1
|
Roth K, Pröll-Cornelissen MJ, Henne H, Appel AK, Schellander K, Tholen E, Große-Brinkhaus C. Multivariate genome-wide associations for immune traits in two maternal pig lines. BMC Genomics 2023; 24:492. [PMID: 37641029 PMCID: PMC10463314 DOI: 10.1186/s12864-023-09594-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 08/16/2023] [Indexed: 08/31/2023] Open
Abstract
BACKGROUND Immune traits are considered to serve as potential biomarkers for pig's health. Medium to high heritabilities have been observed for some of the immune traits suggesting genetic variability of these phenotypes. Consideration of previously established genetic correlations between immune traits can be used to identify pleiotropic genetic markers. Therefore, genome-wide association study (GWAS) approaches are required to explore the joint genetic foundation for health biomarkers. Usually, GWAS explores phenotypes in a univariate (uv), trait-by-trait manner. Besides two uv GWAS methods, four multivariate (mv) GWAS approaches were applied on combinations out of 22 immune traits for Landrace (LR) and Large White (LW) pig lines. RESULTS In total 433 (LR: 351, LW: 82) associations were identified with the uv approach implemented in PLINK and a Bayesian linear regression uv approach (BIMBAM) software. Single Nucleotide Polymorphisms (SNPs) that were identified with both uv approaches (n = 32) were mostly associated with immune traits such as haptoglobin, red blood cell characteristics and cytokines, and were located in protein-coding genes. Mv GWAS approaches detected 647 associations for different mv immune trait combinations which were summarized to 133 Quantitative Trait Loci (QTL). SNPs for different trait combinations (n = 66) were detected with more than one mv method. Most of these SNPs are associated with red blood cell related immune trait combinations. Functional annotation of these QTL revealed 453 immune-relevant protein-coding genes. With uv methods shared markers were not observed between the breeds, whereas mv approaches were able to detect two conjoint SNPs for LR and LW. Due to unmapped positions for these markers, their functional annotation was not clarified. CONCLUSIONS This study evaluated the joint genetic background of immune traits in LR and LW piglets through the application of various uv and mv GWAS approaches. In comparison to uv methods, mv methodologies identified more significant associations, which might reflect the pleiotropic background of the immune system more accurately. In genetic research of complex traits, the SNP effects are generally small. Furthermore, one genetic variant can affect several correlated immune traits at the same time, termed pleiotropy. As mv GWAS methods consider strong dependencies among traits, the power to detect SNPs can be boosted. Both methods revealed immune-relevant potential candidate genes. Our results indicate that one single test is not able to detect all the different types of genetic effects in the most powerful manner and therefore, the methods should be applied complementary.
Collapse
Affiliation(s)
- Katharina Roth
- Institute of Animal Science, University of Bonn, Endenicher Allee 15, 53115, Bonn, Germany
| | | | - Hubert Henne
- BHZP GmbH, An der Wassermühle 8, 21368, Dahlenburg-Ellringen, Germany
| | | | - Karl Schellander
- Institute of Animal Science, University of Bonn, Endenicher Allee 15, 53115, Bonn, Germany
| | - Ernst Tholen
- Institute of Animal Science, University of Bonn, Endenicher Allee 15, 53115, Bonn, Germany
| | | |
Collapse
|
2
|
Bai X, Yang T, Putz AM, Wang Z, Li C, Fortin F, Harding JCS, Dyck MK, Dekkers JCM, Field CJ, Plastow GS. Investigating the genetic architecture of disease resilience in pigs by genome-wide association studies of complete blood count traits collected from a natural disease challenge model. BMC Genomics 2021; 22:535. [PMID: 34256695 PMCID: PMC8278769 DOI: 10.1186/s12864-021-07835-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 06/23/2021] [Indexed: 11/10/2022] Open
Abstract
Background Genetic improvement for disease resilience is anticipated to be a practical method to improve efficiency and profitability of the pig industry, as resilient pigs maintain a relatively undepressed level of performance in the face of infection. However, multiple biological functions are known to be involved in disease resilience and this complexity means that the genetic architecture of disease resilience remains largely unknown. Here, we conducted genome-wide association studies (GWAS) of 465,910 autosomal SNPs for complete blood count (CBC) traits that are important in an animal’s disease response. The aim was to identify the genetic control of disease resilience. Results Univariate and multivariate single-step GWAS were performed on 15 CBC traits measured from the blood samples of 2743 crossbred (Landrace × Yorkshire) barrows drawn at 2-weeks before, and at 2 and 6-weeks after exposure to a polymicrobial infectious challenge. Overall, at a genome-wise false discovery rate of 0.05, five genomic regions located on Sus scrofa chromosome (SSC) 2, SSC4, SSC9, SSC10, and SSC12, were significantly associated with white blood cell traits in response to the polymicrobial challenge, and nine genomic regions on multiple chromosomes (SSC1, SSC4, SSC5, SSC6, SSC8, SSC9, SSC11, SSC12, SSC17) were significantly associated with red blood cell and platelet traits collected before and after exposure to the challenge. By functional enrichment analyses using Ingenuity Pathway Analysis (IPA) and literature review of previous CBC studies, candidate genes located nearby significant single-nucleotide polymorphisms were found to be involved in immune response, hematopoiesis, red blood cell morphology, and platelet aggregation. Conclusions This study helps to improve our understanding of the genetic basis of CBC traits collected before and after exposure to a polymicrobial infectious challenge and provides a step forward to improve disease resilience. Supplementary Information The online version contains supplementary material available at 10.1186/s12864-021-07835-4.
