1
|
Santagostino M, Piras FM, Cappelletti E, Del Giudice S, Semino O, Nergadze SG, Giulotto E. Insertion of Telomeric Repeats in the Human and Horse Genomes: An Evolutionary Perspective. Int J Mol Sci 2020; 21:E2838. [PMID: 32325780 PMCID: PMC7215372 DOI: 10.3390/ijms21082838] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2020] [Revised: 04/15/2020] [Accepted: 04/16/2020] [Indexed: 01/06/2023] Open
Abstract
Interstitial telomeric sequences (ITSs) are short stretches of telomeric-like repeats (TTAGGG)n at nonterminal chromosomal sites. We previously demonstrated that, in the genomes of primates and rodents, ITSs were inserted during the repair of DNA double-strand breaks. These conclusions were derived from sequence comparisons of ITS-containing loci and ITS-less orthologous loci in different species. To our knowledge, insertion polymorphism of ITSs, i.e., the presence of an ITS-containing allele and an ITS-less allele in the same species, has not been described. In this work, we carried out a genome-wide analysis of 2504 human genomic sequences retrieved from the 1000 Genomes Project and a PCR-based analysis of 209 human DNA samples. In spite of the large number of individual genomes analyzed we did not find any evidence of insertion polymorphism in the human population. On the contrary, the analysis of ITS loci in the genome of a single horse individual, the reference genome, allowed us to identify five heterozygous ITS loci, suggesting that insertion polymorphism of ITSs is an important source of genetic variability in this species. Finally, following a comparative sequence analysis of horse ITSs and of their orthologous empty loci in other Perissodactyla, we propose models for the mechanism of ITS insertion during the evolution of this order.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Elena Giulotto
- Department of Biology and Biotechnology, University of Pavia, 27100 Pavia, Italy; (M.S.); (F.M.P.); (E.C.); (S.D.G.); (O.S.); (S.G.N.)
| |
Collapse
|
2
|
Aksenova AY, Mirkin SM. At the Beginning of the End and in the Middle of the Beginning: Structure and Maintenance of Telomeric DNA Repeats and Interstitial Telomeric Sequences. Genes (Basel) 2019; 10:genes10020118. [PMID: 30764567 PMCID: PMC6410037 DOI: 10.3390/genes10020118] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 01/30/2019] [Accepted: 01/30/2019] [Indexed: 02/07/2023] Open
Abstract
Tandem DNA repeats derived from the ancestral (TTAGGG)n run were first detected at chromosome ends of the majority of living organisms, hence the name telomeric DNA repeats. Subsequently, it has become clear that telomeric motifs are also present within chromosomes, and they were suitably called interstitial telomeric sequences (ITSs). It is well known that telomeric DNA repeats play a key role in chromosome stability, preventing end-to-end fusions and precluding the recurrent DNA loss during replication. Recent data suggest that ITSs are also important genomic elements as they confer its karyotype plasticity. In fact, ITSs appeared to be among the most unstable microsatellite sequences as they are highly length polymorphic and can trigger chromosomal fragility and gross chromosomal rearrangements. Importantly, mechanisms responsible for their instability appear to be similar to the mechanisms that maintain the length of genuine telomeres. This review compares the mechanisms of maintenance and dynamic properties of telomeric repeats and ITSs and discusses the implications of these dynamics on genome stability.
Collapse
Affiliation(s)
- Anna Y Aksenova
- Laboratory of Amyloid Biology, St. Petersburg State University, 199034 St. Petersburg, Russia.
| | - Sergei M Mirkin
- Department of Biology, Tufts University, Medford, MA 02421, USA.
| |
Collapse
|
3
|
Bolzán AD. Interstitial telomeric sequences in vertebrate chromosomes: Origin, function, instability and evolution. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2017; 773:51-65. [PMID: 28927537 DOI: 10.1016/j.mrrev.2017.04.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2016] [Revised: 03/13/2017] [Accepted: 04/17/2017] [Indexed: 12/21/2022]
Abstract
By definition, telomeric sequences are located at the very ends or terminal regions of chromosomes. However, several vertebrate species show blocks of (TTAGGG)n repeats present in non-terminal regions of chromosomes, the so-called interstitial telomeric sequences (ITSs), interstitial telomeric repeats or interstitial telomeric bands, which include those intrachromosomal telomeric-like repeats located near (pericentromeric ITSs) or within the centromere (centromeric ITSs) and those telomeric repeats located between the centromere and the telomere (i.e., truly interstitial telomeric sequences) of eukaryotic chromosomes. According with their sequence organization, localization and flanking sequences, ITSs can be classified into four types: 1) short ITSs, 2) subtelomeric ITSs, 3) fusion ITSs, and 4) heterochromatic ITSs. The first three types have been described mainly in the human genome, whereas heterochromatic ITSs have been found in several vertebrate species but not in humans. Several lines of evidence suggest that ITSs play a significant role in genome instability and evolution. This review aims to summarize our current knowledge about the origin, function, instability and evolution of these telomeric-like repeats in vertebrate chromosomes.
