1
|
Hou L, Li Z, Guo X, Lv J, Chong Z, Xiao Y, Zhang L, Li Z. ITGAM is a critical gene in ischemic stroke. Aging (Albany NY) 2024; 16:6852-6867. [PMID: 38637126 PMCID: PMC11087101 DOI: 10.18632/aging.205729] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 03/04/2024] [Indexed: 04/20/2024]
Abstract
BACKGROUND Globally, ischemic stroke (IS) is ranked as the second most prevailing cause of mortality and is considered lethal to human health. This study aimed to identify genes and pathways involved in the onset and progression of IS. METHODS GSE16561 and GSE22255 were downloaded from the Gene Expression Omnibus (GEO) database, merged, and subjected to batch effect removal using the ComBat method. The limma package was employed to identify the differentially expressed genes (DEGs), followed by enrichment analysis and protein-protein interaction (PPI) network construction. Afterward, the cytoHubba plugin was utilized to screen the hub genes. Finally, a ROC curve was generated to investigate the diagnostic value of hub genes. Validation analysis through a series of experiments including qPCR, Western blotting, TUNEL, and flow cytometry was performed. RESULTS The analysis incorporated 59 IS samples and 44 control samples, revealing 226 DEGs, of which 152 were up-regulated and 74 were down-regulated. These DEGs were revealed to be linked with the inflammatory and immune responses through enrichment analyses. Overall, the ROC analysis revealed the remarkable diagnostic potential of ITGAM and MMP9 for IS. Quantitative assessment of these genes showed significant overexpression in IS patients. ITGAM modulation influenced the secretion of critical inflammatory cytokines, such as IL-1β, IL-6, and TNF-α, and had a distinct impact on neuronal apoptosis. CONCLUSIONS The inflammation and immune response were identified as potential pathological mechanisms of IS by bioinformatics and experiments. In addition, ITGAM may be considered a potential therapeutic target for IS.
Collapse
Affiliation(s)
- Lei Hou
- Department of Neurosurgery, Qilu Hospital of Shandong University, Jinan 250012, Shandong Province, P.R. China
- Department of Neurosurgery, Liaocheng People’s Hospital, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Liaocheng 252000, Shandong Province, P.R. China
| | - Zhongchen Li
- Department of Neurosurgery, Liaocheng People’s Hospital, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Liaocheng 252000, Shandong Province, P.R. China
| | - Xiaoli Guo
- Department of Pediatrics, Liaocheng People’s Hospital, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Liaocheng 252000, Shandong Province, P.R. China
| | - Jiatao Lv
- Department of Neurosurgery, Liaocheng People’s Hospital, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Liaocheng 252000, Shandong Province, P.R. China
| | - Zonglei Chong
- Department of Neurosurgery, Liaocheng People’s Hospital, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Liaocheng 252000, Shandong Province, P.R. China
| | - Yilei Xiao
- Department of Neurosurgery, Liaocheng People’s Hospital, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Liaocheng 252000, Shandong Province, P.R. China
| | - Liyong Zhang
- Department of Neurosurgery, Liaocheng People’s Hospital, Shandong Provincial Hospital, Cheeloo College of Medicine, Shandong University, Liaocheng 252000, Shandong Province, P.R. China
| | - Zefu Li
- Department of Neurosurgery, Qilu Hospital of Shandong University, Jinan 250012, Shandong Province, P.R. China
- Department of Neurosurgery, Binzhou Medical University Hospital, Binzhou Medical University, Binzhou 256603, Shandong Province, P.R. China
| |
Collapse
|
2
|
Roche V, Sandoval V, Wolford C, Senders Z, Kim JA, Ribeiro SP, Huang AY, Sekaly RP, Lyons J, Zhang M. Carbohydrate ligand engagement with CD11b enhances differentiation of tumor-associated myeloid cells for immunotherapy of solid cancers. J Immunother Cancer 2023; 11:e006205. [PMID: 37399354 DOI: 10.1136/jitc-2022-006205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/11/2023] [Indexed: 07/05/2023] Open
Abstract
BACKGROUND Efforts to modulate the function of tumor-associated myeloid cell are underway to overcome the challenges in immunotherapy and find a cure. One potential therapeutic target is integrin CD11b, which can be used to modulate the myeloid-derived cells and induce tumor-reactive T-cell responses. However, CD11b can bind to multiple different ligands, leading to various myeloid cell functions such as adhesion, migration, phagocytosis, and proliferation. This has created a major challenge in understanding how CD11b converts the differences in the receptor-ligand binding into subsequent signaling responses and using this information for therapeutic development. METHODS This study aimed to investigate the antitumor effect of a carbohydrate ligand, named BG34-200, which modulates the CD11b+ cells. We have applied peptide microarrays, multiparameter FACS (fluorescence-activated cell