Collapse
Affiliation(s)
- Xuechun Bai
- Livestock Gentec, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Tianfu Yang
- Livestock Gentec, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada.,Current: ST Genetics, Navasota, TX, USA
| | - Austin M Putz
- Department of Animal Science, Iowa State University, Ames, IA, USA
| | - Zhiquan Wang
- Livestock Gentec, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Changxi Li
- Livestock Gentec, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada.,Lacombe Research and Development Centre, Agriculture and Agri-Food Canada, Lacombe, AB, Canada
| | - Frédéric Fortin
- Centre de Développement du Porc du Québec, Inc., Quebec City, QC, Canada
| | - John C S Harding
- Department of Large Animal Clinical Sciences, University of Saskatchewan, Saskatoon, SK, Canada
| | - Michael K Dyck
- Livestock Gentec, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | | | | | - Catherine J Field
- Livestock Gentec, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada
| | - Graham S Plastow
- Livestock Gentec, Department of Agricultural, Food and Nutritional Science, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
3
|
Genetic parameters and associated genomic regions for global immunocompetence and other health-related traits in pigs. Sci Rep 2020; 10:18462. [PMID: 33116177 PMCID: PMC7595139 DOI: 10.1038/s41598-020-75417-7] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2020] [Accepted: 10/15/2020] [Indexed: 12/16/2022] Open
Abstract
The inclusion of health-related traits, or functionally associated genetic markers, in pig breeding programs could contribute to produce more robust and disease resistant animals. The aim of the present work was to study the genetic determinism and genomic regions associated to global immunocompetence and health in a Duroc pig population. For this purpose, a set of 30 health-related traits covering immune (mainly innate), haematological, and stress parameters were measured in 432 healthy Duroc piglets aged 8 weeks. Moderate to high heritabilities were obtained for most traits and significant genetic correlations among them were observed. A genome wide association study pointed out 31 significantly associated SNPs at whole-genome level, located in six chromosomal regions on pig chromosomes SSC4, SSC6, SSC17 and SSCX, for IgG, γδ T-cells, C-reactive protein, lymphocytes phagocytic capacity, total number of lymphocytes, mean corpuscular volume and mean corpuscular haemoglobin. A total of 16 promising functionally-related candidate genes, including CRP, NFATC2, PRDX1, SLA, ST3GAL1, and VPS4A, have been proposed to explain the variation of immune and haematological traits. Our results enhance the knowledge of the genetic control of traits related with immunity and support the possibility of applying effective selection programs to improve immunocompetence in pigs.
Collapse
|
4
|
Zhu S, Guo T, Zhao H, Qiao G, Han M, Liu J, Yuan C, Wang T, Li F, Yue Y, Yang B. Genome-Wide Association Study Using Individual Single-Nucleotide Polymorphisms and Haplotypes for Erythrocyte Traits in Alpine Merino Sheep. Front Genet 2020; 11:848. [PMID: 32849829 PMCID: PMC7411260 DOI: 10.3389/fgene.2020.00848] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 07/13/2020] [Indexed: 11/13/2022] Open
Abstract
Adaptation to high-altitude hypoxia is essential for domestic animals, such as yak, Tibetan chicken, and Tibetan sheep, living on high plateaus, as it ensures efficient oxygen absorption and utilization. Red blood cells are the primary medium for transporting oxygen in the blood. However, little is known about the genetic mechanism of erythrocyte traits. Genome-wide association studies (GWASs) based on single markers or haplotypes have identified potential mechanisms for genetic variation and quantitative traits. To identify loci associated with erythrocyte traits, we performed a GWAS based on the method of the single marker and haplotype in 498 Alpine Merino sheep for six erythrocyte traits: red blood cell count (RBC), hemoglobin (HGB), hematocrit (HCT), mean corpuscular hemoglobin (MCH), mean corpuscular hemoglobin concentration (MCHC), and RBC volume distribution width coefficient of variation (RWD_CV). Forty-two significant single-nucleotide polymorphisms (SNPs) associated with the six erythrocyte traits were detected by means of a single-marker GWAS, and 34 significant haplotypes associated with five erythrocyte traits were detected by means of haplotype analysis. We identified six genes (DHCR24, SPATA9, FLI1, PLCB1, EFNB2, and SH2B3) as potential genes of interest via gene function annotations, location, and expression variation. In particular, FLI1 and PLCB1 were associated with hematopoiesis and erythropoiesis, respectively. These results provide a theoretical basis for analyzing erythrocyte traits and high-altitude hypoxia adaptation in Alpine Merino sheep and will be a useful reference for future studies of plateau-dwelling livestock.
Collapse
Affiliation(s)
- Shaohua Zhu
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Sheep Breeding Engineering Technology Center, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Tingting Guo
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Sheep Breeding Engineering Technology Center, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Hongchang Zhao
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Sheep Breeding Engineering Technology Center, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Guoyan Qiao
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Sheep Breeding Engineering Technology Center, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Mei Han
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Sheep Breeding Engineering Technology Center, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Jianbin Liu
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Sheep Breeding Engineering Technology Center, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Chao Yuan
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
- Sheep Breeding Engineering Technology Center, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Tianxiang Wang
- Gansu Provincial Sheep Breeding Technology Extension Station, Sunan, China
| | - Fanwen Li
- Gansu Provincial Sheep Breeding Technology Extension Station, Sunan, China
| | - Yaojing Yue
- Sheep Breeding Engineering Technology Center, Chinese Academy of Agricultural Sciences, Lanzhou, China
| | - Bohui Yang
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou, China
| |
Collapse
|
5
|
Ma X, Jia C, Fu D, Chu M, Ding X, Wu X, Guo X, Pei J, Bao P, Liang C, Yan P. Analysis of Hematological Traits in Polled Yak by Genome-Wide Association Studies Using Individual SNPs and Haplotypes. Genes (Basel) 2019; 10:E463. [PMID: 31212963 PMCID: PMC6627507 DOI: 10.3390/genes10060463] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Revised: 06/11/2019] [Accepted: 06/12/2019] [Indexed: 12/21/2022] Open
Abstract
Yak (Bos grunniens) is an important domestic animal living in high-altitude plateaus. Due to inadequate disease prevention, each year, the yak industry suffers significant economic losses. The identification of causal genes that affect blood- and immunity-related cells could provide preliminary reference guidelines for the prevention of diseases in the population of yaks. The genome-wide association studies (GWASs) utilizing a single-marker or haplotype method were employed to analyze 15 hematological traits in the genome of 315 unrelated yaks. Single-marker GWASs identified a total of 43 significant SNPs, including 35 suggestive and eight genome-wide significant SNPs, associated with nine traits. Haplotype analysis detected nine significant haplotype blocks, including two genome-wide and seven suggestive blocks, associated with seven traits. The study provides data on the genetic variability of hematological traits in the yak. Five essential genes (GPLD1, EDNRA,APOB, HIST1H1E, and HIST1H2BI) were identified, which affect the HCT, HGB, RBC, PDW, PLT, and RDWSD traits and can serve as candidate genes for regulating hematological traits. The results provide a valuable reference to be used in the analysis of blood properties and immune diseases in the yak.