Collapse
Affiliation(s)
- Alejandro D Bolzán
- Laboratorio de Citogenética y Mutagénesis, Instituto Multidisciplinario de Biología Celular (IMBICE, CICPBA-UNLP-CONICET La Plata), C.C. 403, 1900 La Plata, Argentina; Facultad de Ciencias Naturales y Museo, UNLP, Calle 60 y 122, 1900 La Plata, Argentina.
| |
Collapse
|
4
|
Matoso Silva R, Adega F, Kjöllerström HJ, Labuschagne K, Kotze A, Fernandes C, Chaves R, do Mar Oom M. Classical and Molecular Cytogenetics of the Panther Genet Genetta maculata (Mammalia, Carnivora, Viverridae). Cytogenet Genome Res 2016; 149:274-281. [DOI: 10.1159/000450627] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/08/2016] [Indexed: 11/19/2022] Open
Abstract
Genets (Genetta) are a genus of African mammalian carnivorans with 14 currently recognized species, although taxonomic uncertainties remain, particularly regarding the number of species within the large-spotted genet complex. This study presents the first banded karyotype and molecular cytogenetic analysis of a genetically identified panther genet, Genetta maculata, the most common and widespread taxon of the large-spotted genet complex, with a wide distribution in sub-Saharan Africa. Sampled in Gauteng Province, South Africa, it could be assigned to the subspecies G. m. letabae on geographic grounds and had a similar karyotype (2n = 52, FNa = 96) to those published for a panther genet from Ethiopia and for the West African large-spotted genet G. pardina. Notably, the specimen had a different autosomal morphology (2 acrocentric chromosomes) from that previously attributed to letabae (a single acrocentric chromosome), but the latter assignment was uncertain because the studied individuals were captive born and assigned based solely on a presumed origin in the former Transvaal Province of South Africa. Fluorescence in situ hybridization with a telomere repeat probe revealed the presence of telomeric sequences in the centromeres of most chromosomes, the so-called interstitial telomeric sites (ITSs). Since genets seem to have a unique, highly rearranged karyotype among feliforms and relatively low interspecific karyotypic variation, and considering the known instability of ITSs, we suggest that the large amount of ITSs found here might be due to evolutionarily recent extensive genomic rearrangements. This study provides cytogenetic information that contributes to our understanding of chromosomal variation and genomic rearrangements in genets, and valuable baseline data for future studies of karyotype evolution in carnivores in general and viverrids in particular.
Collapse
|
5
|
Schmid M, Steinlein C. Chromosome Banding in Amphibia. XXXIV. Intrachromosomal Telomeric DNA Sequences in Anura. Cytogenet Genome Res 2016; 148:211-26. [PMID: 27233250 DOI: 10.1159/000446298] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/14/2016] [Indexed: 11/19/2022] Open
Abstract
The mitotic chromosomes of 4 anuran species were examined by various classical banding techniques and by fluorescence in situ hybridization using a (TTAGGG)n repeat. Large intrachromosomal telomeric sequences (ITSs) were demonstrated in differing numbers and chromosome locations. A detailed comparison of the present results with numerous published and unpublished data allowed a consistent classification of the various categories of large ITSs present in the genomes of anurans and other vertebrates. The classification takes into consideration the total numbers of large ITSs in the karyotypes, their chromosomal locations and their specific distribution patterns. A new category of large ITSs was recognized to exist in anuran species. It consists of large clusters of ITSs located in euchromatic chromosome segments, which is in clear contrast to the large ITSs in heterochromatic chromosome regions known in vertebrates. The origin of the different categories of large ITSs in heterochromatic and euchromatic chromosome regions, their mode of distribution in the karyotypes and evolutionary fixation in the genomes, as well as their cytological detection are discussed.
Collapse
Affiliation(s)
- Michael Schmid
- Department of Human Genetics, University of Wx00FC;rzburg, Wx00FC;rzburg, Germany
| | | |
Collapse
|
6
|
The involvement of repetitive sequences in the remodelling of karyotypes: The Phodopus genomes (Rodentia, Cricetidae). Micron 2013; 46:27-34. [DOI: 10.1016/j.micron.2012.11.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2012] [Revised: 11/28/2012] [Accepted: 11/29/2012] [Indexed: 02/08/2023]
|
7
|
Ji G, Liu K, Chen C, Ruan W, Glytsou C, Yang Y, Okuka M, Song W, Gagos S, Li N, Liu L. Conservation and characterization of unique porcine interstitial telomeric sequences. SCIENCE CHINA-LIFE SCIENCES 2012; 55:1029-37. [PMID: 23233217 DOI: 10.1007/s11427-012-4420-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2012] [Accepted: 11/02/2012] [Indexed: 12/18/2022]
Abstract
Telomeres are composed of TTAGGG repeats and located at the ends of chromosomes. Telomeres protect chromosomes from instability in mammals, including mice and humans. Repetitive TTAGGG sequences are also found at intrachromosomal sites, where they are named as interstitial telomeric sequences (ITSs). Aberrant ITSs are implicated in chromosomal instability and found in cancer cells. Interestingly, in pigs, vertebrate telomere sequences TTAGGG (vITSs) are also localized at the centromeric region of chromosome 6, in addition to the end of all chromosomes. Surprisingly, we found that botanic telomere sequences, TTTAGGG (bITSs), also localize with vITSs at the centromeric regions of pig chromosome 6 using telomere fluorescence in situ hybridization (FISH) and by comparisons between several species. Furthermore, the average lengths of vITSs are highly correlated with those of the terminal telomeres (TTS). Also, pig ITSs show a high incidence of telomere doublets, suggesting that pig ITSs might be unstable and dynamic. Together, our results show that pig cells maintain the conserved telomere sequences that are found at the ITSs from of plants and other vertebrates. Further understanding of the function and regulation of pig ITSs may provide new clues for evolution and chromosomal instability.