analysis) analysis, cellular/molecular immunological technology, advanced microscopic imaging, and transgenic mouse models of solid cancers, to study the interaction between BG34-200 carbohydrate ligand and CD11b protein and the resulting immunological changes in the context of solid cancers, including osteosarcoma, advanced melanoma, and pancreatic ductal adenocarcinoma (PDAC). RESULTS Our results show that BG34-200 can bind directly to the activated CD11b on its I (or A) domain, at previously unreported peptide residues, in a multisite and multivalent manner. This engagement significantly impacts the biological function of tumor-associated inflammatory monocytes (TAIMs) in osteosarcoma, advanced melanoma, and PDAC backgrounds. Importantly, we observed that the BG34-200-CD11b engagement triggered endocytosis of the binding complexes in TAIMs, which induced intracellular F-actin cytoskeletal rearrangement, effective phagocytosis, and intrinsic ICAM-1 (intercellular adhesion molecule I) clustering. These structural biological changes resulted in the differentiation in TAIMs into monocyte-derived dendritic cells, which play a crucial role in T-cell activation in the tumor microenvironment. CONCLUSIONS Our research has advanced the current understanding of the molecular basis of CD11b activation in solid cancers, revealing how it converts the differences in BG34 carbohydrate ligands into immune signaling responses. These findings could pave the way for the development of safe and novel BG34-200-based therapies that modulate myeloid-derived cell functions, thereby enhancing immunotherapy for solid cancers.
Collapse
Affiliation(s)
- Veronique Roche
- Department of Biomedical Engineering, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio, USA
| | - Victor Sandoval
- Department of Biomedical Engineering, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Department of Surgical Oncology, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
| | - Claire Wolford
- Department of Biomedical Engineering, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio, USA
| | - Zachary Senders
- Department of Biomedical Engineering, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Department of Surgical Oncology, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
| | - Julian Anthony Kim
- Department of Surgical Oncology, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
| | - Susan Pereira Ribeiro
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Alex Yicheng Huang
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Department of Pediatrics, UH Rainbow Babies & Children's Hospital, Cleveland, Ohio, USA
| | - Rafick-Pierre Sekaly
- Department of Pathology, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
| | - Joshua Lyons
- Department of Biomedical Engineering, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Department of Surgical Oncology, University Hospitals Cleveland Medical Center, Cleveland, Ohio, USA
| | - Mei Zhang
- Department of Biomedical Engineering, Case Western Reserve University School of Medicine, Cleveland, Ohio, USA
- Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio, USA
| |
Collapse
|
3
|
Yazar V, Yilmaz IC, Bulbul A, Klinman DM, Gursel I. Gene network landscape of mouse splenocytes reveals integrin complex as the A151 ODN-responsive hub molecule in the immune transcriptome. MOLECULAR THERAPY. NUCLEIC ACIDS 2023; 31:553-565. [PMID: 36895952 PMCID: PMC9989320 DOI: 10.1016/j.omtn.2023.02.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2022] [Accepted: 02/01/2023] [Indexed: 02/05/2023]
Abstract
Homeostatic restoration of an inflammatory response requires quenching of the immune system after pathogen threats vanish. A continued assault orchestrated by host defense results in tissue destruction or autoimmunity. A151 is the epitome of synthetic oligodeoxynucleotides (ODNs) that curb the immune response by a subset of white corpuscles through repetitive telomere-derived TTAGGG sequences. Currently, the genuine effect of A151 on the immune cell transcriptome remains unknown. Here, we leveraged an integrative approach where weighted gene co-expression network analysis (WGCNA), differential gene expression analysis, and gene set enrichment analysis (GSEA) of our in-house microarray datasets aided our understanding of how A151 ODN suppresses the immune response in mouse splenocytes. Our bioinformatics results, together with experimental validations, indicated that A151 ODN acts on components of integrin complexes, Itgam and Itga6, to interfere with immune cell adhesion and thereby suppresses the immune response in mice. Moreover, independent lines of evidence in this work converged on the observation that cell adhesion by integrin complexes serves as a focal point for cellular response to A151 ODN treatment in immune cells. Taken together, the outcome of this study sheds light on the molecular basis of immune suppression by a clinically useful DNA-based therapeutic agent.