Collapse
Affiliation(s)
- Xiaoming Ma
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China.
- Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Lanzhou 730050, China.
| | - Congjun Jia
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China.
- Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Lanzhou 730050, China.
| | - Donghai Fu
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China.
- Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Lanzhou 730050, China.
| | - Min Chu
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China.
- Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Lanzhou 730050, China.
| | - Xuezhi Ding
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China.
- Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Lanzhou 730050, China.
| | - Xiaoyun Wu
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China.
- Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Lanzhou 730050, China.
| | - Xian Guo
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China.
- Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Lanzhou 730050, China.
| | - Jie Pei
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China.
- Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Lanzhou 730050, China.
| | - Pengjia Bao
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China.
- Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Lanzhou 730050, China.
| | - Chunnian Liang
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China.
- Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Lanzhou 730050, China.
| | - Ping Yan
- Animal Science Department, Lanzhou Institute of Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China.
- Key Laboratory for Yak Genetics, Breeding, and Reproduction Engineering of Gansu Province, Lanzhou 730050, China.
| |
Collapse
|
6
|
Bovo S, Mazzoni G, Bertolini F, Schiavo G, Galimberti G, Gallo M, Dall'Olio S, Fontanesi L. Genome-wide association studies for 30 haematological and blood clinical-biochemical traits in Large White pigs reveal genomic regions affecting intermediate phenotypes. Sci Rep 2019; 9:7003. [PMID: 31065004 PMCID: PMC6504931 DOI: 10.1038/s41598-019-43297-1] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2018] [Accepted: 04/16/2019] [Indexed: 12/20/2022] Open
Abstract
Haematological and clinical-biochemical parameters are considered indicators of the physiological/health status of animals and might serve as intermediate phenotypes to link physiological aspects to production and disease resistance traits. The dissection of the genetic variability affecting these phenotypes might be useful to describe the resilience of the animals and to support the usefulness of the pig as animal model. Here, we analysed 15 haematological and 15 clinical-biochemical traits in 843 Italian Large White pigs, via three genome-wide association scan approaches (single-trait, multi-trait and Bayesian). We identified 52 quantitative trait loci (QTLs) associated with 29 out of 30 analysed blood parameters, with the most significant QTL identified on porcine chromosome 14 for basophil count. Some QTL regions harbour genes that may be the obvious candidates: QTLs for cholesterol parameters identified genes (ADCY8, APOB, ATG5, CDKAL1, PCSK5, PRL and SOX6) that are directly involved in cholesterol metabolism; other QTLs highlighted genes encoding the enzymes being measured [ALT (known also as GPT) and AST (known also as GOT)]. Moreover, the multivariate approach strengthened the association results for several candidate genes. The obtained results can contribute to define new measurable phenotypes that could be applied in breeding programs as proxies for more complex traits.
Collapse
Affiliation(s)
- Samuele Bovo
- Department of Agricultural and Food Sciences, Division of Animal Sciences, University of Bologna, Viale G. Fanin 46, 40127, Bologna, Italy
| | - Gianluca Mazzoni
- Department of Health Technology, Technical University of Denmark (DTU), Lyngby, 2800, Denmark
| | - Francesca Bertolini
- National Institute of Aquatic Resources, Technical University of Denmark (DTU), Lyngby, 2800, Denmark
| | - Giuseppina Schiavo
- Department of Agricultural and Food Sciences, Division of Animal Sciences, University of Bologna, Viale G. Fanin 46, 40127, Bologna, Italy
| | - Giuliano Galimberti
- Department of Statistical Sciences "Paolo Fortunati", University of Bologna, Via delle Belle Arti 41, 40126, Bologna, Italy
| | - Maurizio Gallo
- Associazione Nazionale Allevatori Suini (ANAS), Via Nizza 53, 00198, Roma, Italy
| | - Stefania Dall'Olio
- Department of Agricultural and Food Sciences, Division of Animal Sciences, University of Bologna, Viale G. Fanin 46, 40127, Bologna, Italy
| | - Luca Fontanesi
- Department of Agricultural and Food Sciences, Division of Animal Sciences, University of Bologna, Viale G. Fanin 46, 40127, Bologna, Italy.