Collapse
Affiliation(s)
- Guangzhen Ji
- State Key Laboratory of Medicinal Chemical Biology, College of Life Sciences, Nankai University, Tianjin 300071, China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Solovjeva LV, Demin SJ, Pleskach NM, Kuznetsova MO, Svetlova MP. Characterization of telomeric repeats in metaphase chromosomes and interphase nuclei of Syrian Hamster Fibroblasts. Mol Cytogenet 2012; 5:37. [PMID: 22938505 PMCID: PMC3488537 DOI: 10.1186/1755-8166-5-37] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Accepted: 06/29/2012] [Indexed: 11/10/2022] Open
Abstract
Background Rodents have been reported to contain large arrays of interstitial telomeric sequences (TTAGGG)n (ITS) located in pericentromeric heterochromatin. The relative sizes of telomeric sequences at the ends of chromosomes (TS) and ITS in Syrian hamster (Mesocricetus auratus) cells have not been evaluated yet, as well as their structural organization in interphase nuclei. Results FISH signal distribution analysis was performed on DAPI-banded metaphase chromosomes of Syrian hamster fibroblasts, and relative lengths of telomere signals were estimated. Besides well-distinguished FISH signals from ITS located on chromosomes ##2, 4, 14, 20 and X that we reported earlier, low-intensity FISH signals were visualized with different frequency of detection on all other metacentric chromosomes excluding chromosome #21. The analysis of 3D-distribution of TS in interphase nuclei demonstrated that some TS foci formed clearly distinguished associations (2–3 foci in a cluster) in the nuclei of cells subjected to FISH or transfected with the plasmid expressing telomeric protein TRF1 fused with GFP. In G0 and G1/early S-phase, the average total number of GFP-TRF1 foci per nucleus was less than that of PNA FISH foci in the corresponding cell cycle phases suggesting that TRF1 overexpression might contribute to the fusion of neighboring telomeres. The mean total number of GFP-TRF1 and FISH foci per nucleus was increased during the transition from G0 to G1/early S-phase that might be the consequence of duplication of some TS. Conclusions The relative lengths of TS in Syrian hamster cells were found to be moderately variable. All but one metacentric chromosomes contain ITS in pericentromeric heterochromatin indicating that significant rearrangements of ancestral genome occurred in evolution. Visualization of GFP-TRF1 fibrils that formed bridges between distinct telomeric foci allowed suggesting that telomere associations observed in interphase cells are reversible. The data obtained in the study provide the further insight in the structure and dynamics of telomeric sequences in somatic mammalian cells.
Collapse
|
9
|
Romanenko SA, Volobouev V. Non-Sciuromorph rodent karyotypes in evolution. Cytogenet Genome Res 2012; 137:233-45. [PMID: 22699115 DOI: 10.1159/000339294] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Rodents are, taxonomically, the most species-rich mammalian order. They display a series of special genomic features including the highest karyotypic diversity, frequent occurrence of complex intraspecies chromosome variability, and a variety of unusual chromosomal sex determination mechanisms not encountered in other mammalian taxa. Rodents also have an abundance of cytochemically heterogeneous heterochromatin. There are also instances of extremely rapid karyotype reorganization and speciation not accompanied by significant genetic differentiation. All these peculiarities make it clear that a detailed study of rodent genomic evolution is indispensable to understand the mode and tempo of mammalian evolution. The aim of this review is to update the data obtained by classical and molecular cytogenetics as well as comparative genomics in order to outline the range of old and emerging problems that remain to be resolved.
Collapse
Affiliation(s)
- S A Romanenko
- Institute of Molecular and Cellular Biology, SB RAS, Novosibirsk, Russia.
| | | |
Collapse
|
10
|
Rovatsos MT, Marchal JA, Romero-Fernández I, Fernández FJ, Giagia-Athanosopoulou EB, Sánchez A. Rapid, independent, and extensive amplification of telomeric repeats in pericentromeric regions in karyotypes of arvicoline rodents. Chromosome Res 2011; 19:869-82. [PMID: 21979796 DOI: 10.1007/s10577-011-9242-3] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2011] [Revised: 09/09/2011] [Accepted: 09/09/2011] [Indexed: 11/26/2022]
Abstract
The distribution of telomeric repeats was analyzed by fluorescence in situ hybridization in 15 species of arvicoline rodents, included in three different genera: Chionomys, Arvicola, and Microtus. The results demonstrated that in most or the analyzed species, telomeric sequences are present, in addition to normal telomeres localization, as large blocks in pericentromeric regions. The number, localization, and degree of amplification of telomeric sequences blocks varied with the karyotype and the morphology of the chromosomes. Also, in some cases telomeric amplification at non-pericentromeric regions is described. The interstitial telomeric sequences are evolutionary modern and have rapidly colonized and spread in pericentromeric regions of chromosomes by different mechanisms and probably independently in each species. Additionally, we colocalized telomeric repeats and the satellite DNA Msat-160 (also located in pericentromeric regions) in three species and cloned telomeric repeats in one of them. Finally, we discuss about the possible origin and implication of telomeric repeats in the high rate of karyotypic evolution reported for this rodent group.
Collapse
Affiliation(s)
- M Th Rovatsos
- Section of Animal Biology, Department of Biology, University of Patras, GR-26500, Patras, Greece
| | | | | | | | | | | |
Collapse
|
11
|
Samassekou O, Yan J. Polymorphism in a human chromosome-specific interstitial telomere-like sequence at 22q11.2. Cytogenet Genome Res 2011; 134:174-81. [PMID: 21709411 DOI: 10.1159/000328862] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/11/2011] [Indexed: 12/31/2022] Open
Abstract
Interstitial telomeric sequences (ITSs) are common in human. We previously reported the presence of an ITS at 22q11.2 which is in the vicinity of the genomically unstable region involved in 22q11 rearrangements. Recently, we studied the molecular status of the ITS 22q11.2 in the normal population. The amplification of an ITS at 22q11.2 showed different patterns ranging from 1-4 kb, confirming the highly polymorphic nature of this sequence. The linkage analysis of the ITS at 22q11.2 in members of 10 different families demonstrated a strong relation between offspring and parents. In contrast, the study of a DiGeorge case and his 2 parents revealed the presence of a novel allele probably inherited from the father. These results open an avenue for the use of this sequence as an allelic marker, and its implication in 22q11.2-related pathogenesis.
