1
|
Andrade TEG, Peña MS, Fiorotti J, de Souza Bin R, Caetano AR, Connelley T, de Miranda Santos IKF. The DRB3 gene of the bovine major histocompatibility complex: discovery, diversity and distribution of alleles in commercial breeds of cattle and applications for development of vaccines. J Dairy Sci 2024:S0022-0302(24)00989-5. [PMID: 39004123 DOI: 10.3168/jds.2023-24628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 06/14/2024] [Indexed: 07/16/2024]
Abstract
The bovine Major Histocompatibility Complex (MHC), also known as the Bovine Leucocyte Antigen (BoLA) complex, is the genomic region that encodes the most important molecules for antigen presentation to initiate immune responses. The first evidence of MHC in bovines pointed to a locus containing 2 antigens, one detected by cytotoxic antiserum (MHC class I) and another studied by mixed lymphocyte culture tests (MHC class II). The most studied gene in the BoLA region is the highly polymorphic BoLA-DRB3, which encodes a β chain with a peptide groove domain involved in antigen presentation for T cells that will develop and co-stimulate cellular and humoral effector responses. BoLA-DRB3 alleles have been associated with outcomes in infectious diseases such as mastitis, trypanosomiasis, and tick loads, and with production traits. To catalog these alleles, 2 nomenclature methods were proposed, and the current use of both systems makes it difficult to list, comprehend and apply these data effectively. In this review we have organized the knowledge available in all of the reports on the frequencies of BoLA-DRB3 alleles. It covers information from studies made in at least 26 countries on more than 30 breeds; studies are lacking in countries that are important producers of cattle livestock. We highlight practical applications of BoLA studies for identification of markers associated with resistance to infectious and parasitic diseases, increased production traits and T cell epitope mapping, in addition to genetic diversity and conservation studies of commercial and creole and locally adapted breeds. Finally, we provide support for the need of studies to discover new BoLA alleles and uncover unknown roles of this locus in production traits.
Collapse
Affiliation(s)
| | | | - Jéssica Fiorotti
- Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Renan de Souza Bin
- Ribeirão Preto School of Medicine, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | | | - Timothy Connelley
- The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Midlothian, United Kingdom
| | | |
Collapse
|
2
|
Heimeier D, Garland EC, Eichenberger F, Garrigue C, Vella A, Baker CS, Carroll EL. A pan-cetacean MHC amplicon sequencing panel developed and evaluated in combination with genome assemblies. Mol Ecol Resour 2024; 24:e13955. [PMID: 38520161 DOI: 10.1111/1755-0998.13955] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Revised: 12/01/2023] [Accepted: 12/22/2023] [Indexed: 03/25/2024]
Abstract
The major histocompatibility complex (MHC) is a highly polymorphic gene family that is crucial in immunity, and its diversity can be effectively used as a fitness marker for populations. Despite this, MHC remains poorly characterised in non-model species (e.g., cetaceans: whales, dolphins and porpoises) as high gene copy number variation, especially in the fast-evolving class I region, makes analyses of genomic sequences difficult. To date, only small sections of class I and IIa genes have been used to assess functional diversity in cetacean populations. Here, we undertook a systematic characterisation of the MHC class I and IIa regions in available cetacean genomes. We extracted full-length gene sequences to design pan-cetacean primers that amplified the complete exon 2 from MHC class I and IIa genes in one combined sequencing panel. We validated this panel in 19 cetacean species and described 354 alleles for both classes. Furthermore, we identified likely assembly artefacts for many MHC class I assemblies based on the presence of class I genes in the amplicon data compared to missing genes from genomes. Finally, we investigated MHC diversity using the panel in 25 humpback and 30 southern right whales, including four paternity trios for humpback whales. This revealed copy-number variable class I haplotypes in humpback whales, which is likely a common phenomenon across cetaceans. These MHC alleles will form the basis for a cetacean branch of the Immuno-Polymorphism Database (IPD-MHC), a curated resource intended to aid in the systematic compilation of MHC alleles across several species, to support conservation initiatives.