| |
Collapse
|
7
|
Yan G, Guo T, Xiao S, Zhang F, Xin W, Huang T, Xu W, Li Y, Zhang Z, Huang L. Imputation-Based Whole-Genome Sequence Association Study Reveals Constant and Novel Loci for Hematological Traits in a Large-Scale Swine F 2 Resource Population. Front Genet 2018; 9:401. [PMID: 30405681 PMCID: PMC6204663 DOI: 10.3389/fgene.2018.00401] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2018] [Accepted: 09/03/2018] [Indexed: 11/13/2022] Open
Abstract
The whole-genome sequences of progenies with low-density single-nucleotide polymorphism (SNP) genotypes can be imputed with high accuracy based on the deep-coverage sequences of key ancestors. With this imputation technology, a more powerful genome-wide association study (GWAS) can be carried out using imputed whole-genome variants and the phenotypes of interest to overcome the shortcomings of low-power detection and the large confidence interval derived from low-density SNP markers in classic association studies. In this study, 19 ancestors of a large-scale swine F2 White Duroc × Erhualian population were deeply sequenced for their genome with an average coverage of 25×. Considering 98 pigs from 10 different breeds with high-quality deep sequenced genomes, we imputed the whole genomic variants of 1020 F2 pigs genotyped by the PorcineSNP60 BeadChip with high accuracy and obtained 14,851,440 sequence variants after quality control. Based on this, 87 novel quantitative traits loci (QTLs) for 18 hematological traits at three different physiological stages of the F2 pigs were identified, among which most of the novel QTLs have been repeated in two of the three stages. Literature mining pinpointed that the FGF14 and LCLAT1 genes at SSC11 and SSC3 may affect the MCH at day 240 and MCV at day 18, respectively. The present study shows that combining high-quality imputed genomic variants and correlated phenomic traits into GWAS can improve the capability to detect QTL considerably. The large number of different QTLs for hematological traits identified at multiple growth stages implies the complexity and time specificity of these traits.
Collapse
Affiliation(s)
- Guorong Yan
- State Key Laboratory for Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, China
| | - Tianfu Guo
- State Key Laboratory for Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, China
| | - Shijun Xiao
- State Key Laboratory for Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, China
| | - Feng Zhang
- State Key Laboratory for Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, China
| | - Wenshui Xin
- State Key Laboratory for Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, China
| | - Tao Huang
- State Key Laboratory for Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, China
| | - Wenwu Xu
- State Key Laboratory for Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, China
| | - Yiping Li
- State Key Laboratory for Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, China
| | - Zhiyan Zhang
- State Key Laboratory for Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, China
| | - Lusheng Huang
- State Key Laboratory for Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, China
| |
Collapse
|
8
|
Xu P, Cui L, Huang T, Zhang Z, Yang B, Chen C, Huang L, Duan Y. Genome-wide identification of quantitative trait transcripts for blood traits in the liver samples of a White Duroc × Erhualian F2 pig resource population. Physiol Genomics 2016; 48:573-9. [PMID: 27260842 DOI: 10.1152/physiolgenomics.00123.2015] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2015] [Accepted: 05/31/2016] [Indexed: 11/22/2022] Open
Abstract
Blood cell counts are important clinical indicators for health status. The liver plays a crucial role in food digestion and metabolism and is also a blood-forming organ. Here, we conducted a whole-genome quantitative trait transcript (QTT) analysis on 497 liver samples for 16 hematological traits in a White Duroc × Erhualian F2 pig resource population. A total of 20,108 transcripts were explored to detect their association with hematological traits. By using Spearman correlation coefficients, we identified 1,267 QTTs for these 16 hematological traits at the significance threshold of P < 0.001. We found 31 candidate genes for erythrocyte and leukocyte-related traits by a look-up of human and pig genome-wide association study results. Furthermore, we constructed coexpression networks for leukocyte-related QTTs using weighted gene coexpression analysis. These QTTs were clustered into two to eight modules. The highest connection strength in intramodules was identified in a module for white blood cell count. In the module, USP18, RSAD2, and OAS1 appeared to be important genes involved in interferon-stimulated innate immune system. The findings improve our understanding of intrinsic relationships between the liver and blood cells and provide novel insights into the potential therapeutic targets of hematologic diseases.
Collapse
Affiliation(s)
- Pan Xu
- State Key Laboratory for Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, People's Republic of China
| | - Leilei Cui
- State Key Laboratory for Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, People's Republic of China
| | - Tao Huang
- State Key Laboratory for Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, People's Republic of China
| | - Zhen Zhang
- State Key Laboratory for Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, People's Republic of China
| | - Bin Yang
- State Key Laboratory for Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, People's Republic of China
| | - Congying Chen
- State Key Laboratory for Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, People's Republic of China
| | - Lusheng Huang
- State Key Laboratory for Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, People's Republic of China
| | - Yanyu Duan
- State Key Laboratory for Pig Genetic Improvement and Production Technology, Jiangxi Agricultural University, Nanchang, People's Republic of China
| |
Collapse
|
9
|
Zhu J, Chen C, Yang B, Guo Y, Ai H, Ren J, Peng Z, Tu Z, Yang X, Meng Q, Friend S, Huang L. A systems genetics study of swine illustrates mechanisms underlying human phenotypic traits. BMC Genomics 2015; 16:88. [PMID: 25765547 PMCID: PMC4336704 DOI: 10.1186/s12864-015-1240-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Accepted: 01/13/2015] [Indexed: 12/20/2022] Open
Abstract
Background The pig, which shares greater similarities with human than with mouse, is important for agriculture and for studying human diseases. However, similarities in the genetic architecture and molecular regulations underlying phenotypic variations in humans and swine have not been systematically assessed. Results We systematically surveyed ~500 F2 pigs genetically and phenotypically. By comparing candidates for anemia traits identified in swine genome-wide SNP association and human genome-wide association studies (GWAS), we showed that both sets of candidates are related to the biological process “cellular lipid metabolism” in liver. Human height is a complex heritable trait; by integrating genome-wide SNP data and human adipose Bayesian causal network, which closely represents bone transcriptional regulations, we identified PLAG1 as a causal gene for limb bone length. This finding is consistent with GWAS findings for human height and supports the common genetic architecture between swine and humans. By leveraging a human protein-protein interaction network, we identified two putative candidate causal genes TGFB3 and DAB2IP and the known regulators MESP1 and MESP2 as responsible for the variation in rib number and identified the potential underlying molecular mechanisms. In mice, knockout of Tgfb3 and Tgfb2 together decreases rib number. Conclusion Our findings show that integrative network analyses reveal causal regulators underlying the genetic association of complex traits in swine and that these causal regulators have similar effects in humans. Thus, swine are a potentially good animal model for studying some complex human traits that are not under intense selection. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-1240-y) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Jun Zhu
- Jiangxi Agricultural University, Nanchang, Jiangxi, China. .,Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| | - Congying Chen
- Jiangxi Agricultural University, Nanchang, Jiangxi, China.