Collapse
Affiliation(s)
- O Samassekou
- Division of Genetics, Department of Pediatrics, Faculty of Medicine and Health Sciences, University of Sherbrooke, Sherbrooke, Que., Canada
| | | |
Collapse
|
12
|
Nergadze SG, Santagostino MA, Salzano A, Mondello C, Giulotto E. Contribution of telomerase RNA retrotranscription to DNA double-strand break repair during mammalian genome evolution. Genome Biol 2008; 8:R260. [PMID: 18067655 PMCID: PMC2246262 DOI: 10.1186/gb-2007-8-12-r260] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2007] [Revised: 11/28/2007] [Accepted: 12/07/2007] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND In vertebrates, tandem arrays of TTAGGG hexamers are present at both telomeres and intrachromosomal sites (interstitial telomeric sequences (ITSs)). We previously showed that, in primates, ITSs were inserted during the repair of DNA double-strand breaks and proposed that they could arise from either the capture of telomeric fragments or the action of telomerase. RESULTS An extensive comparative analysis of two primate (Homo sapiens and Pan troglodytes) and two rodent (Mus musculus and Rattus norvegicus) genomes allowed us to describe organization and insertion mechanisms of all the informative ITSs present in the four species. Two novel observations support the hypothesis of telomerase involvement in ITS insertion: in a highly significant fraction of informative loci, the ITSs were introduced at break sites where a few nucleotides homologous to the telomeric hexamer were exposed; in the rodent genomes, complex ITS loci are present in which a retrotranscribed fragment of the telomerase RNA, far away from the canonical template, was inserted together with the telomeric repeats. Moreover, mutational analysis of the TTAGGG arrays in the different species suggests that they were inserted as exact telomeric hexamers, further supporting the participation of telomerase in ITS formation. CONCLUSION These results strongly suggest that telomerase was utilized, in some instances, for the repair of DNA double-strand breaks occurring in the genomes of rodents and primates during evolution. The presence, in the rodent genomes, of sequences retrotranscribed from the telomerase RNA strengthens the hypothesis of the origin of telomerase from an ancient retrotransposon.
Collapse
Affiliation(s)
- Solomon G Nergadze
- Dipartimento di Genetica e Microbiologia 'Adriano Buzzati-Traverso', Università degli Studi di Pavia, Via Ferrata, 27100 Pavia, Italy
| | | | | | | | | |
Collapse
|
13
|
López-Fernández C, Arroyo F, Fernández JL, Gosálvez J. Interstitial telomeric sequence blocks in constitutive pericentromeric heterochromatin from Pyrgomorpha conica (Orthoptera) are enriched in constitutive alkali-labile sites. Mutat Res 2006; 599:36-44. [PMID: 16481011 DOI: 10.1016/j.mrfmmm.2006.01.004] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2005] [Revised: 12/29/2005] [Accepted: 01/06/2006] [Indexed: 05/06/2023]
Abstract
The long interstitial telomeric repeat sequence (ITRS) blocks located in the pericentromeric chromosomal regions of most of Chinese hamster chromosomes behave as hot spots for spontaneous and induced chromosome breakage and recombination. The DBD-FISH (DNA breakage detection-fluorescence in situ hybridization) procedure demonstrated that these ITRS are extremely sensitive to alkaline unwinding, being enriched in constitutive alkali-labile sites (ALS). To determine whether this chromatin modification occurs in other genomes with large ITRS that are not phylogenetically related to mammalian species, the grasshopper Pyrgomorpha conica was analyzed. We chose this species because, with conventional FISH, their chromosomes yield extremely small telomeric signals when probed with the (TTAGG)n polynucleotide, but large ITRS blocks as part of their pericentromeric constitutive heterochromatin. A high density of constitutive ALS was evidenced in the ITRS when intact meiotic cells or somatic cells were subjected to the DBD-FISH technique and probed with the specific telomeric DNA. DBD-FISH with simultaneous hybridization using telomeric and whole genome DNA probes showed that the ITRS tend to colocalize with areas of stronger signal from the whole genome probe. Nevertheless, the signal from the whole genome was more widespread than that from the ITRS, thus providing evidence that a high frequency of constitutive ALS was present in more than one DNA sequence type. Furthermore, stretched DNA fibers processed with DBD-FISH, revealed a distribution of telomeric sequences alternating interspersed with other possible highly repetitive DNA sequences. The abundance of ALS varied from one meiotic stage to another. Interestingly, most of the breakage and meiotic recombination in males takes place close to the constitutive heterochromatin, particularly enriched in ALS. These results provide further evidence of a particular, and possible universal, chromatin structure enriched in constitutive ALS at constitutive heterochromatic regions.
Collapse
Affiliation(s)
- Carmen López-Fernández
- Departamento de Biología, Unidad de Genética, Universidad Autónoma de Madrid, 28049 Madrid, Spain
| | | | | | | |
Collapse
|
14
|
Camats N, Ruiz-Herrera A, Parrilla JJ, Acien M, Payá P, Giulotto E, Egozcue J, García F, Garcia M. Genomic instability in rat: breakpoints induced by ionising radiation and interstitial telomeric-like sequences. Mutat Res 2006; 595:156-66. [PMID: 16413932 DOI: 10.1016/j.mrfmmm.2005.11.002] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2005] [Revised: 10/27/2005] [Accepted: 11/18/2005] [Indexed: 11/16/2022]
Abstract
The Norwegian rat (Rattus norvegicus) is the most widely studied experimental species in biomedical research although little is known about its chromosomal structure. The characterisation of possible unstable regions of the karyotype of this species would contribute to the better understanding of its genomic architecture. The cytogenetic effects of ionising radiation have been widely used for the study of genomic instability, and the importance of interstitial telomeric-like sequences (ITSs) in instability of the genome has also been reported in previous studies in vertebrates. In order to describe the unstable chromosomal regions of R. norvegicus, the distribution of breakpoints induced by X-irradiation and ITSs in its karyotype were analysed in this work. For the X-irradiation analysis, 52 foetuses (from 14 irradiated rats) were studied, 4803 metaphases were analysed, and a total of 456 breakpoints induced by X-rays were detected, located in 114 chromosomal bands, with 25 of them significantly affected by X-irradiation (hot spots). For the analysis of ITSs, three foetuses (from three rats) were studied, 305 metaphases were analysed and 121 ITSs were detected, widely distributed in the karyotype of this species. Seventy-six percent of all hot spots analysed in this study were co-localised with ITSs.