Collapse
Affiliation(s)
- Dorothea Heimeier
- School of Biological Sciences, University of Auckland-Waipapa Taumata Rau, Auckland, New Zealand
| | - Ellen C Garland
- Sea Mammal Research Unit, School of Biology, University of St. Andrews, Fife, UK
| | - Franca Eichenberger
- Sea Mammal Research Unit, School of Biology, University of St. Andrews, Fife, UK
| | - Claire Garrigue
- UMR ENTROPIE, (IRD, Université de La Réunion, Université de la Nouvelle-Calédonie, IFREMER, CNRS, Laboratoire d'Excellence-CORAIL), Nouméa, New Caledonia
- Opération Cétacés, Nouméa, New Caledonia
| | - Adriana Vella
- Conservation Biology Research Group, Department of Biology, University of Malta, Msida, Malta
| | - C Scott Baker
- Marine Mammal Institute, Hatfield Marine Science Center, Oregon State University, Corvallis, Oregon, USA
| | - Emma L Carroll
- School of Biological Sciences, University of Auckland-Waipapa Taumata Rau, Auckland, New Zealand
| |
Collapse
|
3
|
Stafuzza NB, Greco AJ, Grant JR, Abbey CA, Gill CA, Raudsepp T, Skow LC, Womack JE, Riggs PK, Amaral MEJ. A high-resolution radiation hybrid map of the river buffalo major histocompatibility complex and comparison with BoLA. Anim Genet 2012; 44:369-76. [PMID: 23216319 DOI: 10.1111/age.12015] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/04/2012] [Indexed: 02/03/2023]
Abstract
The major histocompatibility complex (MHC) in mammals codes for antigen-presenting proteins. For this reason, the MHC is of great importance for immune function and animal health. Previous studies revealed this gene-dense and polymorphic region in river buffalo to be on the short arm of chromosome 2, which is homologous to cattle chromosome 23. Using cattle-derived STS markers and a river buffalo radiation hybrid (RH) panel (BBURH5000 ), we generated a high-resolution RH map of the river buffalo MHC region. The buffalo MHC RH map (cR5000 ) was aligned with the cattle MHC RH map (cR12000 ) to compare gene order. The buffalo MHC had similar organization to the cattle MHC, with class II genes distributed in two segments, class IIa and class IIb. Class IIa was closely associated with the class I and class III regions, and class IIb was a separate cluster. A total of 53 markers were distributed into two linkage groups based on a two-point LOD score threshold of ≥8. The first linkage group included 32 markers from class IIa, class I and class III. The second linkage group included 21 markers from class IIb. Bacterial artificial chromosome clones for seven loci were mapped by fluorescence in situ hybridization on metaphase chromosomes using single- and double-color hybridizations. The order of cytogenetically mapped markers in the region corroborated the physical order of markers obtained from the RH map and served as anchor points to align and orient the linkage groups.
Collapse
Affiliation(s)
- N B Stafuzza
- Department of Biology, UNESP - São Paulo State University, IBILCE, Sao Jose do Rio Preto, SP, 15054-000, Brazil
| | | | | | | | | | | | | | | | | | | |
Collapse
|
4
|
Behl JD, Verma NK, Tyagi N, Mishra P, Behl R, Joshi BK. The major histocompatibility complex in bovines: a review. ISRN VETERINARY SCIENCE 2012; 2012:872710. [PMID: 23738132 PMCID: PMC3658703 DOI: 10.5402/2012/872710] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/14/2012] [Accepted: 03/29/2012] [Indexed: 11/23/2022]
Abstract
Productivity in dairy cattle and buffaloes depends on the genetic factors governing the production of milk and milk constituents as well as genetic factors controlling disease resistance or susceptibility. The immune system is the adaptive defense system that has evolved in vertebrates to protect them from invading pathogens and also carcinomas. It is remarkable in the sense that it is able to generate an enormous variety of cells and biomolecules which interact with each other in numerous ways to form a complex network that helps to recognize, counteract, and eliminate the apparently limitless number of foreign invading pathogens/molecules. The major histocompatibility complex which is found to occur in all mammalian species plays a central role in the development of the immune system. It is an important candidate gene involved in susceptibility/resistance to various diseases. It is associated with intercellular recognition and with self/nonself discrimination. It plays major role in determining whether transplanted tissue will be accepted as self or rejected as foreign.
Collapse
Affiliation(s)
- Jyotsna Dhingra Behl
- Animal Genetics Division, National Bureau of Animal Genetics Resources, P.O. Box 129, GT Bypass Road, Haryana, Karnal 132001, India
| | | | | | | | | | | |
Collapse
|
5
|
Sena L, Schneider MPC, Brenig BB, Honeycutt RL, Honeycutt DA, Womack JE, Skow LC. Polymorphism and gene organization of water buffalo MHC-DQB genes show homology to the BoLA DQB region. Anim Genet 2011; 42:378-85. [PMID: 21749420 DOI: 10.1111/j.1365-2052.2010.02157.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
In cattle (Bos taurus), there is evidence of more than 50 alleles of BoLA-DQB (bovine lymphocyte antigen DQB) that are distributed across at least five DQB loci, making this region one of the most complex in the BoLA gene family. In this study, DQB alleles were analysed for the water buffalo (Bubalus bubalis), another economically important bovine species. Twelve alleles for Bubu-DQB (Bubalis bubalis DQB) were determined by nucleotide sequence analysis. A phylogenetic analysis revealed numerous trans-species polymorphisms, with alleles from water buffalo assigned to at least three different loci (BoLA-DQB1, BoLA-DQB3 and BoLA-DQB4) that are also found in cattle. These presumptive loci were analysed for patterns of synonymous (d(S)) and non-synonymous (d(N)) substitution. Like BoLA-DQB1, Bubu-DQB1 was observed to be under strong positive selection for polymorphism. We conclude that water buffalo and cattle share the current arrangement of their DQB region because of their common ancestry.