| | - Bin Yang
- Jiangxi Agricultural University, Nanchang, Jiangxi, China.
| | - Yuanmei Guo
- Jiangxi Agricultural University, Nanchang, Jiangxi, China.
| | - Huashui Ai
- Jiangxi Agricultural University, Nanchang, Jiangxi, China.
| | - Jun Ren
- Jiangxi Agricultural University, Nanchang, Jiangxi, China.
| | | | - Zhidong Tu
- Genetics and Genomic Sciences, Icahn Institute for Genomics and Multiscale Biology, Icahn School of Medicine at Mount Sinai, New York, NY, 10029, USA.
| | - Xia Yang
- Department of Integrative Biology and Physiology, University of California at Los Angeles, Los Angeles, CA, USA.
| | - Qingying Meng
- Department of Integrative Biology and Physiology, University of California at Los Angeles, Los Angeles, CA, USA.
| | | | - Lusheng Huang
- Jiangxi Agricultural University, Nanchang, Jiangxi, China.
| |
Collapse
|
10
|
Zhang Z, Hong Y, Gao J, Xiao S, Ma J, Zhang W, Ren J, Huang L. Genome-wide association study reveals constant and specific loci for hematological traits at three time stages in a White Duroc × Erhualian F2 resource population. PLoS One 2013; 8:e63665. [PMID: 23691082 PMCID: PMC3656948 DOI: 10.1371/journal.pone.0063665] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2013] [Accepted: 04/05/2013] [Indexed: 11/18/2022] Open
Abstract
Hematological traits are important indicators of immune function and have been commonly examined as biomarkers of disease and disease severity in humans. Pig is an ideal biomedical model for human diseases due to its high degree of similarity with human physiological characteristics. Here, we conducted genome-wide association studies (GWAS) for 18 hematological traits at three growth stages (days 18, 46 and 240) in a White Duroc × Erhualian F2 intercross. In total, we identified 38 genome-wide significant regions containing 185 genome-wide significant SNPs by single-marker GWAS or LONG-GWAS. The significant regions are distributed on pig chromosomes (SSC) 1, 4, 5, 7, 8, 10, 11, 12, 13, 17 and 18, and most of significant SNPs reside on SSC7 and SSC8. Of the 38 significant regions, 7 show constant effects on hematological traits across the whole life stages, and 6 regions have time-specific effects on the measured traits at early or late stages. The most prominent locus is the genomic region between 32.36 and 84.49 Mb on SSC8 that is associated with multiple erythroid traits. The KIT gene in this region appears to be a promising candidate gene. The findings improve our understanding of the genetic architecture of hematological traits in pigs. Further investigations are warranted to characterize the responsible gene(s) and causal variant(s) especially for the major loci on SSC7 and SSC8.
Collapse
Affiliation(s)
- Zhiyan Zhang
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China, Jiangxi Agricultural University, Nanchang, China
| | | | | | | | | | | | | | | |
Collapse
|
11
|
Chen C, Qiao R, Wei R, Guo Y, Ai H, Ma J, Ren J, Huang L. A comprehensive survey of copy number variation in 18 diverse pig populations and identification of candidate copy number variable genes associated with complex traits. BMC Genomics 2012; 13:733. [PMID: 23270433 PMCID: PMC3543711 DOI: 10.1186/1471-2164-13-733] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2012] [Accepted: 12/15/2012] [Indexed: 01/04/2023] Open
Abstract
Background Copy number variation (CNV) is a major source of structural variants and has been commonly identified in mammalian genome. It is associated with gene expression and may present a major genetic component of phenotypic diversity. Unlike many other mammalian genomes where CNVs have been well annotated, studies of porcine CNV in diverse breeds are still limited. Result Here we used Porcine SNP60 BeadChip and PennCNV algorithm to identify 1,315 putative CNVs belonging to 565 CNV regions (CNVRs) in 1,693 pigs from 18 diverse populations. Total 538 out of 683 CNVs identified in a White Duroc × Erhualian F2 population fit Mendelian transmission and 6 out of 7 randomly selected CNVRs were confirmed by quantitative real time PCR. CNVRs were non-randomly distributed in the pig genome. Several CNV hotspots were found on pig chromosomes 6, 11, 13, 14 and 17. CNV numbers differ greatly among different pig populations. The Duroc pigs were identified to have the most number of CNVs per individual. Among 1,765 transcripts located within the CNVRs, 634 genes have been reported to be copy number variable genes in the human genome. By integrating analysis of QTL mapping, CNVRs and the description of phenotypes in knockout mice, we identified 7 copy number variable genes as candidate genes for phenotypes related to carcass length, backfat thickness, abdominal fat weight, length of scapular, intermuscle fat content of logissimus muscle, body weight at 240 day, glycolytic potential of logissimus muscle, mean corpuscular hemoglobin, mean corpuscular volume and humerus diameter. Conclusion We revealed the distribution of the unprecedented number of 565 CNVRs in pig genome and investigated copy number variable genes as the possible candidate genes for phenotypic traits. These findings give novel insights into porcine CNVs and provide resources to facilitate the identification of trait-related CNVs.