Collapse
Affiliation(s)
- Volkan Yazar
- Institute for Cell Engineering, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
- Thorlab, Molecular Biology and Genetics Department, Faculty of Science, Ihsan Dogramaci Bilkent University, 06800 Ankara, Turkey
| | - Ismail Cem Yilmaz
- Thorlab, Molecular Biology and Genetics Department, Faculty of Science, Ihsan Dogramaci Bilkent University, 06800 Ankara, Turkey
- Izmir Biomedicine and Genome Center, Dokuz Eylul University, Balcova, Izmir, Turkey
| | - Artun Bulbul
- Thorlab, Molecular Biology and Genetics Department, Faculty of Science, Ihsan Dogramaci Bilkent University, 06800 Ankara, Turkey
| | - Dennis M. Klinman
- Immune Modulation Section, Cancer and Inflammation Program, Center for Cancer Research, National Cancer Institute, Frederick, MD 21702, USA
| | - Ihsan Gursel
- Thorlab, Molecular Biology and Genetics Department, Faculty of Science, Ihsan Dogramaci Bilkent University, 06800 Ankara, Turkey
- Izmir Biomedicine and Genome Center, Dokuz Eylul University, Balcova, Izmir, Turkey
- Corresponding author: Ihsan Gursel, PhD, Izmir Biomedicine and Genome Center, Dokuz Eylul University, Balcova, Izmir, Turkey.
| |
Collapse
|
4
|
Novel polymorphism of IFI44L associated with the susceptibility and clinical characteristics of systemic lupus erythematosus in a Chinese population. Int Immunopharmacol 2023; 117:109979. [PMID: 36893516 DOI: 10.1016/j.intimp.2023.109979] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2022] [Revised: 02/08/2023] [Accepted: 02/28/2023] [Indexed: 03/09/2023]
Abstract
BACKGROUND Interferon-inducible 44 like (IFI44L) is a newly discovered gene which has been reported to associate with the susceptibility of some infectious diseases, but there is no data on IFI44L SNP polymorphism associated with Systemic lupus erythematosus (SLE). In this study, we aimed to evaluate the association of IFI44L rs273259 polymorphism with the susceptibility and clinical characteristics of SLE in a Chinese population. METHODS 576 SLE patients and 600 controls were recruited in this case-control study. Blood DNA was extracted and IFI44L rs273259 polymorphism was detected by TaqMan SNP Genotyping Assay Kit. The expression levels of IFI44L in Peripheral blood mononuclear cells were detected by RT-qPCR. The DNA methylation levels of IFI44L promoter were detected by bisulfite pyrosequencing. RESULTS The genotype and allele frequencies of IFI44L rs273259 in SLE patients have a significantly difference compared to healthy controls (P < 0.001). The genotype AG (vs. AA: OR = 2.849; P < 0.001) and the allele G (vs. A: OR = 1.454; P < 0.001) were associated with increased susceptibility of SLE. IFI44L rs273259 polymorphism was associated with clinical characteristics of SLE including malar rash (P < 0.001), discoid rash (P < 0.001), lupus nephritis (P < 0.001) and anti-Smith antibodies (P < 0.001). The expression levels of IFI44L were most significantly increased in genotype AG than genotype AA and GG (P < 0.01). The DNA methylation levels of IFI44L promoter were most significantly decreased in genotype AG than genotype AA and GG (P < 0.01). CONCLUSIONS Our results indicate novel polymorphism of IFI44L rs273259 was associated with the susceptibility and clinical characteristics of SLE in the Chinese population.
