1
|
Peka M, Balatsky V. Bioinformatic approach to identifying causative missense polymorphisms in animal genomes. BMC Genomics 2024; 25:1226. [PMID: 39701989 DOI: 10.1186/s12864-024-11126-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Accepted: 12/05/2024] [Indexed: 12/21/2024] Open
Abstract
BACKGROUND Trends in the development of genetic markers for the purposes of genomic and marker-assisted selection primarily focus on identifying causative polymorphisms. Using these polymorphisms as markers enables a more accurate association between genotype and phenotype. Bioinformatic analysis allows calculating the impact of missense polymorphisms on the structural and functional characteristics of proteins, which makes it promising for identifying causative polymorphisms. In this study, a bioinformatic approach is applied to evaluate and differentiate polymorphisms based on their causality in genes that affect the production traits of pigs and cows, which are two important livestock species. RESULTS The influence of both known causative and candidate missense polymorphisms in the MC4R, NR6A1, PRKAG3, RYR1, and SYNGR2 genes of pigs, as well as the ABCG2, DGAT1, GHR, and MSTN genes of cows, was assessed. The study included an evaluation of the effect of polymorphisms on protein functions, considering the evolutionary and physicochemical characteristics of amino acids at polymorphic sites. Additionally, it examined the impact of polymorphisms on the stability of tertiary protein structures, including changes in folding, binding of protein monomers, and interaction with ligands. CONCLUSIONS The comprehensive bioinformatic analysis used in this study enables the differentiation of polymorphisms into neutral, where both amino acids in the polymorphic site do not significantly affect the structure and function of the protein, and causative, where one of the amino acids significantly impacts the protein's properties. This approach can be employed in future research to screen extensive sets of polymorphisms in animal genomes, identifying the most promising polymorphisms for further investigation in association studies.
Collapse
Affiliation(s)
- Mykyta Peka
- Institute of Pig Breeding and Agroindustrial Production, National Academy of Agrarian Sciences of Ukraine, 1 Shvedska Mohyla St, Poltava, 36013, Ukraine.
- V. N. Karazin Kharkiv National University, 4 Svobody Sq, Kharkiv, 61022, Ukraine.
| | - Viktor Balatsky
- Institute of Pig Breeding and Agroindustrial Production, National Academy of Agrarian Sciences of Ukraine, 1 Shvedska Mohyla St, Poltava, 36013, Ukraine
| |
Collapse
|
2
|
Madula R, Visser C, van Marle-Köster E. The impact of myostatin variants on growth traits in South African Bonsmara beef cattle. Trop Anim Health Prod 2024; 56:358. [PMID: 39448522 PMCID: PMC11502602 DOI: 10.1007/s11250-024-04208-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Accepted: 10/14/2024] [Indexed: 10/26/2024]
Abstract
Double muscling occurs when the myostatin (MSTN) gene is deactivated due to a series of mutations, leading to uncontrolled muscle growth and excessive muscle fiber accumulation, as the gene can no longer effectively regulate muscle development. This study aimed to assess the impact of MSTN variants and their combinations on growth traits, namely direct birth weight (BWDIR), direct weaning weight (WWDIR), average daily gain (ADG) and feed conversion ratio (FCR) in the South African (SA) Bonsmara. Genomically enhanced estimated breeding value (GEBVs) for traits of interest, and MTSN genotypes for SA Bonsmara animals were available for the study. Thirteen MSTN variants (Nt821, Q204X, F94L, E226X, E291X, C313Y, Nt419, S105C, D182N, Nt414, Nt324, Nt267, and Nt748) were routinely genotyped using the IDBv3 SNP array. Genotypic frequencies of MSTN variants ranged from 1.18% for Q204X to 35.02% for Nt748. No association was observed between the Nt267 variant and any growth traits, while both Nt748 and Nt414 variants affected WWDIR, ADG and FCR (p < 0.05). The results of the effect of multiple variants on growth traits indicated that there was an additive effect when more than one MSTN variant was present in an individual. This study is the first study to report the impact of MSTN variants on traits of economic importance in the SA Bonsmara breed.
Collapse
Affiliation(s)
- Rendani Madula
- Department of Animal Science, University of Pretoria, Pretoria, South Africa.
| | - Carina Visser
- Department of Animal Science, University of Pretoria, Pretoria, South Africa.
| | | |
Collapse
|
3
|
Elkhawagah AR, Ricci A, Bertero A, Poletto ML, Nervo T, Donato GG, Vincenti L, Martino NA. Supplementation with MitoTEMPO before cryopreservation improves sperm quality and fertility potential of Piedmontese beef bull semen. Front Vet Sci 2024; 11:1376057. [PMID: 38812559 PMCID: PMC11135289 DOI: 10.3389/fvets.2024.1376057] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Accepted: 05/03/2024] [Indexed: 05/31/2024] Open
Abstract
The purpose of this study was to improve the quality of frozen-thawed Piedmontese bull semen by incorporating MitoTEMPO (MT) in extended semen before cryopreservation. Semen was collected from 4 fertile bulls, using an artificial vagina, once weekly for 6 consecutive weeks. Semen samples were pooled, diluted with Bullxcell® extender, and supplemented with different concentrations of MT (0 as control, 5, 10, 20, 40, and 80 μM) before cooling, equilibration, and freezing procedures. The frozen-thawed semen was assessed for motility, vitality, acrosome intactness, plasma membrane integrity, DNA integrity, apoptosis, mitochondrial membrane potential, intracellular ROS level and in vitro fertilizing capability. The results showed that MT at concentrations of 10, 20, and 40 μM improved the total, progressive, and rapid motility directly after thawing while, at the highest tested concentration (80 μM), it decreased the progressive and rapid motility after 1, 2, and 3 h of incubation. The sperm kinetics including STR and LIN were noticeably increased at concentrations of 10, 20, and 40 μM directly after thawing (0 h), whereas the MT effect was variable on the other sperm kinetics during the different incubation periods. MitoTEMPO improved the sperm vitality at all tested concentrations, while the acrosomal and DNA integrity were improved at 20 μM and the mitochondrial membrane potentials was increased at 80 μM. The cleavage and blastocyst formation rates were significantly increased by using semen treated with 20 μM MT compared with controls. These findings suggest a potential use of MT mainly at a concentration of 20 μM as an additive in the cryopreservation media of bull semen to improve sperm quality.