Collapse
Affiliation(s)
- L Sena
- Former Capes Student, Brasília, Brazil.
| | | | | | | | | | | | | |
Collapse
|
6
|
Gao J, Liu K, Liu H, Blair HT, Li G, Chen C, Tan P, Ma RZ. A complete DNA sequence map of the ovine major histocompatibility complex. BMC Genomics 2010; 11:466. [PMID: 20698968 PMCID: PMC3091662 DOI: 10.1186/1471-2164-11-466] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2010] [Accepted: 08/10/2010] [Indexed: 11/30/2022] Open
Abstract
Background The ovine Major Histocompatibility Complex (MHC) harbors clusters of genes involved in overall resistance/susceptibility of an animal to infectious pathogens. However, only a limited number of ovine MHC genes have been identified and no adequate sequence information is available, as compared to those of swine and bovine. We previously constructed a BAC clone-based physical map that covers entire class I, class II and class III region of ovine MHC. Here we describe the assembling of a complete DNA sequence map for the ovine MHC by shotgun sequencing of 26 overlapping BAC clones. Results DNA shotgun sequencing generated approximately 8-fold genome equivalent data that were successfully assembled into a finished sequence map of the ovine MHC. The sequence map spans approximately 2,434,000 nucleotides in length, covering almost all of the MHC loci currently known in the sheep and cattle. Gene annotation resulted in the identification of 177 protein-coding genes/ORFs, among which 145 were not previously reported in the sheep, and 10 were ovine species specific, absent in cattle or other mammals. A comparative sequence analyses among human, sheep and cattle revealed a high conservation in the MHC structure and loci order except for the class II, which were divided into IIa and IIb subregions in the sheep and cattle, separated by a large piece of non-MHC autosome of approximately 18.5 Mb. In addition, a total of 18 non-protein-coding microRNAs were predicted in the ovine MHC region for the first time. Conclusion An ovine MHC DNA sequence map was successfully assembled by shotgun sequencing of 26 overlapping BAC clone. This makes the sheep the second ruminant species for which the complete MHC sequence information is available for evolution and functional studies, following that of the bovine. The results of the comparative analysis support a hypothesis that an inversion of the ancestral chromosome containing the MHC has shaped the MHC structures of ruminants, as we currently observed in the sheep and cattle. Identification of relative large numbers of microRNAs in the ovine MHC region helps to provide evidence that microRNAs are actively involved in the regulation of MHC gene expression and function.
Collapse
Affiliation(s)
- Jianfeng Gao
- School of Life Sciences, Shihezi University, Xinjiang 832007, China
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Brinkmeyer-Langford CL, Childers CP, Fritz KL, Gustafson-Seabury AL, Cothran M, Raudsepp T, Womack JE, Skow LC. A high resolution RH map of the bovine major histocompatibility complex. BMC Genomics 2009; 10:182. [PMID: 19393056 PMCID: PMC2682492 DOI: 10.1186/1471-2164-10-182] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2008] [Accepted: 04/24/2009] [Indexed: 11/10/2022] Open
Abstract
Background The cattle MHC is termed the bovine leukocyte antigen (BoLA) and, along with the MHCs of other ruminants, is unique in its genomic organization. Consequently, correct and reliable gene maps and sequence information are critical to the study of the BoLA region. The bovine genome sequencing project has produced two assemblies (Btau_3.1 and 4.0) that differ substantially from each other and from conventional gene maps in the BoLA region. To independently compare the accuracies of the different sequence assemblies, we have generated a high resolution map of BoLA using a 12,000rad radiation hybrid panel. Seventy-seven unique sequence tagged site (STS) markers chosen at approximately 50 kb intervals from the Btau 2.0 assembly and spanning the IIa-III-I and IIb regions of the bovine MHC were mapped on a 12,000rad bovine radiation hybrid (RH) panel to evaluate the different assemblies of the bovine genome sequence. Results Analysis of the data generated a high resolution RH map of BoLA that was significantly different from the Btau_3.1 assembly of the bovine genome but in good agreement with the Btau_4.0 assembly. Of the few discordancies between the RH map and Btau_4.0, most could be attributed to closely spaced markers that could not be precisely ordered in the RH panel. One probable incorrectly-assembled sequence and three missing sequences were noted in the Btau_4.0 assembly. The RH map of BoLA is also highly concordant with the sequence-based map of HLA (NCBI build 36) when reordered to account for the ancestral inversion in the ruminant MHC. Conclusion These results strongly suggest that studies using Btau_3.1 for analyses of the BoLA region should be reevaluated in light of the Btau_4.0 assembly and indicate that additional research is needed to produce a complete assembly of the BoLA genomic sequences.