Collapse
|
5
|
Zheng PF, Zou QC, Chen LZ, Liu P, Liu ZY, Pan HW. Identifying patterns of immune related cells and genes in the peripheral blood of acute myocardial infarction patients using a small cohort. J Transl Med 2022; 20:321. [PMID: 35864510 PMCID: PMC9306178 DOI: 10.1186/s12967-022-03517-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Accepted: 07/04/2022] [Indexed: 12/31/2022] Open
Abstract
Background The immune system plays a vital role in the pathophysiology of acute myocardial infarction (AMI). However, the exact immune related mechanism is still unclear. This research study aimed to identify key immune-related genes involved in AMI. Methods CIBERSORT, a deconvolution algorithm, was used to determine the proportions of 22 subsets of immune cells in blood samples. The weighted gene co-expression network analysis (WGCNA) was used to identify key modules that are significantly associated with AMI. Then, CIBERSORT combined with WGCNA were used to identify key immune-modules. The protein–protein interaction (PPI) network was constructed and Molecular Complex Detection (MCODE) combined with cytoHubba plugins were used to identify key immune-related genes that may play an important role in the occurrence and progression of AMI. Results The CIBERSORT results suggested that there was a decrease in the infiltration of CD8 + T cells, gamma delta (γδ) T cells, and resting mast cells, along with an increase in the infiltration of neutrophils and M0 macrophages in AMI patients. Then, two modules (midnightblue and lightyellow) that were significantly correlated with AMI were identified, and the salmon module was found to be significantly associated with memory B cells. Gene enrichment analysis indicated that the 1,171 genes included in the salmon module are mainly involved in immune-related biological processes. MCODE analysis was used to identify four different MCODE complexes in the salmon module, while four hub genes (EEF1B2, RAC2, SPI1, and ITGAM) were found to be significantly correlated with AMI. The correlation analysis between the key genes and infiltrating immune cells showed that SPI1 and ITGAM were positively associated with neutrophils and M0 macrophages, while they were negatively associated with CD8 + T cells, γδ T cells, regulatory T cells (Tregs), and resting mast cells. The RT-qPCR validation results found that the expression of the ITGAM and SPI1 genes were significantly elevated in the AMI samples compared with the samples from healthy individuals, and the ROC curve analysis showed that ITGAM and SPI1 had a high diagnostic efficiency for the recognition of AMI. Conclusions Immune cell infiltration plays a crucial role in the occurrence and development of AMI. ITGAM and SPI1 are key immune-related genes that are potential novel targets for the prevention and treatment of AMI. Supplementary Information The online version contains supplementary material available at 10.1186/s12967-022-03517-1.
Collapse
Affiliation(s)
- Peng-Fei Zheng
- Cardiology Department, Hunan Provincial People's Hospital, No.61 West Jiefang Road, Furong District, Changsha, 410000, Hunan, China.,Clinical Research Center for Heart Failure in Hunan Province, No.61 West Jiefang Road, Furong District, Changsha, 410000, Hunan, China.,Institute of Cardiovascular Epidemiology, Hunan Provincial People's Hospital, No.61 West Jiefang Road, Furong District, Changsha, 410000, Hunan, China
| | - Qiong-Chao Zou
- Cardiology Department, Hunan Provincial People's Hospital, No.61 West Jiefang Road, Furong District, Changsha, 410000, Hunan, China.,Clinical Research Center for Heart Failure in Hunan Province, No.61 West Jiefang Road, Furong District, Changsha, 410000, Hunan, China.,Institute of Cardiovascular Epidemiology, Hunan Provincial People's Hospital, No.61 West Jiefang Road, Furong District, Changsha, 410000, Hunan, China
| | - Lu-Zhu Chen
- Department of Cardiology, The Central Hospital of ShaoYang, No.36 QianYuan lane, Daxiang District, Shaoyang, 422000, Hunan, China
| | - Peng Liu
- Department of Cardiology, The Central Hospital of ShaoYang, No.36 QianYuan lane, Daxiang District, Shaoyang, 422000, Hunan, China
| | - Zheng-Yu Liu
- Cardiology Department, Hunan Provincial People's Hospital, No.61 West Jiefang Road, Furong District, Changsha, 410000, Hunan, China. .,Clinical Research Center for Heart Failure in Hunan Province, No.61 West Jiefang Road, Furong District, Changsha, 410000, Hunan, China. .,Institute of Cardiovascular Epidemiology, Hunan Provincial People's Hospital, No.61 West Jiefang Road, Furong District, Changsha, 410000, Hunan, China.
| | - Hong-Wei Pan
- Cardiology Department, Hunan Provincial People's Hospital, No.61 West Jiefang Road, Furong District, Changsha, 410000, Hunan, China. .,Clinical Research Center for Heart Failure in Hunan Province, No.61 West Jiefang Road, Furong District, Changsha, 410000, Hunan, China. .,Institute of Cardiovascular Epidemiology, Hunan Provincial People's Hospital, No.61 West Jiefang Road, Furong District, Changsha, 410000, Hunan, China.