Collapse
Affiliation(s)
- Ahmed R. Elkhawagah
- Theriogenology Department, Faculty of Veterinary Medicine, Benha University, Banha, Egypt
| | - Alessandro Ricci
- Department of Veterinary Sciences, University of Turin, Grugliasco, Italy
| | - Alessia Bertero
- Department of Veterinary Sciences, University of Turin, Grugliasco, Italy
| | | | - Tiziana Nervo
- Department of Veterinary Sciences, University of Turin, Grugliasco, Italy
| | - Gian Guido Donato
- Department of Veterinary Sciences, University of Turin, Grugliasco, Italy
| | - Leila Vincenti
- Department of Veterinary Sciences, University of Turin, Grugliasco, Italy
| | - Nicola Antonio Martino
- Department of Biosciences, Biotechnology and Environment, University of Bari Aldo Moro, Bari, Italy
| |
Collapse
|
4
|
García-Macia M, Sierra V, Santos-Ledo A, de Luxán-Delgado B, Potes-Ochoa Y, Rodríguez-González S, Oliván M, Coto-Montes A. Muscle Hypertrophy Is Linked to Changes in the Oxidative and Proteolytic Systems during Early Tenderization of the Spanish Breed "Asturiana de los Valles". Foods 2024; 13:443. [PMID: 38338578 PMCID: PMC10855751 DOI: 10.3390/foods13030443] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/16/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
For fresh meat consumers, eating satisfaction is of utmost importance and tenderness is one of the most important characteristics in this regard. Our study examined beef of different animal biotypes of the autochthonous breed "Asturiana de los Valles" (AV) to determine if early postmortem oxidative and proteolytic processes may influence the final tenderness of the product. This meat-specialized breed shows different biotypes depending on the frequency of a myostatin mutation "mh" that induces double-muscling or muscular hypertrophy (mh/mh, mh/+, +/+). Samples from the longissimus dorsi muscles of yearling bulls were analyzed during the first 24 h postmortem. Changes in the redox balance of muscle cells were significant in the first hours after slaughter; total antioxidant activity was higher in the mh/mh biotype and it followed the shortening of the sarcomeres, a key parameter in understanding meat tenderness. The two proteolytic systems studied (proteasome and lysosome) followed distinct patterns. Proteasome activity was higher in the (mh/+) biotype, which correlated with higher protein damage. Lysosome proteolysis was increased in the more tender biotypes (mh genotypes). Autophagic activation showed significant differences between the biotypes, with (mh/mh) showing more intense basal autophagy at the beginning of the postmortem period that decreased gradually (p < 0.001), while in the normal biotype (+/+), it was slightly delayed and then increased progressively (p < 0.001). These results suggest that this type of catalytic process and antioxidant activity could contribute to the earlier disintegration of the myofibers, particularly in the mh/mh biotypes, and influence the conversion of muscle into meat.
Collapse
Affiliation(s)
- Marina García-Macia
- Department of Biochemistry and Molecular Biology, University of Salamanca, 37007 Salamanca, Spain
- Institute of Functional Biology and Genomics (IBFG), University of Salamanca/CSIC, 37007 Salamanca, Spain
- Institute of Biomedical Research of Salamanca (IBSAL), University Hospital of Salamanca, 37007 Salamanca, Spain
- Centre for Biomedical Investigations Network on Frailty and Ageing (CIBERFES), 28029 Madrid, Spain
| | - Verónica Sierra
- Servicio Regional de Investigación y Desarrollo Agroalimentario (SERIDA), 33300 Villaviciosa, Spain; (V.S.); (M.O.)
| | - Adrián Santos-Ledo
- Instituto de Neurociencias de Castilla y León (INCyL), 37007 Salamanca, Spain;
- Department of Human Anatomy and Histology, University of Salamanca, 37007 Salamanca, Spain
| | - Beatriz de Luxán-Delgado
- Health Research Institute of Asturias (ISPA), 33011 Oviedo, Spain; (B.d.L.-D.); (Y.P.-O.); (A.C.-M.)
- Instituto Universitario de Oncología del Principado de Asturias (IUOPA), 33006 Oviedo, Spain
| | - Yaiza Potes-Ochoa
- Health Research Institute of Asturias (ISPA), 33011 Oviedo, Spain; (B.d.L.-D.); (Y.P.-O.); (A.C.-M.)
- Departamento de Morfología y Biología Celular, Facultad de Medicina, Universidad de Oviedo, 33003 Oviedo, Spain;
| | - Susana Rodríguez-González
- Departamento de Morfología y Biología Celular, Facultad de Medicina, Universidad de Oviedo, 33003 Oviedo, Spain;
| | - Mamen Oliván
- Servicio Regional de Investigación y Desarrollo Agroalimentario (SERIDA), 33300 Villaviciosa, Spain; (V.S.); (M.O.)
| | - Ana Coto-Montes
- Health Research Institute of Asturias (ISPA), 33011 Oviedo, Spain; (B.d.L.-D.); (Y.P.-O.); (A.C.-M.)
- Departamento de Morfología y Biología Celular, Facultad de Medicina, Universidad de Oviedo, 33003 Oviedo, Spain;
| |
Collapse
|
5
|
Sanchez MP, Tribout T, Kadri NK, Chitneedi PK, Maak S, Hozé C, Boussaha M, Croiseau P, Philippe R, Spengeler M, Kühn C, Wang Y, Li C, Plastow G, Pausch H, Boichard D. Sequence-based GWAS meta-analyses for beef production traits. Genet Sel Evol 2023; 55:70. [PMID: 37828440 PMCID: PMC10568825 DOI: 10.1186/s12711-023-00848-5] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2023] [Accepted: 10/04/2023] [Indexed: 10/14/2023] Open
Abstract
BACKGROUND Combining the results of within-population genome-wide association studies (GWAS) based on whole-genome sequences into a single meta-analysis (MA) is an accurate and powerful method for identifying variants associated with complex traits. As part of the H2020 BovReg project, we performed sequence-level MA for beef production traits. Five partners from France, Switzerland, Germany, and Canada contributed summary statistics from sequence-based GWAS conducted with 54,782 animals from 15 purebred or crossbred populations. We combined the summary statistics for four growth, nine morphology, and 15 carcass traits into 16 MA, using both fixed effects and z-score methods. RESULTS The fixed-effects method was generally more informative to provide indication on potentially causal variants, although we combined substantially different traits in each MA. In comparison with within-population GWAS, this approach highlighted (i) a larger number of quantitative trait loci (QTL), (ii) QTL more frequently located in genomic regions known for their effects on growth and meat/carcass traits, (iii) a smaller number of genomic variants within the QTL, and (iv) candidate variants that were more frequently located in genes. MA pinpointed variants in genes, including MSTN, LCORL, and PLAG1 that have been previously associated with morphology and carcass traits. We also identified dozens of other variants located in genes associated with growth and carcass traits, or with a function that may be related to meat production (e.g., HS6ST1, HERC2, WDR75, COL3A1, SLIT2, MED28, and ANKAR). Some of these variants overlapped with expression or splicing QTL reported in the cattle Genotype-Tissue Expression atlas (CattleGTEx) and could therefore regulate gene expression. CONCLUSIONS By identifying candidate genes and potential causal variants associated with beef production traits in cattle, MA demonstrates great potential for investigating the biological mechanisms underlying these traits. As a complement to within-population GWAS, this approach can provide deeper insights into the genetic architecture of complex traits in beef cattle.