Collapse
Affiliation(s)
- Congying Chen
- Key Laboratory for Animal Biotechnology of Jiangxi Province and the Ministry of Agriculture of China, Jiangxi Agricultural University, Nanchang, 330045, China
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Luo W, Chen S, Cheng D, Wang L, Li Y, Ma X, Song X, Liu X, Li W, Liang J, Yan H, Zhao K, Wang C, Wang L, Zhang L. Genome-wide association study of porcine hematological parameters in a Large White × Minzhu F2 resource population. Int J Biol Sci 2012; 8:870-81. [PMID: 22745577 PMCID: PMC3385009 DOI: 10.7150/ijbs.4027] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2011] [Accepted: 05/15/2012] [Indexed: 01/09/2023] Open
Abstract
Hematological traits, which are important indicators of immune function in animals, have been commonly examined as biomarkers of disease and disease severity in humans and animals. Genome-wide significant quantitative trait loci (QTLs) provide important information for use in breeding programs of animals such as pigs. QTLs for hematological parameters (hematological traits) have been detected in pig chromosomes, although these are often mapped by linkage analysis to large intervals making identification of the underlying mutation problematic. Single nucleotide polymorphisms (SNPs) are the common form of genetic variation among individuals and are thought to account for the majority of inherited traits. In this study, a genome-wide association study (GWAS) was performed to detect regions of association with hematological traits in a three-generation resource population produced by intercrossing Large White boars and Minzhu sows during the period from 2007 to 2011. Illumina PorcineSNP60 BeadChip technology was used to genotype each animal and seven hematological parameters were measured (hematocrit (HCT), hemoglobin (HGB), mean corpuscular hemoglobin (MCH), mean corpuscular hemoglobin concentration (MCHC), mean corpuscular volume (MCV), red blood cell count (RBC) and red blood cell volume distribution width (RDW)). Data were analyzed in a three step Genome-wide Rapid Association using the Mixed Model and Regression-Genomic Control (GRAMMAR-GC) method. A total of 62 genome-wide significant and three chromosome-wide significant SNPs associated with hematological parameters were detected in this GWAS. Seven and five SNPs were associated with HCT and HGB, respectively. These SNPs were all located within the region of 34.6-36.5 Mb on SSC7. Four SNPs within the region of 43.7-47.0 Mb and fifty-five SNPs within the region of 42.2-73.8 Mb on SSC8 showed significant association with MCH and MCV, respectively. At chromosome-wide significant level, one SNP at 29.2 Mb on SSC1 and two SNPs within the region of 26.0-26.2 Mb were found to be significantly associated with RBC and RDW, respectively. Many of the SNPs were located within previously reported QTL regions and appeared to narrow down the regions compared with previously described QTL intervals. In current research, a total of seven significant SNPs were found within six candidate genes SCUBE3, KDR, TDO, IGFBP7, ADAMTS3 and AFP. In addition, the KIT gene, which has been previously reported to relate to hematological parameters, was located within the region significantly associated with MCH and MCV and could be a candidate gene. These results of this study may lead to a better understanding of the molecular mechanisms of hematological parameters in pigs.
Collapse
Affiliation(s)
- Weizhen Luo
- Key Laboratory of Farm Animal Genetic Resources and Germplasm Innovation of Ministry of Agriculture of China, Institute of Animal Science, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Wang JY, Luo YR, Fu WX, Lu X, Zhou JP, Ding XD, Liu JF, Zhang Q. Genome-wide association studies for hematological traits in swine. Anim Genet 2012; 44:34-43. [PMID: 22548415 DOI: 10.1111/j.1365-2052.2012.02366.x] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/05/2012] [Indexed: 12/30/2022]
Abstract
Improving immune capacity may increase the profitability of animal production if it enables animals to better cope with infections. Hematological traits play pivotal roles in animal immune capacity and disease resistance. Thus far, few studies have been conducted using a high-density swine SNP chip panel to unravel the genetic mechanism of the immune capability in domestic animals. In this study, using mixed model-based single-locus regression analyses, we carried out genome-wide association studies, using the Porcine SNP60 BeadChip, for immune responses in piglets for 18 hematological traits (seven leukocyte traits, seven erythrocyte traits, and four platelet traits) after being immunized with classical swine fever vaccine. After adjusting for multiple testing based on permutations, 10, 24, and 77 chromosome-wise significant SNPs were identified for the leukocyte traits, erythrocyte traits, and platelet traits respectively, of which 10 reached genome-wise significance level. Among the 53 SNPs for mean platelet volume, 29 are located in a linkage disequilibrium block between 32.77 and 40.59 Mb on SSC6. Four genes of interest are located within the block, providing genetic evidence that this genomic segment may be considered a candidate region relevant to the platelet traits. Other candidate genes of interest for red blood cell, hemoglobin, and red blood cell volume distribution width also have been found near the significant SNPs. Our genome-wide association study provides a list of significant SNPs and candidate genes that offer valuable information for future dissection of molecular mechanisms regulating hematological traits.