| |
Collapse
|
6
|
Liu S, Tian W, Ma Y, Li J, Yang J, Li B. Serum exosomal proteomics analysis of lung adenocarcinoma to discover new tumor markers. BMC Cancer 2022; 22:279. [PMID: 35291954 PMCID: PMC8925168 DOI: 10.1186/s12885-022-09366-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Accepted: 03/01/2022] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Among the most aggressive and rapidly lethal types of lung cancer, lung adenocarcinoma is the most common type. Exosomes, as a hot area, play an influential role in cancer. By using proteomics analysis, we aimed to identify potential markers of lung adenocarcinoma in serum. METHODS In our study, we used the ultracentrifugation method to isolate serum exosomes. The Liquid chromatography-mass spectrometry (LC-MS) and bioinformatics analysis were used to identify potential serum exosomal proteins with altered expression among patients with advanced lung adenocarcinoma, early lung adenocarcinoma, and healthy controls. A western blot (WB) was performed to confirm the above differential expression levels in a separate serum sample-isolated exosome, and immunohistochemistry (IHC) staining was conducted to detect expression levels of the above differential proteins of serum exosomes in lung adenocarcinoma tissues and adjacent tissues. Furthermore, we compared different expression models of the above differential proteins in serum and exosomes. RESULT According to the ITGAM (Integrin alpha M chain) and CLU (Clusterin) were differentially expressed in serum exosomes among different groups as well as tumor tissues and adjacent tissues. ITGAM was significantly and specifically enriched in exosomes. As compared to serum, CLU did not appear to be significantly enriched in exosomes. ITGAM and CLU were identified as serum exosomal protein markers of lung adenocarcinoma. CONCLUSIONS This study can provide novel ideas and a research basis for targeting lung adenocarcinoma treatment as a preliminary study.
Collapse
Affiliation(s)
- Shanshan Liu
- Department of Clinical Laboratory, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, P. R. China.,Department of Clinical Laboratory, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, P. R. China
| | - Wenjuan Tian
- Department of Clinical Laboratory, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, P. R. China.,Internal Medicine Laboratory, Second Hospital of Shanxi Medical University, Taiyuan, Shanxi, 030001, P. R. China
| | - Yuefeng Ma
- Department of Thoracic Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, P. R. China
| | - Jiaji Li
- The Second Clinical Medical College, Shaanxi University of Traditional Chinese Medicine, Xianyang, Shaanxi, 712046, P. R. China
| | - Jun Yang
- Department of Pathology, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, P. R. China
| | - Burong Li
- Department of Clinical Laboratory, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, 710004, P. R. China.
| |
Collapse
|
7
|
Xie K, Kong S, Li F, Zhang Y, Wang J, Zhao W. Bioinformatics-Based Study to Investigate Potential Differentially Expressed Genes and miRNAs in Pediatric Sepsis. Med Sci Monit 2020; 26:e923881. [PMID: 32575108 PMCID: PMC7331480 DOI: 10.12659/msm.923881] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
BACKGROUND Sepsis is an extremely common health issue with a considerable mortality rate in children. Our understanding about the pathogenic mechanisms of sepsis is limited. The aim of this study was to identify the differential expression genes (DEGs) in pediatric sepsis through comprehensive analysis, and to provide specific insights for the clinical sepsis therapies in children. MATERIAL AND METHODS Three pediatric gene expression profiles (GSE25504, GSE26378, GSE26440) were downloaded from the Gene Expression Omnibus (GEO) database. The difference expression genes (DEGs) between pediatric sepsis and normal control group were screened with the GEO2R online tool. The Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analyses of the DEGs were performed. Cytoscape with CytoHubba were used to identify the hub genes. Finally, NetworkAnalyst was used to construct the targeted microRNAs (miRNAs) of the hub genes. RESULTS Totally, 160 overlapping upward genes and 61 downward genes were identified. In addition, 5 KEGG pathways, including hematopoietic cell lineage, Staphylococcus aureus infection, starch and sucrose metabolism, osteoclast differentiation, and tumor necrosis factor (TNF) signaling pathway, were significantly enriched using a database for labeling, visualization, and synthetic discovery. In combination with the results of the protein-protein interaction (PPI) network and CytoHubba, 9 hub genes including ITGAM, TLR8, IL1ß, MMP9, MPO, FPR2, ELANE, SPI1, and C3AR1 were selected. Combined with DEG-miRNAs visualization, 5 miRNAs, including has-miR-204-5p, has-miR-211-5p, has-miR-590-5p, and has-miR-21-5p, were predicted as possibly the key miRNAs. CONCLUSIONS Our findings will contribute to identification of potential biomarkers and novel strategies for pediatric sepsis treatment.
Collapse
Affiliation(s)
- Kexin Xie
- Laboratory Department, Dali University, Dali, Yunnan, China (mainland)
| | - Shan Kong
- Laboratory Department, Dali University, Dali, Yunnan, China (mainland)
| | - Fuxing Li
- Laboratory Department, Dali University, Dali, Yunnan, China (mainland)
| | - Yulin Zhang
- Laboratory Department, Dali University, Dali, Yunnan, China (mainland)
| | - Jing Wang
- School of Clinical Medicine, Dali University, Dali, Yunnan, China (mainland)
| | - Weidong Zhao
- Laboratory Department, Dali University, Dali, Yunnan, China (mainland)
| |
Collapse
|