Collapse
Affiliation(s)
- Candice L Brinkmeyer-Langford
- Department of Veterinary Integrative Biosciences, College of Veterinary Medicine, Texas A&M University, College Station, Texas 77843-4458, USA.
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Gelhaus A, Hess M, Förster B, Goldammer T, Schwerin M, Horstmann RD. YAC/BAC contig spanning the MHC class III region of cattle. Cytogenet Genome Res 2006; 115:45-50. [PMID: 16974083 DOI: 10.1159/000094800] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2005] [Accepted: 02/07/2006] [Indexed: 11/19/2022] Open
Abstract
A contig of the class III region of the bovine major histocompatibility complex (MHC) was established from bacterial and yeast artificial chromosomes using PCR and BAC-end sequencing. The marker content of individual clones was determined by gene and BAC-end specific PCR, and the location of genes and BAC-ends was confirmed analyzing somatic hybrid cells. A comparative analysis indicated that the content and order of MHC class III genes is strongly conserved between cattle and other mammalian species. Fluorescence in situ hybridization localized the bovine class III region to BTA23q21-->q22. The results show that the collection of sequenced BAC-ends is a powerful resource for generating high-resolution comparative chromosome maps.
Collapse
Affiliation(s)
- A Gelhaus
- Department of Molecular Medicine, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | | | | | | | | | | |
Collapse
|
9
|
Childers CP, Newkirk HL, Honeycutt DA, Ramlachan N, Muzney DM, Sodergren E, Gibbs RA, Weinstock GM, Womack JE, Skow LC. Comparative analysis of the bovine MHC class IIb sequence identifies inversion breakpoints and three unexpected genes. Anim Genet 2006; 37:121-9. [PMID: 16573526 DOI: 10.1111/j.1365-2052.2005.01395.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The bovine major histocompatibility complex (MHC) or BoLA is organized differently from typical mammalian MHCs in that a large portion of the class II region, called class IIb, has been transposed to a position near the centromere on bovine chromosome 23. Gene mapping indicated that the rearrangement resulted from a single inversion, but the boundaries and gene content of the inverted segment have not been fully determined. Here, we report the genomic sequence of BoLA IIb. Comparative sequence analysis with the human MHC revealed that the proximal inversion breakpoint occurred approximately 2.5 kb from the 3' end of the glutamate-cysteine ligase, catalytic subunit (GCLC) locus and that the distal breakpoint occurred about 2 kb from the 5' end from a divergent class IIDRbeta-like sequence designated DSB. Gene content, order and orientation of BoLA IIb are consistent with the single inversion hypothesis when compared with the corresponding region of the human class II MHC (HLA class II). Differences with HLA include the presence of a single histone H2B gene located between the proteasome subunit, beta type, 9 (PSMB9) and DMB loci and a duplicated TAP2 with a variant splice site. BoLA IIb spans approximately 450 kb DNA, with 20 apparently intact genes and no obvious pseudogenes. The region contains 227 simple sequence repeats (SSRs) and approximately 167 kb of retroviral-related repetitive DNA. Nineteen of the 20 genes identified in silico are supported by bovine EST data indicating that the functional gene content of BoLA IIb has not been diminished because it has been transposed from the remainder of BoLA genes.