Collapse
Affiliation(s)
- Núiria Camats
- Institut de Biotecnologia i Biomedicina, Universitat Autònoma de Barcelona, 08193 Barcelona, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Bolzán AD, Bianchi MS. Telomeres, interstitial telomeric repeat sequences, and chromosomal aberrations. Mutat Res 2006; 612:189-214. [PMID: 16490380 DOI: 10.1016/j.mrrev.2005.12.003] [Citation(s) in RCA: 106] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2005] [Revised: 12/29/2005] [Accepted: 12/30/2005] [Indexed: 11/18/2022]
Abstract
Telomeres are specialized nucleoproteic complexes localized at the physical ends of linear eukaryotic chromosomes that maintain their stability and integrity. The DNA component of telomeres is characterized by being a G-rich double stranded DNA composed by short fragments tandemly repeated with different sequences depending on the species considered. At the chromosome level, telomeres or, more properly, telomeric repeats--the DNA component of telomeres--can be detected either by using the fluorescence in situ hybridization (FISH) technique with a DNA or a peptide nucleic acid (PNA) (pan)telomeric probe, i.e., which identifies simultaneously all of the telomeres in a metaphase cell, or by the primed in situ labeling (PRINS) reaction using an oligonucleotide primer complementary to the telomeric DNA repeated sequence. Using these techniques, incomplete chromosome elements, acentric fragments, amplification and translocation of telomeric repeat sequences, telomeric associations and telomeric fusions can be identified. In addition, chromosome orientation (CO)-FISH allows to discriminate between the different types of telomeric fusions, namely telomere-telomere and telomere-DNA double strand break fusions and to detect recombination events at the telomere, i.e., telomeric sister-chromatid exchanges (T-SCE). In this review, we summarize our current knowledge of chromosomal aberrations involving telomeres and interstitial telomeric repeat sequences and their induction by physical and chemical mutagens. Since all of the studies on the induction of these types of aberrations were conducted in mammalian cells, the review will be focused on the chromosomal aberrations involving the TTAGGG sequence, i.e., the telomeric repeat sequence that "caps" the chromosomes of all vertebrate species.
Collapse
Affiliation(s)
- Alejandro D Bolzán
- Laboratorio de Citogenética y Mutagénesis, Instituto Multidisciplinario de Biología Celular (IMBICE), C.C. 403, 1900 La Plata, Argentina.
| | - Martha S Bianchi
- Laboratorio de Citogenética y Mutagénesis, Instituto Multidisciplinario de Biología Celular (IMBICE), C.C. 403, 1900 La Plata, Argentina
| |
Collapse
|
16
|
Nergadze SG, Rocchi M, Azzalin CM, Mondello C, Giulotto E. Insertion of telomeric repeats at intrachromosomal break sites during primate evolution. Genome Res 2004; 14:1704-10. [PMID: 15310657 PMCID: PMC515315 DOI: 10.1101/gr.2778904] [Citation(s) in RCA: 72] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Short blocks of telomeric-like DNA (Interstitial Telomeric Sequences, ITSs) are found far from chromosome ends. We addressed the question as to how such sequences arise by comparing the loci of 10 human ITSs with their genomic orthologs in 12 primate species. The ITSs did not derive from expansion of pre-existing TTAGGG units, as described for other microsatellites, but appeared suddenly during evolution. Nine insertion events were dated along the primate evolutionary tree, the dates ranging between 40 and 6 million years ago. Sequence comparisons suggest that in each case the block of (TTAGGG)n DNA arose as a result of double-strand break repair. In fact, ancestral sequences were either interrupted precisely by the tract of telomeric-like repeats or showed the typical modifications observed at double-strand break repair sites such as short deletions, addition of random sequences, or duplications. Similar conclusions were drawn from the analysis of a chimpanzee-specific ITS. We propose that telomeric sequences were inserted by the capture of a telomeric DNA fragment at the break site or by the telomerase enzyme. Our conclusions indicate that human ITSs are relics of ancient breakage rather than fragile sites themselves, as previously suggested.
Collapse
Affiliation(s)
- Solomon G Nergadze
- Dipartimento di Genetica e Microbiologia, Università degli Studi di Pavia, 27100 Pavia, Italy
| | | | | | | | | |
Collapse
|
17
|
Krutilina RI, Smirnova AN, Mudrak OS, Pleskach NM, Svetlova MP, Oei SL, Yau PM, Bradbury EM, Zalensky AO, Tomilin NV. Protection of internal (TTAGGG)n repeats in Chinese hamster cells by telomeric protein TRF1. Oncogene 2003; 22:6690-8. [PMID: 14555982 DOI: 10.1038/sj.onc.1206745] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Chinese hamster cells have large interstitial (TTAGGG) bands (ITs) which are unstable and should be protected by an unknown mechanism. Here, we expressed in Chinese hamster V79 cells green fluorescent protein (GFP)-tagged human TRF1, and found that a major fraction of GFP-TRF1 bound to ITs is diffusionally mobile. This fraction strongly decreases after treatment of cells with wortmannin, a protein kinase inhibitor, and this drug also increases the frequency of chromosome aberrations. Ionizing radiation does not induce detectable translocation of GFP-TRF1 to the sites of random double-strand breaks visualized using antibodies against histone gamma-H2AX. TRF1 is known to be eliminated from telomeres by overexpression of tankyrase 1 which induces TRF1 poly(ADP-ribosyl)ation. We transfected V79 cells by plasmid encoding tankyrase 1 and found that the frequency of chromosome rearrangements is increased in these cells independently of their treatment by IR. Taken together, our results suggest that TRF1 is involved in sequence-specific protection of internal nontelomeric (TTAGGG)n repeats.