Collapse
Affiliation(s)
- Marie-Pierre Sanchez
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France.
| | - Thierry Tribout
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France
| | | | - Praveen K Chitneedi
- Research Institute for Farm Animal Biology (FBN), 18196, Dummerstorf, Germany
| | - Steffen Maak
- Research Institute for Farm Animal Biology (FBN), 18196, Dummerstorf, Germany
| | - Chris Hozé
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France
- Eliance, 75595, Paris, France
| | - Mekki Boussaha
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France
| | - Pascal Croiseau
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France
| | - Romain Philippe
- INRAE, USC1061 GAMAA, Université de Limoges, 87060, Limoges, France
| | | | - Christa Kühn
- Research Institute for Farm Animal Biology (FBN), 18196, Dummerstorf, Germany
- Agricultural and Environmental faculty, University Rostock, 18059, Rostock, Germany
- Friedrich-Loeffler-Institut (FLI), 17493, Greifswald, Insel Riems, Germany
| | - Yining Wang
- Lacombe Research and Development Centre, Agriculture and Agri-Food Canada, Lacombe, AB, T4L 1W1, Canada
| | - Changxi Li
- Lacombe Research and Development Centre, Agriculture and Agri-Food Canada, Lacombe, AB, T4L 1W1, Canada
- Department of Agricultural, Food and Nutritional Science, Livestock Gentec, University of Alberta, Edmonton, AB, T6G 2HI, Canada
| | - Graham Plastow
- Department of Agricultural, Food and Nutritional Science, Livestock Gentec, University of Alberta, Edmonton, AB, T6G 2HI, Canada
| | - Hubert Pausch
- Animal Genomics, ETH Zurich, 8092, Zurich, Switzerland
| | - Didier Boichard
- Université Paris-Saclay, INRAE, AgroParisTech, GABI, 78350, Jouy-en-Josas, France
| |
Collapse
|
6
|
Csürhés T, Szabó F, Holló G, Mikó E, Török M, Bene S. Relationship between Some Myostatin Variants and Meat Production Related Calving, Weaning and Muscularity Traits in Charolais Cattle. Animals (Basel) 2023; 13:1895. [PMID: 37370404 DOI: 10.3390/ani13121895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2023] [Revised: 05/28/2023] [Accepted: 06/05/2023] [Indexed: 06/29/2023] Open
Abstract
The slaughter value of live cattle can be assessed during visual conformation scoring, as well as by examining different molecular genetic information, e.g., the myostatin gene, which can be responsible for muscle development. In this study, the F94L, Q204X, nt267, nt324 and nt414 alleles of the myostatin gene (MSTN) were examined in relation to birth weight (BIW), calving ease (CAE), 205-day weaning weight (CWW), muscle score of shoulder (MSS), muscle score of back (MSB), muscle score of thigh (MST), roundness score of thigh (RST), loin thickness score (LTS), and overall muscle development percentage (OMP) of Charolais weaned calves in Hungary. Multi-trait analysis of variance (GLM) and weighted linear regression analysis were used to process the data. Calves carrying the Q204X allele in the heterozygous form achieved approximately 0.14 points higher MSB, MST and LTS, and 1.2% higher OMP, and gained 8.56 kg more CWW than their counterparts not carrying the allele (p < 0.05). As for the F94L allele, there was a difference of 4.08 kg in CWW of the heterozygous animals, but this difference could not be proved statistically. The other alleles had no significant effect on the evaluated traits.
Collapse
Affiliation(s)
- Tamás Csürhés
- National Association of Hungarian Charolais Cattle Breeders, 3525 Miskolc, Hungary
| | - Ferenc Szabó
- Department of Animal Sciences, Albert Kázmér Faculty, Széchenyi István University, 9200 Mosonmagyaróvár, Hungary
| | - Gabriella Holló
- Institute of Animal Husbandry Sciences, Kaposvár Campus, Hungarian University of Agriculture and Life Sciences, 7400 Kaposvár, Hungary
| | - Edit Mikó
- Faculty of Agriculture, University of Szeged, 6800 Hódmezővásárhely, Hungary
| | - Márton Török
- National Association of Hungarian Charolais Cattle Breeders, 3525 Miskolc, Hungary
| | - Szabolcs Bene
- Institute of Animal Husbandry Sciences, Kaposvár Campus, Hungarian University of Agriculture and Life Sciences, 7400 Kaposvár, Hungary
| |
Collapse
|
7
|
Tozaki T, Ohnuma A, Nakamura K, Hano K, Takasu M, Takahashi Y, Tamura N, Sato F, Shimizu K, Kikuchi M, Ishige T, Kakoi H, Hirota KI, Hamilton NA, Nagata SI. Detection of Indiscriminate Genetic Manipulation in Thoroughbred Racehorses by Targeted Resequencing for Gene-Doping Control. Genes (Basel) 2022; 13:genes13091589. [PMID: 36140757 PMCID: PMC9498419 DOI: 10.3390/genes13091589] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 08/29/2022] [Accepted: 08/31/2022] [Indexed: 11/16/2022] Open
Abstract
The creation of genetically modified horses is prohibited in horse racing as it falls under the banner of gene doping. In this study, we developed a test to detect gene editing based on amplicon sequencing using next-generation sequencing (NGS). We designed 1012 amplicons to target 52 genes (481 exons) and 147 single-nucleotide variants (SNVs). NGS analyses showed that 97.7% of the targeted exons were sequenced to sufficient coverage (depth > 50) for calling variants. The targets of artificial editing were defined as homozygous alternative (HomoALT) and compound heterozygous alternative (ALT1/ALT2) insertion/deletion (INDEL) mutations in this study. Four models of gene editing (three homoALT with 1-bp insertions, one REF/ALT with 77-bp deletion) were constructed by editing the myostatin gene in horse fibroblasts using CRISPR/Cas9. The edited cells and 101 samples from thoroughbred horses were screened using the developed test, which was capable of identifying the three homoALT cells containing 1-bp insertions. Furthermore, 147 SNVs were investigated for their utility in confirming biological parentage. Of these, 120 SNVs were amenable to consistent and accurate genotyping. Surrogate (nonbiological) dams were excluded by 9.8 SNVs on average, indicating that the 120 SNV could be used to detect foals that have been produced by somatic cloning or embryo transfer, two practices that are prohibited in thoroughbred racing and breeding. These results indicate that gene-editing tests that include variant calling and SNV genotyping are useful to identify genetically modified racehorses.