Collapse
Affiliation(s)
- C P Childers
- College of Veterinary Medicine, Texas A&M University, College Station, TX 77843-4458, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
10
|
Beck TW, Menninger J, Murphy WJ, Nash WG, O'brien SJ, Yuhki N. The feline major histocompatibility complex is rearranged by an inversion with a breakpoint in the distal class I region. Immunogenetics 2004; 56:702-9. [PMID: 15592824 DOI: 10.1007/s00251-004-0742-6] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2004] [Revised: 10/19/2004] [Indexed: 10/26/2022]
Abstract
In order to determine the genomic organization of the major histocompatibility complex (MHC) of the domestic cat (Felis catus), DNA probes for 61 markers were designed from human MHC reference sequences and used to construct feline MHC BAC contig map spanning ARE1 in the class II region to the olfactory receptor complex in the extended class I region. Selected BAC clones were then used to identify feline-specific probes for the three regions of the mammalian MHC (class II-class III-class I) for radiation hybrid mapping and fluorescent in situ hybridization to refine the organization of the domestic cat MHC. The results not only confirmed that the p-arm of domestic cat B2 is inverted relative to human Chromosome 6, but also demonstrated that one inversion breakpoint localized to the distal segment of the MHC class I between TRIM39 and TRIM26. The inversion thus disjoined the approximately 2.85 Mb of MHC containing class II-class III-class I (proximal region) from the approximately 0.50 Mb of MHC class I/extended class I region, such that TRIM39 is adjacent to the Chromosome B2 centromere and TRIM26 is adjacent to the B2 telomere in the domestic cat.
Collapse
Affiliation(s)
- Thomas W Beck
- Basic Research Program, SAIC-Frederick, National Cancer Institute-Frederick, Frederick, MD, 21702-1201, USA.
| | | | | | | | | | | |
Collapse
|
11
|
Ellis S. The cattle major histocompatibility complex: is it unique? Vet Immunol Immunopathol 2004; 102:1-8. [PMID: 15451610 DOI: 10.1016/j.vetimm.2004.06.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2004] [Revised: 05/25/2004] [Accepted: 06/09/2004] [Indexed: 11/25/2022]
Abstract
Major histocompatibility complex (MHC) class I genes encode highly polymorphic molecules that are expressed on virtually every cell type, and have been identified in all but the most primitive vertebrates. They play a number of crucial roles in the immune response to infectious disease. Most information regarding MHC genes has been generated from humans and mice but, because of the great variability found in the MHC system, it is not always possible to extrapolate from these to other species. Many strategies have evolved to maximise the ability of the MHC to protect individuals and populations against pathogens. Cattle MHC class I genes exhibit a number of unusual features. Evidence from mapping studies, haplotype and phylogenetic analyses suggests the presence of six classical class I loci, in contrast to the more usual two or three, and these are expressed in various combinations of one, two or three on different haplotypes. Although it remains difficult to assign alleles to loci, it appears that none of the loci are expressed on all haplotypes. There is currently limited information relating to polymorphism, but various approaches suggest diversity is high, and may vary between breeds/populations. Functional consequences of variable MHC haplotype composition are discussed. Identifying unique features of the MHC in cattle will lead to new insights into evolution of the immune system.
Collapse
Affiliation(s)
- Shirley Ellis
- Immunology and Pathology Division, MHC Group, Institute for Animal Health, Compton RG20 7NN, UK.
| |
Collapse
|
12
|
Gustafson AL, Tallmadge RL, Ramlachan N, Miller D, Bird H, Antczak DF, Raudsepp T, Chowdhary BP, Skow LC. An ordered BAC contig map of the equine major histocompatibility complex. Cytogenet Genome Res 2004; 102:189-95. [PMID: 14970701 DOI: 10.1159/000075747] [Citation(s) in RCA: 58] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2003] [Accepted: 07/30/2003] [Indexed: 11/19/2022] Open
Abstract
A physical map of ordered bacterial artificial chromosome (BAC) clones was constructed to determine the genetic organization of the horse major histocompatibility complex. Human, cattle, pig, mouse, and rat MHC gene sequences were compared to identify highly conserved regions which served as source templates for the design of overgo primers. Thirty-five overgo probes were designed from 24 genes and used for hybridization screening of the equine USDA CHORI 241 BAC library. Two hundred thirty-eight BAC clones were assembled into two contigs spanning the horse MHC region. The first contig contains the MHC class II region and was reduced to a minimum tiling path of nine BAC clones that span approximately 800 kb and contain at least 20 genes. A minimum tiling path of a second contig containing the class III/I region is comprised of 14 BAC clones that span approximately 1.6 Mb and contain at least 34 genes. Fluorescence in situ hybridization (FISH) using representative clones from each of the three regions of the MHC localized the contigs onto ECA20q21 and oriented the regions relative to one another and the centromere. Dual-colored FISH revealed that the class I region is proximal to the centromere, the class II region is distal, and the class III region is located between class I and II. These data indicate that the equine MHC is a single gene-dense region similar in structure and organization to the human MHC and is not disrupted as in ruminants and pigs.