Collapse
Affiliation(s)
- J Y Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture, College of Animal Science and Technology, China
| | | | | | | | | | | | | | | |
Collapse
|
14
|
Genetic analysis of hematological parameters in incipient lines of the collaborative cross. G3-GENES GENOMES GENETICS 2012; 2:157-65. [PMID: 22384394 PMCID: PMC3284323 DOI: 10.1534/g3.111.001776] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/11/2011] [Accepted: 12/20/2011] [Indexed: 12/19/2022]
Abstract
Hematological parameters, including red and white blood cell counts and hemoglobin concentration, are widely used clinical indicators of health and disease. These traits are tightly regulated in healthy individuals and are under genetic control. Mutations in key genes that affect hematological parameters have important phenotypic consequences, including multiple variants that affect susceptibility to malarial disease. However, most variation in hematological traits is continuous and is presumably influenced by multiple loci and variants with small phenotypic effects. We used a newly developed mouse resource population, the Collaborative Cross (CC), to identify genetic determinants of hematological parameters. We surveyed the eight founder strains of the CC and performed a mapping study using 131 incipient lines of the CC. Genome scans identified quantitative trait loci for several hematological parameters, including mean red cell volume (Chr 7 and Chr 14), white blood cell count (Chr 18), percent neutrophils/lymphocytes (Chr 11), and monocyte number (Chr 1). We used evolutionary principles and unique bioinformatics resources to reduce the size of candidate intervals and to view functional variation in the context of phylogeny. Many quantitative trait loci regions could be narrowed sufficiently to identify a small number of promising candidate genes. This approach not only expands our knowledge about hematological traits but also demonstrates the unique ability of the CC to elucidate the genetic architecture of complex traits.
Collapse
|
15
|
Sun N, Liu D, Chen H, Liu X, Meng F, Zhang X, Chen H, Xie S, Li X, Wu Z. Localization, expression change in PRRSV infection and association analysis of the porcine TAP1 gene. Int J Biol Sci 2011; 8:49-58. [PMID: 22211104 PMCID: PMC3226032 DOI: 10.7150/ijbs.8.49] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Accepted: 11/01/2011] [Indexed: 12/22/2022] Open
Abstract
The transporter associated with antigen processing (TAP) translocates antigenic peptides from the cytosol into the lumen of the endoplasmic reticular and plays a critical role in the major histocompatibility complex (MHC) class I molecule-mediated antigenic presentation pathway. In this study, the porcine TAP1 gene was mapped to the pig chromosome 7 (SSC7) and was closely linked to the marker SSC2B02 (retention fraction=43%, LOD=15.18). Subcellular localization of TAP1 by transient transfection of PK15 cells indicated that the TAP1 protein might be located in the endoplasmic reticulum (ER) in pig kidney epithelial cells (PK-15). Gene expression analysis by semi-quantitative RT-PCR revealed that TAP1 was selectively expressed in some immune and immune-related tissues. Quantitative real-time PCR (qRT-PCR) analysis revealed that this gene was up-regulated after treatments that mimic viral and bacterial infection (polyriboinosinic-polyribocytidylic acid (poly(I:C)) and lipopolysaccharide (LPS), respectively). In addition, elevated TAP1 expression was detected after porcine reproductive and respiratory syndrome virus (PRRSV) infection in porcine white blood cells (WBCs). One single nucleotide polymorphism (SNP) in exon 3 of TAP1 was detected in a Landrace pig population by Bsp143I restriction enzyme digestion. Different genotypes of this SNP had significant associations (P<0.05) with the red blood cell distribution width (RDW) of 1-day-old (1 d) pigs (P=0.0168), the PRRSV antibody level (PRRSV Ab) (P=0.0445) and the absolute lymphocyte count (LYM#) (P=0.024) of 17 d pigs. Our results showed that the TAP1 gene might have important roles in swine immune responses, and these results provide useful information for further functional studies.
Collapse
Affiliation(s)
- Nunu Sun
- Guangdong Provincial Key Lab of Agro-Animal Genomics and Molecular Breeding, College of Animal Science, South China Agricultural University, Guangzhou 510642, P. R. China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Strzalkowska A, Unrug-Bielawska K, Bluszcz A, Sandowska-Markiewicz Z, Karaszewska J, Pysniak K, Gajewska M, Wirth-Dzieciolowska E. Quantitative trait loci analysis for peripheral blood parameters in a (BALB/cW × C57BL/6J-Mpl (hlb219)/J) F(2) mice. Exp Anim 2011; 60:405-16. [PMID: 21791880 DOI: 10.1538/expanim.60.405] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
The genetic basis of the peripheral blood cell parameters is not fully elucidated. Thus, it is essential to research the correlation between blood cell counts levels and the genome in laboratory animals and subsequently in humans. In the present study, we examined 288 F(2) mice from a cross between BALB/cW and C57BL/6J-Mpl(hlb219)/J. The C57BL/6J-Mpl (hlb219)/J strain is a mouse model of thrombocytopenia. We found very strong correlations for PLT counts and revealed some highly significant correlations for RBC counts. On the basis of the obtained results, we presume that genetic control of erythrocyte parameters is divided into two pathways: first, the morphological determinants responsible for the red blood cell count (RBC), hematocrit (HCT), and mean corpuscular volume (MCV), and second, the functional pathway determining the hemoglobin content (HGB). The locus on Chromosome 4 is the only detected quantitative trait locus (QTL) influencing the analyzed platelets parameters. We also detected highly significant correlations for erythrocyte parameters on Chromosome 1 (RBC, MCV, MCH), Chr 7 (HGB), Chr 9 (MCHC), Chr 11 (RBC), and Chr 17 (MCH). Finally, with regards to the given correlations, using the Mouse Genome Database resource, we proposed candidate genes with possible meaning for the level of these parameters: cytokine receptor genes (e.g., Mpl), transcription factor genes (e.g., Xbp1, Ikzf1), hemoglobin chain genes (e.g., Hbb-b1, Hbb-ar), and many others localized in the confidence intervals of found QTLs.