Collapse
Affiliation(s)
- Teruaki Tozaki
- Genetic Analysis Department, Laboratory of Racing Chemistry, 1731-2, Tsurutamachi, Utsunomiya 320-0851, Japan
- Correspondence:
| | - Aoi Ohnuma
- Genetic Analysis Department, Laboratory of Racing Chemistry, 1731-2, Tsurutamachi, Utsunomiya 320-0851, Japan
| | - Kotono Nakamura
- Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, 1-1, Yanagido, Gifu 501-1193, Japan
| | - Kazuki Hano
- Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, 1-1, Yanagido, Gifu 501-1193, Japan
| | - Masaki Takasu
- Department of Veterinary Medicine, Faculty of Applied Biological Sciences, Gifu University, 1-1, Yanagido, Gifu 501-1193, Japan
| | - Yuji Takahashi
- Equine Research Institute, Japan Racing Association, 1400-4, Shiba, Shimotsuke 329-0412, Japan
| | - Norihisa Tamura
- Equine Research Institute, Japan Racing Association, 1400-4, Shiba, Shimotsuke 329-0412, Japan
| | - Fumio Sato
- Equine Research Institute, Japan Racing Association, 1400-4, Shiba, Shimotsuke 329-0412, Japan
| | - Kyo Shimizu
- Registration Department, Japan Association for International Racing and Stud Book, 4-5-4, Shimbashi, Minato, Tokyo 105-0004, Japan
| | - Mio Kikuchi
- Genetic Analysis Department, Laboratory of Racing Chemistry, 1731-2, Tsurutamachi, Utsunomiya 320-0851, Japan
| | - Taichiro Ishige
- Genetic Analysis Department, Laboratory of Racing Chemistry, 1731-2, Tsurutamachi, Utsunomiya 320-0851, Japan
| | - Hironaga Kakoi
- Genetic Analysis Department, Laboratory of Racing Chemistry, 1731-2, Tsurutamachi, Utsunomiya 320-0851, Japan
| | - Kei-ichi Hirota
- Genetic Analysis Department, Laboratory of Racing Chemistry, 1731-2, Tsurutamachi, Utsunomiya 320-0851, Japan
| | - Natasha A. Hamilton
- Equine Genetics Research Centre, Racing Australia, 2 Randwick Way, Scone, NSW 2337, Australia
| | - Shun-ichi Nagata
- Genetic Analysis Department, Laboratory of Racing Chemistry, 1731-2, Tsurutamachi, Utsunomiya 320-0851, Japan
| |
Collapse
|
8
|
Andersson L, Purugganan M. Molecular genetic variation of animals and plants under domestication. Proc Natl Acad Sci U S A 2022; 119:e2122150119. [PMID: 35858409 PMCID: PMC9335317 DOI: 10.1073/pnas.2122150119] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Domesticated plants and animals played crucial roles as models for evolutionary change by means of natural selection and for establishing the rules of inheritance, originally proposed by Charles Darwin and Gregor Mendel, respectively. Here, we review progress that has been made during the last 35 y in unraveling the molecular genetic variation underlying the stunning phenotypic diversity in crops and domesticated animals that inspired Mendel and Darwin. We notice that numerous domestication genes, crucial for the domestication process, have been identified in plants, whereas animal domestication appears to have a polygenic background with no obvious "domestication genes" involved. Although model organisms, such as Drosophila and Arabidopsis, have replaced domesticated species as models for basic research, the latter are still outstanding models for evolutionary research because phenotypic change in these species represents an evolutionary process over thousands of years. A consequence of this is that some alleles contributing to phenotypic diversity have evolved by accumulating multiple changes in the same gene. The continued molecular characterization of crops and farm animals with ever sharper tools is essential for future food security.
Collapse
Affiliation(s)
- Leif Andersson
- Department of Medical Biochemistry and Microbiology, Uppsala University, SE-751 23 Uppsala, Sweden
- Department of Veterinary Integrative Biosciences, Texas A&M University, College Station, TX 77843-4458
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, SE-75007 Uppsala, Sweden
| | - Michael Purugganan
- Center for Genomics and Systems Biology, New York University, New York, NY 10003
- Center for Genomics and Systems Biology, New York University Abu Dhabi, Abu Dhabi, 129188, United Arab Emirates
| |
Collapse
|
9
|
Enhancing Animal Disease Resistance, Production Efficiency, and Welfare through Precise Genome Editing. Int J Mol Sci 2022; 23:ijms23137331. [PMID: 35806334 PMCID: PMC9266401 DOI: 10.3390/ijms23137331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 06/25/2022] [Accepted: 06/28/2022] [Indexed: 12/03/2022] Open
Abstract
The major goal of animal breeding is the genetic enhancement of economic traits. The CRISPR/Cas system, which includes nuclease-mediated and base editor mediated genome editing tools, provides an unprecedented approach to modify the mammalian genome. Thus, farm animal genetic engineering and genetic manipulation have been fundamentally revolutionized. Agricultural animals with traits of interest can be obtained in just one generation (and without long time selection). Here, we reviewed the advancements of the CRISPR (Clustered regularly interspaced short palindromic repeats)/Cas (CRISPR associated proteins) genome editing tools and their applications in animal breeding, especially in improving disease resistance, production performance, and animal welfare. Additionally, we covered the regulations on genome-edited animals (GEAs) and ways to accelerate their use. Recommendations for how to produce GEAs were also discussed. Despite the current challenges, we believe that genome editing breeding and GEAs will be available in the near future.
Collapse
|
10
|
Tao QH, Chen Y, Bai DP, Mai LJ, Fan QM, Shi YZ, Chen C, Li A. Differential expression of MSTN, IGF2BP1, and FABP2 across different embryonic ages and sexes in white Muscovy ducks. Gene 2022; 829:146479. [PMID: 35460805 DOI: 10.1016/j.gene.2022.146479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 03/27/2022] [Accepted: 04/01/2022] [Indexed: 11/04/2022]
Abstract
To explore the effects of growth-related genes in both sexes and at different growth and development stages, male and female white Muscovy ducks at embryonic day E13, E17, E21, E25 and E29 were assessed in this study. RT-qPCR was used to determine the mRNA transcription levels of selected growth-related genes in the leg muscles of Muscovy ducks of both sexes and at different growth and developmental stages. MSTN, IGF2BP1 and FABP2 mRNAs were expressed in the leg muscles of male and female Muscovy ducks, but with different expression patterns. The MSTN and IGF2BP1 mRNA expression patterns were wavelike. MSTN mRNA expression was elevated at E13, increased at E17, decreased rapidly to the lowest level at E21, increased again at E25, and then decreased. IGF2BP1 mRNA expression was elevated at E13, increased at E17, decreased rapidly at E21, decreased rapidly to the lowest level at E25, and increased at E29. The expression trend of FABP2 mRNA was approximately "⊥" shape; the expression was the lowest at E13, increased slowly from E17 to E25, and increased extremely significantly at E29. In addition, the expression of MSTN in male Muscovy ducks was significantly higher than that in female ducks at E25 (P < 0.05). The expression of IGF2BP1 in male Muscovy ducks was extremely significantly higher than that in female ducks at E17 (P < 0.01). However, the expression of FABP2 in female Muscovy ducks was extremely significantly higher than that in male Muscovy ducks at E21 and E29 (P < 0.01). In conclusion, the mRNA expression of MSTN, IGF2BP1 and FABP2 in white Muscovy ducks is gestational age specific and sex specific. The differential gene expression patterns observed in this study provide a basis for understanding the physiological changes in white Muscovy ducks at different embryonic ages and in both sexes, supplementing the existing research on duck embryo muscle development. In addition, the findings provide a new framework for further discussion of poultry breeding.
Collapse
Affiliation(s)
- Qing-Hua Tao
- College of Animal Sciences, Fujian Agricultural and Forestry University, Fuzhou 350002, China
| | - Yue Chen
- College of Animal Sciences, Fujian Agricultural and Forestry University, Fuzhou 350002, China
| | - Ding-Ping Bai
- College of Animal Sciences, Fujian Agricultural and Forestry University, Fuzhou 350002, China
| | - Li-Jun Mai
- College of Animal Sciences, Fujian Agricultural and Forestry University, Fuzhou 350002, China
| | - Qin-Ming Fan
- College of Animal Sciences, Fujian Agricultural and Forestry University, Fuzhou 350002, China
| | - Yu-Zhu Shi
- College of Animal Sciences, Fujian Agricultural and Forestry University, Fuzhou 350002, China
| | - Chao Chen
- College of Animal Sciences, Fujian Agricultural and Forestry University, Fuzhou 350002, China
| | - Ang Li
- College of Animal Sciences, Fujian Agricultural and Forestry University, Fuzhou 350002, China.