Collapse
Affiliation(s)
- A L Gustafson
- Department of Veterinary Anatomy and Public Health, College of Veterinary Medicine, Texas A&M University, College Station, TX 77843-4458, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Di Palma F, Archibald SD, Young JR, Ellis SA. A BAC contig of approximately 400 kb contains the classical class I major histocompatibility complex (MHC) genes of cattle. EUROPEAN JOURNAL OF IMMUNOGENETICS : OFFICIAL JOURNAL OF THE BRITISH SOCIETY FOR HISTOCOMPATIBILITY AND IMMUNOGENETICS 2002; 29:65-8. [PMID: 11841492 DOI: 10.1046/j.1365-2370.2002.00272.x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
A cattle BAC library derived from an MHC homozygous animal was screened for MHC class I genes. This revealed at least nine class I-related genes in a contig spanning approximately 400 kb, and several additional genes on other clones. The three classical class I genes expressed on this haplotype (A14) were shown to be distributed over a region at most 212 kb apart.
Collapse
Affiliation(s)
- F Di Palma
- NIDCD, National Institutes of Health, Rockville, MD 20850-3227, USA
| | | | | | | |
Collapse
|
14
|
McShane RD, Gallagher DS, Newkirk H, Taylor JF, Burzlaff JD, Davis SK, Skow LC. Physical localization and order of genes in the class I region of the bovine MHC. Anim Genet 2001; 32:235-9. [PMID: 11683708 DOI: 10.1046/j.1365-2052.2001.00758.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Fluorescence in situ hybridization (FISH) analyses were used to order 16 bacterial artificial chromosomes (BAC) clones containing loci from the bovine lymphocyte antigen (BoLA) class I and III regions of bovine chromosome 23 (BTA23). Fourteen of these BACs were assigned to chromosomal band locations of mitotic and pachytene chromosomes by single- and dual-colour FISH. Dual-colour FISH confirmed that class II DYA is proximal to and separated from BoLA class I genes by approximately three chromosome bands. The FISH results showed that tumour necrosis factor alpha (TNFA), heat shock protein 70 (HSP70.1) and 21 steroid dehydrogenase (CYP21) are closely linked in the region of BTA23 band 22 along with BoLA class I genes, and that male enhanced antigen (MEA) mapped between DYA and the CYP21/TNFA/HSP70.1 gene region. All BAC clones containing BoLA class I genes mapped distal to CYP21/TNFA/HSP70.1 and centromeric to prolactin (PRL). Myelin oligodendrocyte glycoprotein (MOG) was shown to be imbedded within the BoLA class I gene cluster. The cytogenetic data confirmed that the disrupted distribution of BoLA genes is most likely the result of a single large chromosomal inversion. Similar FISH results were obtained when BoLA DYA and class I BAC clones were mapped to discrete chromosomal locations on the BTA homologue in white-tailed deer, suggesting that this chromosomal inversion predates divergence of the advanced ruminant families from a common ancestor.
Collapse
Affiliation(s)
- R D McShane
- Department of Veterinary Anatomy and Public Health, Texas A & M University, TX 77843, USA
| | | | | | | | | | | | | |
Collapse
|
15
|
Gelhaus A, Förster B. Cattle MHC genes DOA and DOB: sequence polymorphisms and assignments to the class IIb region. EUROPEAN JOURNAL OF IMMUNOGENETICS : OFFICIAL JOURNAL OF THE BRITISH SOCIETY FOR HISTOCOMPATIBILITY AND IMMUNOGENETICS 2001; 28:429-33. [PMID: 11422421 DOI: 10.1046/j.1365-2370.2001.00236.x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
In a study of the genetic polymorphism of the second exons of the cattle DOA and DOB genes, two and four allelic variants were detected, respectively. In the predicted amino acid sequence, the DOA polymorphism corresponded to variation at the respective residue position, whereas the nucleotide substitutions in the DOB gene were non-informative. PCR-RFLP assays were developed for DOA and DOB typing, and both loci were genetically mapped to the BoLA class IIb region by linkage analysis in the International Bovine Reference Panel. The single nucleotide polymorphisms detected in the BoLA-DOA and -DOB genes enable these loci to be used as markers in genetic trait analyses.
