A, Marzuillo P, Miraglia Del Giudice E, Perrone L, Nigro V. Expanding the phenotype of RTTN variations: a new family with primary microcephaly, severe growth failure, brain malformations and dermatitis. Clin Genet 2016; 90:445-450. [PMID: 26940245 DOI: 10.1111/cge.12771] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2016] [Revised: 02/26/2016] [Accepted: 03/01/2016] [Indexed: 01/03/2023]
Abstract
Primary autosomal recessive microcephaly (MCPH) is a developmental disorder characterized by prenatal onset of abnormal brain growth. MCPH occurs both alone and as part of a broad range of neurodevelopmental syndromes with or without cortical malformations and growth retardation. Here we report a consanguineous Moroccan family with two siblings affected by severe primary microcephaly, failure to thrive, congenital dermatitis and severe developmental delay. Brain magnetic resonance imaging showed lissencephaly of frontal lobes and periventricular heterotopia of the gray matter. We performed both Comparative Genomic Hybridization array and whole exome sequencing (WES) analyses of the kindred. No quantitative defects were detected. However, WES identified a new homozygous missense variation in the penultimate nucleotide of exon 23 of RTTN gene (c.2953A>G;pArg985Gly). cDNA sequencing revealed two abnormal spliced products, one lacking only exon 23 and the other lacking exons 22 and 23 (out-of-frame). RTTN is a protein involved in cilia structure and function. Homozygous mutations in RTTN gene have been described in bilateral diffuse isolated polymicrogyria and, more recently, in microcephalic primordial dwarfism (PD). We found a novel homozygous mutation in RTTN associated with microcephalic PD as well as complex brain malformations and congenital dermatitis, thus expanding the phenotypic spectrum of both RTTN-associated diseases and ciliary dysfunction.
Collapse
Affiliation(s)
- A Grandone
- Dipartimento della Donna, del Bambino, di Chirurgia Generale e Specialistica, Seconda Università degli Studi di Napoli, Naples, Italy
| | - A Torella
- Dipartimento di Biochimica, Biofisica e Patologia Generale, Seconda Università degli Studi di Napoli, Naples, Italy.,Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli (NA), Italy
| | - C Santoro
- Dipartimento della Donna, del Bambino, di Chirurgia Generale e Specialistica, Seconda Università degli Studi di Napoli, Naples, Italy
| | - T Giugliano
- Dipartimento di Biochimica, Biofisica e Patologia Generale, Seconda Università degli Studi di Napoli, Naples, Italy
| | - F Del Vecchio Blanco
- Dipartimento di Biochimica, Biofisica e Patologia Generale, Seconda Università degli Studi di Napoli, Naples, Italy
| | - M Mutarelli
- Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli (NA), Italy
| | - M Cirillo
- Dipartimento di Scienze Mediche, Chirurgiche, Neurologiche, Metaboliche e dell'Invecchiamento, Seconda Università degli Studi di Napoli, Naples, Italy
| | - G Cirillo
- Dipartimento della Donna, del Bambino, di Chirurgia Generale e Specialistica, Seconda Università degli Studi di Napoli, Naples, Italy
| | - G Piluso
- Dipartimento di Biochimica, Biofisica e Patologia Generale, Seconda Università degli Studi di Napoli, Naples, Italy
| | - C Capristo
- Dipartimento della Donna, del Bambino, di Chirurgia Generale e Specialistica, Seconda Università degli Studi di Napoli, Naples, Italy
| | - A Festa
- Dipartimento della Donna, del Bambino, di Chirurgia Generale e Specialistica, Seconda Università degli Studi di Napoli, Naples, Italy
| | - P Marzuillo
- Dipartimento della Donna, del Bambino, di Chirurgia Generale e Specialistica, Seconda Università degli Studi di Napoli, Naples, Italy
| | - E Miraglia Del Giudice
- Dipartimento della Donna, del Bambino, di Chirurgia Generale e Specialistica, Seconda Università degli Studi di Napoli, Naples, Italy
| | - L Perrone
- Dipartimento della Donna, del Bambino, di Chirurgia Generale e Specialistica, Seconda Università degli Studi di Napoli, Naples, Italy
| | - V Nigro
- Dipartimento di Biochimica, Biofisica e Patologia Generale, Seconda Università degli Studi di Napoli, Naples, Italy. , .,Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli (NA), Italy. ,
| |
Collapse