| |
Collapse
|
11
|
Qi A, Yan J, Yang Y, Tang J, Ru W, Jiang X, Lei C, Sun X, Chen H. SNP within the bovine ASB-3 gene and their association analysis with stature traits in three Chinese cattle breeds. Gene 2022; 838:146700. [PMID: 35772652 DOI: 10.1016/j.gene.2022.146700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2021] [Revised: 06/11/2022] [Accepted: 06/24/2022] [Indexed: 11/18/2022]
Abstract
ASB-3 is one of the 18 members of ASB gene family. As a special negative regulation factor of TNF-R2, ASB-3 inhibits the signal transduction of JNK-TNF-R2 and JNK-STAT signaling pathway by TNF-R2 protein. In this study, the genetic polymorphisms of ASB-3 were detected in total of 637 from Qinchuan, Jinnan and Xianan cattle using the sequence of mixed DNA pool, Tetra-primer ARMS-PCR and PCR-RFLP methods. Four mutation sites were detected including the g.C41255T, g.G74754A, and g.T75438C were synonymous mutation, whereas the g.C115213T was missense mutation (Pro > Ser). The associated analysis of four polymorphic loci of ASB-3 gene respectively with growth traits in the three cattle breeds. The result showed that SNP1 site was significantly related with Qinchuan cattle height and TT was the dominant genotype; SNP2 had a significant relationship with body length of Xianan cattle and cross department height of Qinchuan cattle, AA was the dominant genotype; SNP3 was significantly related to cross height of Xianan cattle, TT was the dominant genotype; SNP4 site was significantly correlated with body height of Xianan cattle and cross height of Jinnan cattle. Genotype combinations were only significantly correlated with the hucklebone width in the adult Qinchuan cattle. The combination genotype CTAGCTCC was outperformed other combination genotypes of Qinchuan cattle. The results showed that ASB-3 could be an important candidate gene and the four SNPs in ASB-3 can be used for molecular marker-assisted selection of four beef cattle breeds.
Collapse
Affiliation(s)
- Ao Qi
- Shaanxi Key Laboratory of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Northwest A&F University, Shaanxi 712100, China
| | - Jianyu Yan
- Shaanxi Key Laboratory of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Northwest A&F University, Shaanxi 712100, China
| | - Yu Yang
- Shaanxi Key Laboratory of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Northwest A&F University, Shaanxi 712100, China
| | - Jia Tang
- Shaanxi Key Laboratory of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Northwest A&F University, Shaanxi 712100, China
| | - Wenxiu Ru
- Shaanxi Key Laboratory of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Northwest A&F University, Shaanxi 712100, China
| | - Xiaojun Jiang
- Shaanxi Agricultural and Animal Husbandry Good Seed Farm, Fufeng, Shaanxi 722203, China
| | - Chuzhao Lei
- Shaanxi Key Laboratory of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Northwest A&F University, Shaanxi 712100, China
| | - Xiuzhu Sun
- College of Grassland Agriculrure, Northwest A&F University, Shaanxi 712100, China.
| | - Hong Chen
- Shaanxi Key Laboratory of Animal Genetics, Breeding and Reproduction, College of Animal Science and Technology, Northwest A&F University, Shaanxi 712100, China; College of Animal Science, Xinjiang Agricultural University, Urumqi 830052, China.
| |
Collapse
|
12
|
Sonali, Giri SK, Unnati, Nayan V, Legha RA, Pal Y, Bhardwaj A. Characterization of Partial Sequence of Myostatin Gene Exon 2 along with SNP detection in Indian Horse Breeds (Equus caballus). J Equine Vet Sci 2022; 116:104047. [PMID: 35716837 DOI: 10.1016/j.jevs.2022.104047] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Revised: 06/13/2022] [Accepted: 06/13/2022] [Indexed: 10/18/2022]
Abstract
India has well documented horse and pony breeds; however, the population is well diversified in different geographical regions. The Myostatin gene is one of the most profoundly studied genetic components for the detection of SNP's for the performance analysis in horses. In the present study, the MSTN exon 2 partial cds were amplified, sequenced and characterized in about 60 samples of eight different breeds of Indian horses. The results indicated the transition of Thymine to Cytosine (T>C) as SNPs in the partial sequence of exon 2 of the MSTN gene at two different codon positions (T12C, T13C) on chromosome 18. The haplotypes and phylogeny of the MSTN gene in the selected horse population were also analyzed. The overall and singleton haplotype are two different entities, indicating the variation among breeds is unique while the gene is equally distributed throughout the population. The phylogeny suggests that all the breeds are somehow equally distributed in their specific geographical tracts. It is the first study of MSTN gene variations in Indian horse breeds, which provides insight into predicting athletic performance as well as phylogeny. This study provides useful genetic information on Indian horses that can be used to model the racing performances of the breeds.
Collapse
Affiliation(s)
- Sonali
- ICAR-National Research Centre on Equines, Hisar, 125001, Haryana, India; Department of Biotechnology (SBAS), Maharaja Agrasen University, Baddi, 174103, Solan HP, India
| | - Shiv Kumar Giri
- Department of Biotechnology (SBAS), Maharaja Agrasen University, Baddi, 174103, Solan HP, India.
| | - Unnati
- ICAR-National Research Centre on Equines, Hisar, 125001, Haryana, India
| | - Varij Nayan
- ICAR- Central Institute for Research on Buffaloes, Hisar, 125001, Haryana, India
| | - Ram Avatar Legha
- ICAR-National Research Centre on Equines, Hisar, 125001, Haryana, India
| | - Yash Pal
- ICAR-National Research Centre on Equines, Hisar, 125001, Haryana, India
| | - Anuradha Bhardwaj
- ICAR-National Research Centre on Equines, Hisar, 125001, Haryana, India.
| |
Collapse
|
13
|
Lowie T, Van Leenen K, Jourquin S, Pas M, Bokma J, Pardon B. Differences in the association of cough and other clinical signs with ultrasonographic lung consolidation in dairy, veal, and beef calves. J Dairy Sci 2022; 105:6111-6124. [DOI: 10.3168/jds.2021-21570] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 02/24/2022] [Indexed: 11/19/2022]
|
14
|
Tu CF, Chuang CK, Yang TS. The application of new breeding technology based on gene editing in pig industry. Anim Biosci 2022; 35:791-803. [PMID: 34991204 PMCID: PMC9066036 DOI: 10.5713/ab.21.0390] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 12/07/2021] [Indexed: 12/02/2022] Open
Abstract
Genome/gene-editing (GE) techniques, characterized by a low technological barrier, high efficiency, and broad application among organisms, are now being employed not only in medical science but also in agriculture/veterinary science. Different engineered CRISPR/Cas9s have been identified to expand the application of this technology. In pig production, GE is a precise new breeding technology (NBT), and promising outcomes in improving economic traits, such as growth, lean or healthy meat production, animal welfare, and disease resistance, have already been documented and reviewed. These promising achievements in porcine gene editing, including the Myostatin gene knockout (KO) in indigenous breeds to improve lean meat production, the uncoupling protein 1 (UCP1) gene knock-in to enhance piglet thermogenesis and survival under cold stress, the generation of GGTA1 and CMP-N-glycolylneuraminic acid hydroxylase (CMAH) gene double KO (dKO) pigs to produce healthy red meat, and the KO or deletion of exon 7 of the CD163 gene to confer resistance to porcine reproductive and respiratory syndrome virus infection, are described in the present article. Other related approaches for such purposes are also discussed. The current trend of global regulations or legislation for GE organisms is that they are exempted from classification as genetically modified organisms (GMOs) if no exogenes are integrated into the genome, according to product-based and not process-based methods. Moreover, an updated case study in the EU showed that current GMO legislation is not fit for purpose in term of NBTs, which contribute to the objectives of the EU’s Green Deal and biodiversity strategies and even meet the United Nations’ sustainable development goals for a more resilient and sustainable agri-food system. The GE pigs generated via NBT will be exempted from classification as GMOs, and their global valorization and commercialization can be foreseen.