Collapse
Affiliation(s)
- A Gelhaus
- Department of Molecular Medicine, Bernhard Nocht Institute for Tropical Medicine, Bernhard-Nocht-Str. 74, 20359 Hamburg, Germany.
| | | |
Collapse
|
16
|
Sültmann H, Sato A, Murray BW, Takezaki N, Geisler R, Rauch GJ, Klein J. Conservation of Mhc class III region synteny between zebrafish and human as determined by radiation hybrid mapping. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2000; 165:6984-93. [PMID: 11120825 DOI: 10.4049/jimmunol.165.12.6984] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
In the HLA, H2, and other mammalian MHC:, the class I and II loci are separated by the so-called class III region comprised of approximately 60 genes that are functionally and evolutionarily unrelated to the class I/II genes. To explore the origin of this island of unrelated loci in the middle of the MHC: 19 homologues of HLA class III genes, we identified 19 homologues of HLA class III genes as well as 21 additional non-class I/II HLA homologues in the zebrafish and mapped them by testing a panel of 94 zebrafish-hamster radiation hybrid cell lines. Six of the HLA class III and eight of the flanking homologues were found to be linked to the zebrafish class I (but not class II) loci in linkage group 19. The remaining homologous loci were found to be scattered over 14 zebrafish linkage groups. The linkage group 19 contains at least 25 genes (not counting the class I loci) that are also syntenic on human chromosome 6. This gene assembly presumably represents the pre-MHC: that existed before the class I/II genes arose. The pre-MHC: may not have contained the complement and other class III genes involved in immune response.
Collapse
Affiliation(s)
- H Sültmann
- Max-Planck-Institut für Biologie, Abteilung Immungenetik, Tübingen, Germany
| | | | | | | | | | | | | |
Collapse
|
17
|
Hess M, Goldammer T, Gelhaus A, Ried K, Rappold G, Eggen A, Bishop MD, Schwerin M, Horstmann RD. Physical assignment of the bovine MHC class IIa and class IIb genes. CYTOGENETICS AND CELL GENETICS 1999; 85:244-7. [PMID: 10449907 DOI: 10.1159/000015302] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Screening of a bovine yeast artificial chromosome (YAC) library revealed two clones which contain most of the class II genes of the major histocompatibility complex (MHC) known to date. The YACs were mapped by fluorescence in situ hybridization (FISH) and characterized for the class II genes they contain. We found that the classic class II genes BoLA- DQA, -DQB, -DRA, and -DRB3 are located at BTA 23q21 and the non-classic class II genes DYA, DIB, LMP2, LMP7, TAP2, BoLA-DOB, -DMA, -DMB, and -DNA are located at BTA 23q12-->q13. These two different mapping locations confirm and extend previous findings of a gross physical distance between classic and non-classic MHC class II genes in cattle.
Collapse
Affiliation(s)
- M Hess
- Department of Molecular Medicine, Bernhard Nocht Institute for Tropical Medicine, Hamburg, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Lewin HA, Russell GC, Glass EJ. Comparative organization and function of the major histocompatibility complex of domesticated cattle. Immunol Rev 1999; 167:145-58. [PMID: 10319257 DOI: 10.1111/j.1600-065x.1999.tb01388.x] [Citation(s) in RCA: 98] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
This review focuses on recent advances in research on the bovine major histocompatibility complex (BoLA), with specific reference to the genetic organization, polymorphism and function of the class II genes. The BoLA region is unlike the MHC of humans and mice in that a large inversion has moved several class II genes, including the TAP/LMP cluster, close to the centromere of bovine chromosome 23. Therefore, close linkage of MHC genes and other genes associated with the MHC in humans and mice does not appear to be required for normal immunological function. In cattle, polymorphism in the class IIa genes influences both the magnitude and the epitope specificity of antigen-specific T-cell responses to foot-and-mouth disease virus peptides. Disease association studies have demonstrated that BoLA alleles affect the subclinical progression of bovine leukemia virus (BLV) infection. This association is strongly correlated with the presence of specific amino acid motifs within the DRB3 antigen-binding domain. In addition to the practical significance of these findings, the association between BoLA and BLV provides a unique model to study host resistance to retrovirus infection in a non-inbred species. These studies contribute to our understanding of the evolution of the MHC in mammals, to the development of broadly effective vaccines, and to breeding strategies aimed at improving resistance to infectious diseases.
Collapse
Affiliation(s)
- H A Lewin
- Department of Animal Sciences, University of Illinois at Urbana-Champaign 61801, USA.
| | | | | |
Collapse
|
19
|
Abstract
Because major histocompatibility complex (MHC) genes play a major role in the development of acquired immune responses, it is essential to obtain comparative information on their organisation, expression and possible functional dichotomies in different species. In human, three classical, polymorphic class I genes (HLA-A, B- and -C) and four expressed A/B class II gene pairs (HLA-DM, -DP, -DQ and -DR) are each present on all haplotypes. With the exception of the HLA-DRB loci, it has been assumed that a similar rigid organisational situation exists in other mammalian species. However, extensive analysis of the bovine MHC (BoLA) at both the genomic and transcriptional levels has revealed a degree of genetic fluidity not described in other species. None of the four (or more) classical class I genes identified is consistently expressed, and haplotypes differ from one another in both the number and composition of expressed class I genes. Similarly, in the class II region, the number of DQ genes varies between haplotypes in both number and composition. These variations in both class I and II (which appear to reflect differences at the genomic level) are likely to play an important role in cattle immune responses. The observed phenotypic differences in cattle demonstrate very clearly the dynamic nature of the MHC region. This review addresses the functional impact of such variation in different breeds and populations, and its significance in terms of MHC evolution.