Collapse
Affiliation(s)
- Adriana Strzalkowska
- Department of Genetics and Laboratory Animal Breeding, The Maria Sklodowska-Curie Memorial Cancer Center and Institute of Oncology, W. K. Roentgen St. 5, 02-871 Warsaw, Poland
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Mapping quantitative trait loci for T lymphocyte subpopulations in peripheral blood in swine. BMC Genet 2011; 12:79. [PMID: 21923905 PMCID: PMC3182951 DOI: 10.1186/1471-2156-12-79] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2011] [Accepted: 09/16/2011] [Indexed: 11/25/2022] Open
Abstract
Background Increased disease resistance through improved general immune capacity would be beneficial for the welfare and productivity of farm animals. T lymphocyte subpopulations in peripheral blood play an important role in immune capacity and disease resistance in animals. However, very little research to date has focused on quantitative trait loci (QTL) for T lymphocyte subpopulations in peripheral blood in swine. Results In the study, experimental animals consist of 446 piglets from three different breed populations. To identify QTL for T lymphocyte subpopulations in peripheral blood in swine, the proportions of CD4+, CD8+, CD4+CD8+, CD4+CD8-, CD4-CD8+, and CD4-CD8- T cells and the ratio of CD4+:CD8+ T cells were measured for all individuals before and after challenge with modified live CSF (classical swine fever) vaccine. Based on the combined data of individuals from three breed populations, genome-wide scanning of QTL for these traits was performed based on a variance component model, and the genome wide significance level for declaring QTL was determined via permutation tests as well as FDR (false discovery rate) correction. A total of 27 QTL (two for CD4+CD8+, one for CD4+CD8-, three for CD4-CD8+, two for CD4-CD8-, nine for CD4+, two for CD8+, and eight for CD4+:CD8+ ratio) were identified with significance level of FDR < 0.10, of which 11 were significant at the level of FDR < 0.05, including the five significant at FDR < 0.01. Conclusions Within these QTL regions, a number of known genes having potential relationships with the studied traits may serve as candidate genes for these traits. Our findings herein are helpful for identification of the causal genes underlying these immune-related trait and selection for immune capacity of individuals in swine breeding in the future.
Collapse
|
18
|
Cho IC, Park HB, Yoo CK, Lee GJ, Lim HT, Lee JB, Jung EJ, Ko MS, Lee JH, Jeon JT. QTL analysis of white blood cell, platelet and red blood cell-related traits in an F2 intercross between Landrace and Korean native pigs. Anim Genet 2011; 42:621-6. [PMID: 22035003 DOI: 10.1111/j.1365-2052.2011.02204.x] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Haematological traits play important roles in disease resistance and defence functions. The objective of this study was to locate quantitative trait loci (QTL) and the associated positional candidate genes influencing haematological traits in an F(2) intercross between Landrace and Korean native pigs. Eight blood-related traits (six erythrocyte traits, one leucocyte trait and one platelet trait) were measured in 816 F(2) progeny. All experimental animals were genotyped with 173 informative microsatellite markers located throughout the pig genome. We report that nine chromosomes harboured QTL for the baseline blood parameters: genomic regions on SSC 1, 4, 5, 6, 8, 9, 11, 13 and 17. Eight of twenty identified QTL reached genome-wide significance. In addition, we evaluated the KIT locus, an obvious candidate gene locus affecting variation in blood-related traits. Using dense single nucleotide polymorphism marker data on SSC 8 and the marker-assisted association test, the strong association of the KIT locus with blood phenotypes was confirmed. In conclusion, our study identified both previously reported and novel QTL affecting baseline haematological parameters in pigs. Additionally, the positional candidate genes identified here could play an important role in elucidating the genetic architecture of haematological phenotype variation in swine and in humans.
Collapse
Affiliation(s)
- I C Cho
- National Institute of Animal Science, Rural Development Administration, Jeju, Korea
| | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
Gong YF, Lu X, Wang ZP, Hu F, Luo YR, Cai SQ, Qi CM, Li S, Niu XY, Qiu XT, Zeng J, Zhang Q. Detection of quantitative trait loci affecting haematological traits in swine via genome scanning. BMC Genet 2010; 11:56. [PMID: 20584270 PMCID: PMC2906409 DOI: 10.1186/1471-2156-11-56] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2009] [Accepted: 06/28/2010] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Haematological traits, which consist of mainly three components: leukocyte traits, erythrocyte traits and platelet traits, play extremely important role in animal immune function and disease resistance. But knowledge of the genetic background controlling variability of these traits is very limited, especially in swine. RESULTS In the present study, 18 haematological traits (7 leukocyte traits, 7 erythrocyte traits and 4 platelet traits) were measured in a pig resource population consisting of 368 purebred piglets of three breeds (Landrace, Large White and Songliao Black Pig), after inoculation with the swine fever vaccine when the pigs were 21 days old. A whole-genome scan of QTL for these traits was performed using 206 microsatellite markers covering all 18 autosomes and the X chromosome. Using variance component analysis based on a linear mixed model and the false discovery rate (FDR) test, 35 QTL with FDR < 0.10 were identified: 3 for the leukocyte traits, 28 for the erythrocyte traits, and 4 for the platelet traits. Of the 35 QTL, 25 were significant at FDR < 0.05 level, including 9 significant at FDR < 0.01 level. CONCLUSIONS Very few QTL were previously identified for hematological traits of pigs and never in purebred populations. Most of the QTL detected here, in particular the QTL for the platelet traits, have not been reported before. Our results lay important foundation for identifying the causal genes underlying the hematological trait variations in pigs.
Collapse
Affiliation(s)
- Yuan-Fang Gong
- Key Laboratory Animal Genetics and Breeding of Ministry of Agriculture, College of Animal Science and Technology, China Agricultural University, Beijing 100193, China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
The porcine ANG, RNASE1 and RNASE6 genes: molecular cloning, polymorphism detection and the association with haematological parameters. Mol Biol Rep 2009; 36:2405-11. [DOI: 10.1007/s11033-009-9471-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2008] [Accepted: 02/17/2009] [Indexed: 02/01/2023]
|