Collapse
Affiliation(s)
- Ching-Fu Tu
- Division of Animal Technology, Animal Technology Laboratories, Agricultural Technology Research Institute, Hsinchu City 30093, Taiwan
| | - Chin-Kai Chuang
- Division of Animal Technology, Animal Technology Laboratories, Agricultural Technology Research Institute, Hsinchu City 30093, Taiwan
| | - Tien-Shuh Yang
- Division of Animal Technology, Animal Technology Laboratories, Agricultural Technology Research Institute, Hsinchu City 30093, Taiwan.,Department of Biotechnology and Animal Science, National Ilan University, Yilan City, 26047 Taiwan
| |
Collapse
|
15
|
Esposito P, Picciotto D, Battaglia Y, Costigliolo F, Viazzi F, Verzola D. Myostatin: Basic biology to clinical application. Adv Clin Chem 2021; 106:181-234. [PMID: 35152972 DOI: 10.1016/bs.acc.2021.09.006] [Citation(s) in RCA: 36] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Myostatin is a member of the transforming growth factor (TGF)-β superfamily. It is expressed by animal and human skeletal muscle cells where it limits muscle growth and promotes protein breakdown. Its effects are influenced by complex mechanisms including transcriptional and epigenetic regulation and modulation by extracellular binding proteins. Due to its actions in promoting muscle atrophy and cachexia, myostatin has been investigated as a promising therapeutic target to counteract muscle mass loss in experimental models and patients affected by different muscle-wasting conditions. Moreover, growing evidence indicates that myostatin, beyond to regulate skeletal muscle growth, may have a role in many physiologic and pathologic processes, such as obesity, insulin resistance, cardiovascular and chronic kidney disease. In this chapter, we review myostatin biology, including intracellular and extracellular regulatory pathways, and the role of myostatin in modulating physiologic processes, such as muscle growth and aging. Moreover, we discuss the most relevant experimental and clinical evidence supporting the extra-muscle effects of myostatin. Finally, we consider the main strategies developed and tested to inhibit myostatin in clinical trials and discuss the limits and future perspectives of the research on myostatin.
Collapse
Affiliation(s)
- Pasquale Esposito
- Clinica Nefrologica, Dialisi, Trapianto, Department of Internal Medicine, University of Genoa and IRCCS Ospedale Policlinico San Martino, Genova, Italy.
| | - Daniela Picciotto
- Clinica Nefrologica, Dialisi, Trapianto, Department of Internal Medicine, University of Genoa and IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Yuri Battaglia
- Nephrology and Dialysis Unit, St. Anna University Hospital, Ferrara, Italy
| | - Francesca Costigliolo
- Clinica Nefrologica, Dialisi, Trapianto, Department of Internal Medicine, University of Genoa and IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Francesca Viazzi
- Clinica Nefrologica, Dialisi, Trapianto, Department of Internal Medicine, University of Genoa and IRCCS Ospedale Policlinico San Martino, Genova, Italy
| | - Daniela Verzola
- Clinica Nefrologica, Dialisi, Trapianto, Department of Internal Medicine, University of Genoa and IRCCS Ospedale Policlinico San Martino, Genova, Italy
| |
Collapse
|
16
|
Ferrinho AM, de Moura GV, Martins TDS, Muñoz J, Mueller LF, Garbossa PLM, de Amorim TR, Gemelli JL, Fuzikawa IHDS, Prado C, da Silveira JC, Poleti MD, Baldi F, Pereira AS. Rubia Gallega x Nelore crossbred cattle improve beef tenderness through changes in protein abundance and gene expression. Livest Sci 2021. [DOI: 10.1016/j.livsci.2021.104634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
17
|
Johnsson M, Jungnickel MK. Evidence for and localization of proposed causative variants in cattle and pig genomes. Genet Sel Evol 2021; 53:67. [PMID: 34461824 PMCID: PMC8404348 DOI: 10.1186/s12711-021-00662-x] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Accepted: 08/20/2021] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND This paper reviews the localization of published potential causative variants in contemporary pig and cattle reference genomes, and the evidence for their causality. In spite of the difficulties inherent to the identification of causative variants from genetic mapping and genome-wide association studies, researchers in animal genetics have proposed putative causative variants for several traits relevant to livestock breeding. RESULTS For this review, we read the literature that supports potential causative variants in 13 genes (ABCG2, DGAT1, GHR, IGF2, MC4R, MSTN, NR6A1, PHGK1, PRKAG3, PLRL, RYR1, SYNGR2 and VRTN) in cattle and pigs, and localized them in contemporary reference genomes. We review the evidence for their causality, by aiming to separate the evidence for the locus, the proposed causative gene and the proposed causative variant, and report the bioinformatic searches and tactics needed to localize the sequence variants in the cattle or pig genome. CONCLUSIONS Taken together, there is usually good evidence for the association at the locus level, some evidence for a specific causative gene at eight of the loci, and some experimental evidence for a specific causative variant at six of the loci. We recommend that researchers who report new potential causative variants use referenced coordinate systems, show local sequence context, and submit variants to repositories.
Collapse
Affiliation(s)
- Martin Johnsson
- Department of Animal Breeding and Genetics, Swedish University of Agricultural Sciences, Box 7023, 750 07 Uppsala, Sweden
| | - Melissa K. Jungnickel
- The Roslin Institute and Royal (Dick) School of Veterinary Studies, The University of Edinburgh, Midlothian, EH25 9RG Scotland, UK
| |
Collapse
|
18
|
Warner RD, Wheeler TL, Ha M, Li X, Bekhit AED, Morton J, Vaskoska R, Dunshea FR, Liu R, Purslow P, Zhang W. Meat tenderness: advances in biology, biochemistry, molecular mechanisms and new technologies. Meat Sci 2021; 185:108657. [PMID: 34998162 DOI: 10.1016/j.meatsci.2021.108657] [Citation(s) in RCA: 63] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Revised: 08/09/2021] [Accepted: 08/10/2021] [Indexed: 12/17/2022]
Abstract
Meat tenderness is an important quality trait critical to consumer acceptance, and determines satisfaction, repeat purchase and willingness-to-pay premium prices. Recent advances in tenderness research from a variety of perspectives are presented. Our understanding of molecular factors influencing tenderization are discussed in relation to glycolysis, calcium release, protease activation, apoptosis and heat shock proteins, the use of proteomic analysis for monitoring changes, proteomic biomarkers and oxidative/nitrosative stress. Each of these structural, metabolic and molecular determinants of meat tenderness are then discussed in greater detail in relation to animal variation, postmortem influences, and changes during cooking, with a focus on recent advances. Innovations in postmortem technologies and enzymes for meat tenderization are discussed including their potential commercial application. Continued success of the meat industry relies on ongoing advances in our understanding, and in industry innovation. The recent advances in fundamental and applied research on meat tenderness in relation to the various sectors of the supply chain will enable such innovation.