Collapse
Affiliation(s)
- S A Ellis
- Institute for Animal Health, Compton, UK.
| | | |
Collapse
|
20
|
Gallagher DS, Davis SK, De Donato M, Burzlaff JD, Womack JE, Taylor JF, Kumamoto AT. A karyotypic analysis of nilgai, Boselaphus tragocamelus (Artiodactyla: Bovidae). Chromosome Res 1998; 6:505-13. [PMID: 9886771 DOI: 10.1023/a:1009268917856] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
A combination of chromosomal banding and fluorescence in situ hybridization (FISH) was used to characterize the karyotype of Boselaphus tragocamelus (nilgai) relative to the domestic cattle standard karyotype. G-, Q- and C-band karyotypes of nilgai are presented, and the chromosomal complement of nilgai is determined to be 2n=46 (female FN=60, male FN=59; NAA=56), consistent with previous reports for the species. Comparisons with cattle identified extensive monobrachial homologies with some noteworthy exceptions. Chromosome 25 is centrically fused to 24, and chromosome 16 is acrocentric. Both appear to have additional pericentromeric material not seen in the equivalent cattle acrocentrics. This pericentromeric chromatin may be the result of de novo additions or translocation of pericentromeric material from chromosome 6, which is shown to be centrically fused to 13 but is only about two-thirds the length of cattle 6. Comparisons with cattle demonstrated that nilgai chromosome 17 has undergone a paracentric inversion and that chromosome 20 has two blocks of interstitial constitutive heterochromatin. The identities of both chromosomes were confirmed by chromosomal FISH. Furthermore, chromosomal banding and FISH were used to determine that autosome 14 has been fused to the ancestral X and Y of nilgai to form compound neo-X and -Y chromosomes. Additional FISH analyses were conducted to confirm other proposed chromosome homologies and to identify nucleolar organizing regions within the nilgai complement.
Collapse
Affiliation(s)
- D S Gallagher
- Department of Animal Science, Texas A&M University, College Station 77843, USA.
| | | | | | | | | | | | | |
Collapse
|
21
|
Band M, Larson JH, Womack JE, Lewin HA. A radiation hybrid map of BTA23: identification of a chromosomal rearrangement leading to separation of the cattle MHC class II subregions. Genomics 1998; 53:269-75. [PMID: 9799592 DOI: 10.1006/geno.1998.5507] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Bovine chromosome 23 (BTA23) contains the bovine major histocompatibility complex (MHC) and is thus of particular interest because of the role of MHC genes in immunity. Previous studies have shown cattle MHC class II genes to be subdivided into two distinct subregions separated by a variable genetic distance of 15-30 cM. To elucidate the genetic events that resulted in the present organization of the class II and other MHC genes, a framework radiation hybrid (RH) map of BTA23 was developed by testing DNA samples from a 5000 rad whole genome RH panel. Twenty-six markers were screened with an average retention frequency of 0.27, ranging from 0.14 to 0.42. Total length of the chromosome was 220 cR5000, with 4.1 cR5000/cM when compared to linkage data. Gene orders for the markers common to both the RH framework map and the consensus framework linkage map are identical. Large centiray intervals, D23S23-D23S7, DYA-D23S24 and CYP21-D23S31, were observed compared to linkage distances. These data may indicate a much larger physical distance or suppression of recombination in the interval separating the class II subregions and also within the class I region than previously estimated. Comparison of 13 Type I genes conserved between BTA23 and the human homolog HSA6p suggests the occurrence of an inversion encompassing the centromeric half of the bovine chromosome, thus explaining the large distance between the bovine class IIa and IIb clusters. These results exemplify the power of RH mapping in solving problems in comparative genomics and evolution. Furthermore, noncongruence of the genetic and physical RH map distances indicates that caution must be observed in using either resource alone in searching for candidate genes controlling traits of economic importance.
Collapse
Affiliation(s)
- M Band
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, Illinois, 61801, USA
| | | | | | | |
Collapse
|
22
|
|
23
|
Affiliation(s)
- L C Skow
- Department of Veterinary Anatomy and Public Health, College of Veterinary Medicine, Texas A&M University, College Station 77843-4458, USA
| | | |
Collapse
|