|
7
|
Shamseldin H, Alazami A, Manning M, Hashem A, Caluseiu O, Tabarki B, Esplin E, Schelley S, Innes A, Parboosingh J, Lamont R, Majewski J, Bernier F, Alkuraya F, Alkuraya FS. RTTN Mutations Cause Primary Microcephaly and Primordial Dwarfism in Humans. Am J Hum Genet 2015; 97:862-8. [PMID: 26608784 DOI: 10.1016/j.ajhg.2015.10.012] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2015] [Accepted: 10/20/2015] [Indexed: 10/22/2022] Open
Abstract
Primary microcephaly is a developmental brain anomaly that results from defective proliferation of neuroprogenitors in the germinal periventricular zone. More than a dozen genes are known to be mutated in autosomal-recessive primary microcephaly in isolation or in association with a more generalized growth deficiency (microcephalic primordial dwarfism), but the genetic heterogeneity is probably more extensive. In a research protocol involving autozygome mapping and exome sequencing, we recruited a multiplex consanguineous family who is affected by severe microcephalic primordial dwarfism and tested negative on clinical exome sequencing. Two candidate autozygous intervals were identified, and the second round of exome sequencing revealed a single intronic variant therein (c.2885+8A>G [p.Ser963(∗)] in RTTN exon 23). RT-PCR confirmed that this change creates a cryptic splice donor and thus causes retention of the intervening 7 bp of the intron and leads to premature truncation. On the basis of this finding, we reanalyzed the exome file of a second consanguineous family affected by a similar phenotype and identified another homozygous change in RTTN as the likely causal mutation. Combined linkage analysis of the two families confirmed that RTTN maps to the only significant linkage peak. Finally, through international collaboration, a Canadian multiplex family affected by microcephalic primordial dwarfism and biallelic mutation of RTTN was identified. Our results expand the phenotype of RTTN-related disorders, hitherto limited to polymicrogyria, to include microcephalic primordial dwarfism with a complex brain phenotype involving simplified gyration.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Fowzan S Alkuraya
- Department of Genetics, King Faisal Specialist Hospital and Research Center, Riyadh 11211, Saudi Arabia; Department of Anatomy and Cell Biology, College of Medicine, Alfaisal University, Riyadh 11533, Saudi Arabia.
| |
Collapse
|
8
|
Abstract
Cilia and flagella are surface-exposed, finger-like organelles whose core consists of a microtubule (MT)-based axoneme that grows from a modified centriole, the basal body. Cilia are found on the surface of many eukaryotic cells and play important roles in cell motility and in coordinating a variety of signaling pathways during growth, development, and tissue homeostasis. Defective cilia have been linked to a number of developmental disorders and diseases, collectively called ciliopathies. Cilia are dynamic organelles that assemble and disassemble in tight coordination with the cell cycle. In most cells, cilia are assembled during growth arrest in a multistep process involving interaction of vesicles with appendages present on the distal end of mature centrioles, and addition of tubulin and other building blocks to the distal tip of the basal body and growing axoneme; these building blocks are sorted through a region at the cilium base known as the ciliary necklace, and then transported via intraflagellar transport (IFT) along the axoneme toward the tip for assembly. After assembly, the cilium frequently continues to turn over and incorporate tubulin at its distal end in an IFT-dependent manner. Prior to cell division, the cilia are usually resorbed to liberate centrosomes for mitotic spindle pole formation. Here, we present an overview of the main cytoskeletal structures associated with cilia and centrioles with emphasis on the MT-associated appendages, fibers, and filaments at the cilium base and tip. The composition and possible functions of these structures are discussed in relation to cilia assembly, disassembly, and length regulation.
Collapse
Affiliation(s)
- Lotte B Pedersen
- Department of Biology, University of Copenhagen, Copenhagen, Denmark.