Collapse
Affiliation(s)
- Robyn D Warner
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, Melbourne University, Parkville 3010, Australia.
| | - Tommy L Wheeler
- U.S. Department of Agriculture, Agricultural Research Service, U.S. Meat Animal Research Center, Clay Center, Nebraska 68933, USA
| | - Minh Ha
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, Melbourne University, Parkville 3010, Australia
| | - Xin Li
- Institute of Food Science and Technology, Chinese Academy of Agricultural Sciences, Beijing 100193, China
| | | | - James Morton
- Department of Wine Food and Molecular Biosciences, Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln 7647, Christchurch, New Zealand
| | - Rozita Vaskoska
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, Melbourne University, Parkville 3010, Australia
| | - Frank R Dunshea
- School of Agriculture and Food, Faculty of Veterinary and Agricultural Sciences, Melbourne University, Parkville 3010, Australia; Faculty of Biological Sciences, University of Leeds, Leeds LS2 9JT, United Kingdom
| | - Rui Liu
- School of Food Science and Technology, Yangzhou University, Yangzhou, Jiangsu 225127, PR China
| | - Peter Purslow
- Tandil Centre for Veterinary Investigation (CIVETAN), National University of Central Buenos Aires Province, Tandil B7001BBO, Argentina
| | - Wangang Zhang
- College of Food Science and Technology, Nanjing Agricultural University, Nanjing 210095, China
| |
Collapse
|
19
|
Gim GM, Kwon DH, Eom KH, Moon J, Park JH, Lee WW, Jung DJ, Kim DH, Yi JK, Ha JJ, Lim KY, Kim JS, Jang G. Production of MSTN-mutated cattle without exogenous gene integration using CRISPR-Cas9. Biotechnol J 2021; 17:e2100198. [PMID: 34247443 DOI: 10.1002/biot.202100198] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2021] [Revised: 07/05/2021] [Accepted: 07/09/2021] [Indexed: 11/06/2022]
Abstract
Many genome-edited animals have been produced using clustered regularly interspaced short palindromic repeats (CRISPR)-Cas9 technology to edit specific genes. However, there are few guidelines for the application of this technique to cattle. The goal of this study was to produce trait-improved cattle using the genome-editing technology CRISPR-Cas9. Myostatin (MSTN) was selected as a target locus, and synthetic mRNA of sgRNA and Cas9 were microinjected into fertilized bovine embryos in vitro. As a result, 17 healthy calves were born, and three of them showed MSTN mutation rates of 10.5%, 45.4%, and 99.9%, respectively. Importantly, the offspring with the 99.9% MSTN mutation rate had a biallelic mutation (-12 bps) and a double-muscling phenotype. In conclusion, we demonstrate that the genome-editing technology CRISPR-Cas9 can produce genetically modified calves with improved traits.
Collapse
Affiliation(s)
- Gyeong-Min Gim
- Laboratory of Theriogenology and Biotechnology, Department of Veterinary Clinical Science, College of Veterinary Medicine and the Research Institute of Veterinary Science, Seoul National University, Seoul, Republic of Korea.,BK21 Plus Program, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Dong-Hyeok Kwon
- Laboratory of Theriogenology and Biotechnology, Department of Veterinary Clinical Science, College of Veterinary Medicine and the Research Institute of Veterinary Science, Seoul National University, Seoul, Republic of Korea.,BK21 Plus Program, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | - Kyeong-Hyun Eom
- Laboratory of Theriogenology and Biotechnology, Department of Veterinary Clinical Science, College of Veterinary Medicine and the Research Institute of Veterinary Science, Seoul National University, Seoul, Republic of Korea.,BK21 Plus Program, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| | | | | | | | - Dae-Jin Jung
- Gyeongsangbukdo Livestock Research Institute, Yeongju, Republic of Korea
| | - Dae-Hyun Kim
- Gyeongsangbukdo Livestock Research Institute, Yeongju, Republic of Korea
| | - Jun-Koo Yi
- Gyeongsangbukdo Livestock Research Institute, Yeongju, Republic of Korea
| | - Jae-Jung Ha
- Gyeongsangbukdo Livestock Research Institute, Yeongju, Republic of Korea
| | - Ka-Yeong Lim
- Center for Genome Engineering, Institute for Basic Science (IBS), Seoul, Republic of Korea
| | - Jin-Soo Kim
- Center for Genome Engineering, Institute for Basic Science (IBS), Seoul, Republic of Korea
| | - Goo Jang
- Laboratory of Theriogenology and Biotechnology, Department of Veterinary Clinical Science, College of Veterinary Medicine and the Research Institute of Veterinary Science, Seoul National University, Seoul, Republic of Korea.,BK21 Plus Program, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea
| |
Collapse
|
20
|
Prihandini PW, Primasari A, Aryogi A, Efendy J, Luthfi M, Pamungkas D, Hariyono DNH. Genetic variation in the first intron and exon of the myostatin gene in several Indonesian cattle populations. Vet World 2021; 14:1197-1201. [PMID: 34220121 PMCID: PMC8243674 DOI: 10.14202/vetworld.2021.1197-1201] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2020] [Accepted: 03/30/2021] [Indexed: 11/16/2022] Open
Abstract
Background and Aim Myostatin (MSTN), a member of the transforming growth factor-b family, is a negative regulator of muscle mass. This study aimed to detect the genetic variation of the 1160 bp fragment of exon 1 and part of intron 1 of the MSTN gene in several cattle populations raised in Indonesia. Materials and Methods Polymerase chain reaction products of the MSTN gene amplified from 92 animals representing 10 cattle populations (Peranakan Ongole [PO], Belgian Blue x PO cross, Rambon, PO x Bali cross, Jabres, Galekan, Sragen, Donggala, Madura, and Bali) were sequenced, compared, and aligned with bovine MSTN of Bos taurus (GenBank Acc. No. AF320998.1) and Bos indicus (GenBank Acc. No. AY794986.1). Results Four nucleotide substitutions (nt 1045 and 1066 in intron 1; nt 262 and 418 in exon 1) and two indels (nt 807 and 869 in intron 1) were synonymous mutations. Among these substitutions, only the nt 262G>C and nt 418A>G loci were polymorphic in all populations, except Bali cattle. The frequencies of the nt 262C (0.82) and nt 418A (0.65) alleles were highest. For the nt 262G>C locus, the CC genotype had the highest frequency (0.66) followed by GC (0.30) and CC (0.03). For the nt 418A>G locus, the AG genotype had the highest frequency (0.52) followed by AA (0.39) and GG (0.09). Conclusion The results, showing genetic variations in exon 1 and intron 1 of the MSTN gene, might be helpful for future association studies.