Collapse
Affiliation(s)
- Raisa Ivanovna Krutilina
- Laboratory of Chromosome Stability, Institute of Cytology, Russian Academy of Sciences, 194064 St Petersburg, Russia
| | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
Faravelli M, Azzalin CM, Bertoni L, Chernova O, Attolini C, Mondello C, Giulotto E. Molecular organization of internal telomeric sequences in Chinese hamster chromosomes. Gene 2002; 283:11-6. [PMID: 11867208 DOI: 10.1016/s0378-1119(01)00877-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
In Chinese hamster extended blocks of telomeric-like repeats were previously detected by in situ hybridization at the pericentromeric region of most chromosomes and short arrays were localized at several interstitial sites. In this work, we analyzed the molecular organization of internal telomeric sequences (ITs) in the Chinese hamster genome. In genomic transfers hybridized with a telomeric probe, multiple Bal31 insensitive fragments were detected. Most of the fragments ranged in size between less than 1 kb and more than 100 kb and some were polymorphic. Fluorescence in situ hybridization experiments on DNA fibers and on elongated chromosomes showed that the pericentromeric ITs are composed of extensive and essentially continuous arrays of telomeric-like sequences. We then isolated three genomic regions which contain short ITs. These ITs are localized at interstitial sites (3q13-15, 3q21-26, 1p26) and are composed of 29-126 bp of (TTAGGG)(n) repeats. A peculiar feature of all the three ITs is the AT richness of the flanking sequences. Since AT-rich DNA is known to be unstable and characteristic of several mammalian fragile sites, we propose that the three ITs were inserted at these sites during the repair of double strand breaks.
Collapse
Affiliation(s)
- Maura Faravelli
- Dipartimento di Genetica e Microbiologia "A. Buzzati-Traverso", Università degli Studi di Pavia, via Ferrata 1, 27100, Pavia, Italy
| | | | | | | | | | | | | |
Collapse
|
19
|
Abstract
Mammalian artificial chromosomes (MACs) provide a new tool for the improvement of our knowledge of chromosome structure and function. Moreover, they constitute an alternative and potentially powerful tool for gene delivery both in cultured cells and for the production of transgenic animals. In the present work we describe the molecular structure of MC1, a human minichromosome derived from chromosome 1. By means of restriction and hybridization analysis, satellite-PCR, in situ hybridization on highly extended chromatin fibres, and indirect immunofluorescence, we have established that: (i) MC1 has a size of 5.5 Mb; (ii) it consists of 1.1 Mb alphoid, 3.5 Mb Sat2 DNA, and telomeric and subtelomeric sequences at both ends; (iii) it contains an unusual region of interspersed Sat2 and alphoid DNAs at the junction of the alphoid and the Sat2 blocks; and (iv) the two alphoid blocks and the Sat2-alphoid region bind centromeric proteins suggesting that they participate in the formation of a functional kinetochore.
Collapse
MESH Headings
- Animals
- Base Sequence
- CHO Cells
- Centromere/genetics
- Centromere/metabolism
- Chromatin/genetics
- Chromatin/metabolism
- Chromosomes, Artificial, Human/genetics
- Chromosomes, Artificial, Human/metabolism
- Chromosomes, Human, Pair 1/genetics
- Chromosomes, Human, Pair 1/metabolism
- Cloning, Molecular
- Cricetinae
- DNA, Satellite/genetics
- Fluorescent Antibody Technique, Indirect
- Humans
- Hybrid Cells
- In Situ Hybridization, Fluorescence
- Molecular Sequence Data
- Polymerase Chain Reaction
- Restriction Mapping
- Telomere/genetics
Collapse
Affiliation(s)
- C Auriche
- Istituto Pasteur-Fondazione Cenci Bolognetti, Dipartimento di Biologia Cellulare e dello Sviluppo, University of Rome La Sapienza, Italy
| | | | | |
Collapse
|
20
|
Sharma GG, Sharma T. Unusual chromosomal organization of telomeric sequences and expeditious karyotypic differentiation in the recently evolved Mus terricolor complex. CYTOGENETICS AND CELL GENETICS 2000; 80:204-8. [PMID: 9678359 DOI: 10.1159/000014981] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The Mus terricolor complex displays a stable homozygous arrangement of autosomal heterochromatin variations in the form of accretion of definitive autosomal short arms among three nonoverlapping populations, in concert with an expeditious evolutionary differentiation into three chromosomal species: M. terricolor I, II, and III. In contrast to the highly conservative M. musculus-like chromosomes in the coexisting sibling species, M. booduga, reshuffling and differentiation of centric heterochromatin has occurred in harmony with a revision of centric configurations, resulting in acrocentric and submetacentric autosomes. The chromosomal distribution of the prevalent vertebrate telomeric sequence (TTAGGG)n was examined by fluorescence in situ hybridization to metaphase cells of M. terricolor I, II, and III. An unusual centric organization of internal telomeric sequences was detected in all the submetacentric and acrocentric autosomes. An auxiliary role of these presumably fragile, recombinogenic telomeric sequences in the evolutionary revision of centric configurations in the terricolor complex is hypothesized.