| | | | | | | |
Collapse
|
9
|
Kheradmand Kia S, Verbeek E, Engelen E, Schot R, Poot R, de Coo I, Lequin M, Poulton C, Pourfarzad F, Grosveld F, Brehm A, de Wit M, Oegema R, Dobyns W, Verheijen F, Mancini G. RTTN mutations link primary cilia function to organization of the human cerebral cortex. Am J Hum Genet 2012; 91:533-40. [PMID: 22939636 DOI: 10.1016/j.ajhg.2012.07.008] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Revised: 05/09/2012] [Accepted: 07/11/2012] [Indexed: 10/28/2022] Open
Abstract
Polymicrogyria is a malformation of the developing cerebral cortex caused by abnormal organization and characterized by many small gyri and fusion of the outer molecular layer. We have identified autosomal-recessive mutations in RTTN, encoding Rotatin, in individuals with bilateral diffuse polymicrogyria from two separate families. Rotatin determines early embryonic axial rotation, as well as anteroposterior and dorsoventral patterning in the mouse. Human Rotatin has recently been identified as a centrosome-associated protein. The Drosophila melanogaster homolog of Rotatin, Ana3, is needed for structural integrity of centrioles and basal bodies and maintenance of sensory neurons. We show that Rotatin colocalizes with the basal bodies at the primary cilium. Cultured fibroblasts from affected individuals have structural abnormalities of the cilia and exhibit downregulation of BMP4, WNT5A, and WNT2B, which are key regulators of cortical patterning and are expressed at the cortical hem, the cortex-organizing center that gives rise to Cajal-Retzius (CR) neurons. Interestingly, we have shown that in mouse embryos, Rotatin colocalizes with CR neurons at the subpial marginal zone. Knockdown experiments in human fibroblasts and neural stem cells confirm a role for RTTN in cilia structure and function. RTTN mutations therefore link aberrant ciliary function to abnormal development and organization of the cortex in human individuals.
Collapse
|
10
|
Nerve growth factor regulates axial rotation during early stages of chick embryo development. Proc Natl Acad Sci U S A 2012; 109:2009-14. [PMID: 22308471 DOI: 10.1073/pnas.1121138109] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Nerve growth factor (NGF) was discovered because of its neurotrophic actions on sympathetic and sensory neurons in the developing chicken embryo. NGF was subsequently found to influence and regulate the function of many neuronal and non neuronal cells in adult organisms. Little is known, however, about the possible actions of NGF during early embryonic stages. However, mRNAs encoding for NGF and its receptors TrkA and p75(NTR) are expressed at very early stages of avian embryo development, before the nervous system is formed. The question, therefore, arises as to what might be the functions of NGF in early chicken embryo development, before its well-established actions on the developing sympathetic and sensory neurons. To investigate possible roles of NGF in the earliest stages of development, stage HH 11-12 chicken embryos were injected with an anti-NGF antibody (mAb αD11) that binds mature NGF with high affinity. Treatment with anti-NGF, but not with a control antibody, led to a dose-dependent inversion of the direction of axial rotation. This effect of altered rotation after anti NGF injection was associated with an increased cell death in somites. Concurrently, a microarray mRNA expression analysis revealed that NGF neutralization affects the expression of genes linked to the regulation of development or cell proliferation. These results reveal a role for NGF in early chicken embryo development and, in particular, in the regulation of somite survival and axial rotation, a crucial developmental process linked to left-right asymmetry specification.
Collapse
|
11
|
Chao R, Nevin L, Agarwal P, Riemer J, Bai X, Delaney A, Akana M, JimenezLopez N, Bardakjian T, Schneider A, Chassaing N, Schorderet DF, FitzPatrick D, Kwok PY, Ellgaard L, Gould DB, Zhang Y, Malicki J, Baier H, Slavotinek A. A male with unilateral microphthalmia reveals a role for TMX3 in eye development. PLoS One 2010; 5:e10565. [PMID: 20485507 PMCID: PMC2868029 DOI: 10.1371/journal.pone.0010565] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2009] [Accepted: 04/08/2010] [Indexed: 01/01/2023] Open
Abstract
Anophthalmia and microphthalmia are important birth defects, but their pathogenesis remains incompletely understood. We studied a patient with severe unilateral microphthalmia who had a 2.7 Mb deletion at chromosome 18q22.1 that was inherited from his mother. In-situ hybridization showed that one of the deleted genes, TMX3, was expressed in the retinal neuroepithelium and lens epithelium in the developing murine eye. We re-sequenced TMX3 in 162 patients with anophthalmia or microphthalmia, and found two missense substitutions in unrelated patients: c.116G>A, predicting p.Arg39Gln, in a male with unilateral microphthalmia and retinal coloboma, and c.322G>A, predicting p.Asp108Asn, in a female with unilateral microphthalmia and severe micrognathia. We used two antisense morpholinos targeted against the zebrafish TMX3 orthologue, zgc:110025, to examine the effects of reduced gene expression in eye development. We noted that the morphant larvae resulting from both morpholinos had significantly smaller eye sizes and reduced labeling with islet-1 antibody directed against retinal ganglion cells at 2 days post fertilization. Co-injection of human wild type TMX3 mRNA rescued the small eye phenotype obtained with both morpholinos, whereas co-injection of human TMX3(p.Arg39Gln) mutant mRNA, analogous to the mutation in the patient with microphthalmia and coloboma, did not rescue the small eye phenotype. Our results show that haploinsufficiency for TMX3 results in a small eye phenotype and represents a novel genetic cause of microphthalmia and coloboma. Future experiments to determine if other thioredoxins are important in eye morphogenesis and to clarify the mechanism of function of TMX3 in eye development are warranted.