Collapse
Affiliation(s)
- G G Sharma
- Department of Zoology, Banaras Hindu University, Varanasi, India
| | | |
Collapse
|
21
|
Mondello C, Pirzio L, Azzalin CM, Giulotto E. Instability of interstitial telomeric sequences in the human genome. Genomics 2000; 68:111-7. [PMID: 10964508 DOI: 10.1006/geno.2000.6280] [Citation(s) in RCA: 46] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The length variability of four human interstitial telomeric sequences (ITs) is described. Three of the ITs contain short telomeric stretches ranging between 53 and 84 bp and are localized in 21q22, 2q31, and 7q36; the fourth IT derives from the subtelomeric domain of chromosome 6p and contains a tract of a few hundred basepairs of exact and degenerate repeats. Using primers flanking the repeats, we amplified the genomic DNA from unrelated individuals and from family members, and we found that all the loci are polymorphic. At the 21q22 IT locus, two equally frequent alleles were found, while the number of alleles at the 2q31, 7q36, and 6pter IT loci was 8, 6, and 4, respectively. Sequence analysis revealed that in the three loci containing short ITs the alleles differ from one another for multiples of the hexanucleotide; it is likely that the mechanism leading to the polymorphism is DNA polymerase slippage. These loci were also unstable in gastric tumor cells characterized by microsatellite instability. At the 6pter IT locus, the four alleles range in length from about 500 to about 700 bp; this variability is probably due to unequal exchange or gene conversion. Our data indicate that stretches of exact internal telomeric repeats can be highly unstable, like microsatellites with shorter units, and that they can be useful polymorphic markers for linkage analysis, for forensic applications, and for the detection of genetic instability in tumors.
Collapse
MESH Headings
- Alleles
- Base Sequence
- Chromosomes, Human, Pair 2/genetics
- Chromosomes, Human, Pair 21/genetics
- Chromosomes, Human, Pair 7/genetics
- DNA/genetics
- Female
- Gene Frequency
- Genome, Human
- Genotype
- Humans
- Male
- Molecular Sequence Data
- Polymorphism, Restriction Fragment Length
- Repetitive Sequences, Nucleic Acid/genetics
- Sequence Homology, Nucleic Acid
- Stomach Neoplasms/genetics
- Telomere/genetics
Collapse
Affiliation(s)
- C Mondello
- Istituto di Genetica Biochimica ed Evoluzionistica, CNR, Via Abbiategrasso 207, Pavia, 27100, Italy.
| | | | | | | |
Collapse
|
22
|
Faravelli M, Moralli D, Bertoni L, Attolini C, Chernova O, Raimondi E, Giulotto E. Two extended arrays of a satellite DNA sequence at the centromere and at the short-arm telomere of Chinese hamster chromosome 5. CYTOGENETICS AND CELL GENETICS 2000; 83:281-6. [PMID: 10072604 DOI: 10.1159/000015171] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
We have cloned a Chinese hamster chromosome-specific repeated sequence (SatCH5). This satellite is composed of a 33-bp unit organized in two extended tandem arrays. It is localized at the centromere and at the short-arm subtelomere of chromosome 5. Altogether, SatCH5 covers about 1-2 Mb per diploid genome and is not present in other species, including the Syrian hamster and mouse. Since it is known in the Chinese hamster and numerous other vertebrate species that telomeric (TTAGGG)n repeats are localized at the centromeres of several chromosomes, we studied the localization of SatCH5 relative to (TTAGGG)n sequences. Using two-color fluorescence in situ hybridization on stretched chromosomes and on DNA fibers, we have shown that at the centromere of chromosome 5 SatCH5 and the (TTAGGG)n arrays are contiguous. SatCH5 is the first chromosome-specific repetitive sequence located at both the pericentromeric and subtelomeric regions of the same chromosome.
Collapse
Affiliation(s)
- M Faravelli
- Dipartimento di Genetica e Microbiologia "A. Buzzati-Traverso," Università degli Studi di Pavia, Pavia, Italy
| | | | | | | | | | | | | |
Collapse
|
23
|
Xiao Y, Natarajan AT. Development of arm-specific and subtelomeric region-specific painting probes for Chinese hamster chromosomes and their utility in chromosome identification of Chinese hamster cell lines. CYTOGENETICS AND CELL GENETICS 2000; 83:208-13. [PMID: 10072579 DOI: 10.1159/000015180] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Arm-specific and subtelomeric region-specific painting probes for Chinese hamster chromosomes have been generated by microdissection and use of the degenerate oligonucleotide-primed polymerase chain reaction (DOP-PCR). Fluorescence in situ hybridization (FISH) analyses using these probes demonstrated their specificity. These probes painted every chromosome arm and a total of 15 subtelomeric regions, namely, both ends of chromosomes 1, 2, 3, 4, and 8 and one end of chromosome arms 5q, 6q, 7q, 9p, and Xp. Many cryptic chromosomal rearrangements in the CHO-9 and V79 cell lines that were not detectable with whole chromosome paints could be recognized when these newly developed probes were used.