Collapse
Affiliation(s)
- Ryan Chao
- Division of Genetics, Department of Pediatrics, University of California San Francisco, San Francisco, California, United States of America
| | - Linda Nevin
- Department of Physiology, University of California San Francisco, San Francisco, California, United States of America
| | - Pooja Agarwal
- Cardiovascular Research Institute, University of California San Francisco, San Francisco, California, United States of America
| | - Jan Riemer
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Xiaoyang Bai
- Departments of Ophthalmology, Anatomy and the Institute for Human Genetics, University of California San Francisco, San Francisco, California, United States of America
| | - Allen Delaney
- Genome Sciences Center, BC Cancer Research Center, Vancouver, British Columbia, Canada
| | - Matthew Akana
- Department of Dermatology, Cardiovascular Research Institute and Institute for Human Genetics, University of California San Francisco, San Francisco, California, United States of America
| | - Nelson JimenezLopez
- Division of Genetics, Department of Pediatrics, University of California San Francisco, San Francisco, California, United States of America
| | - Tanya Bardakjian
- Clinical Genetics Division, Albert Einstein Medical Center, Philadelphia, Pennsylvania, United States of America
| | - Adele Schneider
- Clinical Genetics Division, Albert Einstein Medical Center, Philadelphia, Pennsylvania, United States of America
| | - Nicolas Chassaing
- Service de Génétique Médicale, Université de Toulouse, Toulouse, France
| | - Daniel F. Schorderet
- Institut de Recherche en Ophtalmologie, University of Lausanne and Ecole Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - David FitzPatrick
- Medical Research Council Human Genetics Unit, Western General Hospital, Edinburgh, United Kingdom
| | - Pui-yan Kwok
- Department of Dermatology, Cardiovascular Research Institute and Institute for Human Genetics, University of California San Francisco, San Francisco, California, United States of America
| | - Lars Ellgaard
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Douglas B. Gould
- Departments of Ophthalmology, Anatomy and the Institute for Human Genetics, University of California San Francisco, San Francisco, California, United States of America
| | - Yan Zhang
- Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Jarema Malicki
- Department of Ophthalmology, Harvard Medical School, Boston, Massachusetts, United States of America
| | - Herwig Baier
- Department of Physiology, University of California San Francisco, San Francisco, California, United States of America
| | - Anne Slavotinek
- Division of Genetics, Department of Pediatrics, University of California San Francisco, San Francisco, California, United States of America
| |
Collapse
|
12
|
Stevens NR, Dobbelaere J, Wainman A, Gergely F, Raff JW. Ana3 is a conserved protein required for the structural integrity of centrioles and basal bodies. ACTA ACUST UNITED AC 2009; 187:355-63. [PMID: 19948479 PMCID: PMC2779252 DOI: 10.1083/jcb.200905031] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Recent studies have identified a conserved "core" of proteins that are required for centriole duplication. A small number of additional proteins have recently been identified as potential duplication factors, but it is unclear whether any of these proteins are components of the core duplication machinery. In this study, we investigate the function of one of these proteins, Drosophila melanogaster Ana3. We show that Ana3 is present in centrioles and basal bodies, but its behavior is distinct from that of the core duplication proteins. Most importantly, we find that Ana3 is required for the structural integrity of both centrioles and basal bodies and for centriole cohesion, but it is not essential for centriole duplication. We show that Ana3 has a mammalian homologue, Rotatin, that also localizes to centrioles and basal bodies and appears to be essential for cilia function. Thus, Ana3 defines a conserved family of centriolar proteins and plays an important part in ensuring the structural integrity of centrioles and basal bodies.
Collapse
|