Collapse
Affiliation(s)
- Y Xiao
- Department of Radiation Genetics and Chemical Mutagenesis, Leiden University, Leiden, The Netherlands
| | | |
Collapse
|
24
|
Go Y, Rakotoarisoa G, Kawamoto Y, Randrianjafy A, Koyama N, Hirai H. PRINS analysis of the telomeric sequence in seven lemurs. Chromosome Res 2000; 8:57-65. [PMID: 10730589 DOI: 10.1023/a:1009279203886] [Citation(s) in RCA: 36] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022]
Abstract
We examined the chromosomal localization of the telomeric sequence, (TTAGGG)n, in seven species of the lemurs and one greater galago, as an outgroup, using the primed in-situ labeling (PRINS) technique. As expected, the telomeric sequence was identified at both ends of all chromosomes of the eight prosimians. However, six species showed a signal at some pericentromeric regions involving constitutive heterochromatin as well. The pericentromeric region of chromosome 1 of Verreaux's sifaka (Propithecus verreauxi verreauxi) was labeled with a large and intense signal. The range of the signal considerably exceeded the area of DAPI positive heterochromatin. On the other hand, in the five lemurs, a large signal was detected also in the short arm of acrocentric chromosomes. Acquisition of the large block of the telomeric sequence into the acrocentric short arm might be interpretable in terms of the tandem growth of the heterochromatic short arm and the reciprocal translocation between heterochromatic short arms involving the telomeric sequence. Subsequently, it was postulated that meta- or submetacentric chromosomes possessing the telomeric sequence at the pericentromeric region could be formed by centric fusion between such acrocentric chromosomes.
Collapse
Affiliation(s)
- Y Go
- Primate Research Insitute, Kyoto University, Inuyama, Aichi, Japan
| | | | | | | | | | | |
Collapse
|
25
|
Au HC, Mascarello JT, Scheffler IE. Targeted integration of a dominant neo(R) marker into a 2- to 3-Mb human minichromosome and transfer between cells. CYTOGENETICS AND CELL GENETICS 1999; 86:194-203. [PMID: 10575205 DOI: 10.1159/000015338] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
The physical and genetic characterization of a stable human minichromosome in a Chinese hamster hybrid cell is described. The minichromosome is 2-3 Mb in size, is linear, and contains a complementing SDHC gene. It is derived from a human chromosome 1, including the centromere, some pericentric heterochromatin from 1q12, and 1-2 Mb of 1q21. Genomic DNA surrounding the SDHC gene was used to construct a targeting vector with a selectable drug resistance marker (neo(R)); the marker was then successfully integrated into the minichromosome. With the new selectable marker, the 8.2.3 minichromosome could be transferred into mouse LMTK(-) and 3T3 TK(-) cells.
Collapse
Affiliation(s)
- H C Au
- Department of Biology, University of California, San Diego, La Jolla. USA
| | | | | |
Collapse
|
26
|
Abstract
The genomes of higher eukaryotes are not homogeneous in terms of structure or function. Many examples of chromosomal regions particularly prone to involvement in aberrations have been reported. The molecular structures of some of these regions have now been determined, most notably the folate-sensitive fragile sites and FRA16B-a distamycin A-sensitive fragile site. In addition, a number of cytological studies suggest that telomeric sequences can in some circumstances be involved in chromosomal aberrations more frequently than expected. Here, the roles of telomeric DNA sequences, both terminal and interstitial, and telomerase in chromosomal aberration formation are reviewed.
Collapse
Affiliation(s)
- S D Bouffler
- Radiation Effects Department, National Radiological Protection Board, Chilton, Didcot, Oxon, OX11 ORQ, UK
| |
Collapse
|
27
|
Abstract
The salient points of three currently debated theories for chromosomal aberration origins (the Classic Breakage-and-Reunion theory, the Exchange theory, and the Molecular theory) are outlined, and some comments are made on each in the light of recent research.
Collapse
Affiliation(s)
- J R Savage
- MRC Radiation and Genome Stability Unit, Harwell, Didcot, OX11 0RD, UK
| |
Collapse
|
28
|
Simi S, Simili M, Bonatti S, Campagna M, Abbondandolo A. Fragile sites at the centromere of Chinese hamster chromosomes: a possible mechanism of chromosome loss. Mutat Res 1998; 397:239-46. [PMID: 9541649 DOI: 10.1016/s0027-5107(97)00219-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
On the basis of our previous observations showing that fragile sites (FS) mapped essentially in the centromeric regions of Chinese hamster chromosomes, we consider the possibility that the presence of FS at the centromere might be a source of chromosome loss. In this model a centromeric FS causes a centromeric break giving rise to two chromosome arms which could be lost or maintained with different consequences on the ploidy of daughter cells. To test this hypothesis, Chinese hamster cells have been treated both with N-methyl-N-nitrosourea (MNU), a mutagenic agent which also induces aneuploidy, and vinblastin (VBL), a pure aneugen, used as a control compound, which is supposed not to interact with DNA. The results show that MNU induces the formation of translocated and/or truncated chromosomes, on the contrary VBL is not able to induce chromosome rearrangements. The sites most involved in MNU-induced breaks are the centromeric regions of chromosomes where FS are also present. These breaks cause essentially the loss of one chromosome arm, so that the resulting cells are numerically diploid but presenting partial monosomies. The implications of these results are discussed.
Collapse
Affiliation(s)
- S Simi
- Istituto di Mutagenesi e Differenziamento, C.N.R., Pisa, Italy.
| | | | | | | | | |
Collapse
|
29
|
Simi S, Attolini C, Giulotto E. Intrachromosomal telomeric repeats and stabilization of truncated chromosomes in V79 Chinese hamster cells. Mutat Res 1998; 397:229-33. [PMID: 9541647 DOI: 10.1016/s0027-5107(97)00217-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
(TTAGGG)n sequences have been localized on the chromosomes of the Chinese hamster V79 cell line. A correlation between telomeric-like repeats and chromosome breakage has been found. Moreover, the analysis of the truncated chromosomes, typical of this cell line, has suggested that intrachromosomal (TTAGGG)n DNA may be important in the stabilization of the new telomeres.
Collapse
Affiliation(s)
- S Simi
- Istituto di Mutagenesi e Differenziamento, CNR, Pisa, Italy.
| | | | | |
Collapse
|