Collapse
Affiliation(s)
| | | | - Aryogi Aryogi
- Beef Cattle Research Institute of Grati, Pasuruan, Indonesia
| | - Jauhari Efendy
- Beef Cattle Research Institute of Grati, Pasuruan, Indonesia
| | - Muchamad Luthfi
- Beef Cattle Research Institute of Grati, Pasuruan, Indonesia
| | - Dicky Pamungkas
- Beef Cattle Research Institute of Grati, Pasuruan, Indonesia
| | - Dwi Nur Happy Hariyono
- Department of Animal Science, Faculty of Agriculture, Universitas Khairun, Ternate, Indonesia
| |
Collapse
|
21
|
Xia Q, Huang X, Huang J, Zheng Y, March ME, Li J, Wei Y. The Role of Autophagy in Skeletal Muscle Diseases. Front Physiol 2021; 12:638983. [PMID: 33841177 PMCID: PMC8027491 DOI: 10.3389/fphys.2021.638983] [Citation(s) in RCA: 55] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Accepted: 02/22/2021] [Indexed: 12/13/2022] Open
Abstract
Skeletal muscle is the most abundant type of tissue in human body, being involved in diverse activities and maintaining a finely tuned metabolic balance. Autophagy, characterized by the autophagosome–lysosome system with the involvement of evolutionarily conserved autophagy-related genes, is an important catabolic process and plays an essential role in energy generation and consumption, as well as substance turnover processes in skeletal muscles. Autophagy in skeletal muscles is finely tuned under the tight regulation of diverse signaling pathways, and the autophagy pathway has cross-talk with other pathways to form feedback loops under physiological conditions and metabolic stress. Altered autophagy activity characterized by either increased formation of autophagosomes or inhibition of lysosome-autophagosome fusion can lead to pathological cascades, and mutations in autophagy genes and deregulation of autophagy pathways have been identified as one of the major causes for a variety of skeleton muscle disorders. The advancement of multi-omics techniques enables further understanding of the molecular and biochemical mechanisms underlying the role of autophagy in skeletal muscle disorders, which may yield novel therapeutic targets for these disorders.
Collapse
Affiliation(s)
- Qianghua Xia
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Xubo Huang
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Jieru Huang
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Yongfeng Zheng
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Michael E March
- Center for Applied Genomics, The Children's Hospital of Philadelphia, Philadelphia, PA, United States
| | - Jin Li
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| | - Yongjie Wei
- Affiliated Cancer Hospital and Institute of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
22
|
Vinet A, Bouyer C, Forestier L, Oulmouden A, Blanquet V, Picard B, Cassar-Malek I, Bonnet M, Rocha D, Renand G. The Blonde d'Aquitaine T3811>G3811 mutation in the myostatin gene: association with growth, carcass, and muscle phenotypes in veal calves. J Anim Sci 2021; 99:6129922. [PMID: 33624102 DOI: 10.1093/jas/skab039] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 02/02/2021] [Indexed: 11/12/2022] Open
Abstract
The mutation T3811 → G3811 (TG3811) discovered in the myostatin gene of the Blonde d'Aquitaine breed is suspected of contributing to the outstanding muscularity of this breed. An experiment was designed to estimate the effect of this mutation in an F2 and back-cross Blonde d'Aquitaine × Holstein population. By genotyping all known mutations in the myostatin gene, it was ensured that the TG3811 mutation was indeed the only known mutation segregating in this population. Fifty-six calves (43 F2, 13 back-cross) were intensively fattened and slaughtered at 24.0 ± 1.4 wk of age. The effects of the mutation were estimated by comparing the calves with the [T/T] (n = 18), [T/G] (n = 30), and [G/G] (n = 8) genotypes. Highly significant substitution effects (P < 0.001), above + 1.2 phenotypic SD, were shown on carcass yield and muscularity scores. Birth weight (P < 0.001) was positively affected by the mutation (+0.8 SD) but not growth rate (P = 0.97), while carcass length (P = 0.03), and fatness (P ≤ 0.03) were negatively affected (-0.5 to -0.7 SD). The characteristics of the Triceps brachii muscle were affected by the mutation (P < 0.001), with lower ICDH activity (oxidative) and a higher proportion of myosin type 2X muscle fibers (fast twitch). The effects of the TG3811 mutation were similar to those of other known myostatin mutations, although the Blonde d'Aquitaine animals, which are predominantly [G/G] homozygous, do not exhibit extreme double muscling.
Collapse
Affiliation(s)
- Aurélie Vinet
- Université Paris-Saclay, INRAE, AgroParisTech, UMR Génétique Animale et Biologie Intégrative, Jouy-en-Josas, France
| | - Claire Bouyer
- INRAE, Université de Limoges, UMR Génomique Animale, Amélioration, Adaptation, Limoges, France
| | - Lionel Forestier
- INRAE, Université de Limoges, UMR Génomique Animale, Amélioration, Adaptation, Limoges, France
| | - Ahmad Oulmouden
- INRAE, Université de Limoges, UMR Génomique Animale, Amélioration, Adaptation, Limoges, France
| | - Véronique Blanquet
- INRAE, Université de Limoges, UMR Génomique Animale, Amélioration, Adaptation, Limoges, France
| | - Brigitte Picard
- INRAE, Université Clermont Auvergne, Vetagro Sup, UMR Herbivores, Saint-Genès-Champanelle, France
| | - Isabelle Cassar-Malek
- INRAE, Université Clermont Auvergne, Vetagro Sup, UMR Herbivores, Saint-Genès-Champanelle, France
| | - Muriel Bonnet
- INRAE, Université Clermont Auvergne, Vetagro Sup, UMR Herbivores, Saint-Genès-Champanelle, France
| | - Dominique Rocha
- Université Paris-Saclay, INRAE, AgroParisTech, UMR Génétique Animale et Biologie Intégrative, Jouy-en-Josas, France
| | - Gilles Renand
- Université Paris-Saclay, INRAE, AgroParisTech, UMR Génétique Animale et Biologie Intégrative, Jouy-en-Josas, France
| |
Collapse
|
23
|
Perisse IV, Fan Z, Singina GN, White KL, Polejaeva IA. Improvements in Gene Editing Technology Boost Its Applications in Livestock. Front Genet 2021; 11:614688. [PMID: 33603767 PMCID: PMC7885404 DOI: 10.3389/fgene.2020.614688] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Accepted: 12/07/2020] [Indexed: 12/18/2022] Open
Abstract
Accelerated development of novel CRISPR/Cas9-based genome editing techniques provides a feasible approach to introduce a variety of precise modifications in the mammalian genome, including introduction of multiple edits simultaneously, efficient insertion of long DNA sequences into specific targeted loci as well as performing nucleotide transitions and transversions. Thus, the CRISPR/Cas9 tool has become the method of choice for introducing genome alterations in livestock species. The list of new CRISPR/Cas9-based genome editing tools is constantly expanding. Here, we discuss the methods developed to improve efficiency and specificity of gene editing tools as well as approaches that can be employed for gene regulation, base editing, and epigenetic modifications. Additionally, advantages and disadvantages of two primary methods used for the production of gene-edited farm animals: somatic cell nuclear transfer (SCNT or cloning) and zygote manipulations will be discussed. Furthermore, we will review agricultural and biomedical applications of gene editing technology.
Collapse
Affiliation(s)
- Iuri Viotti Perisse
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT, United States
| | - Zhiqiang Fan
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT, United States
| | - Galina N. Singina
- L.K. Ernst Federal Research Center for Animal Husbandry, Podolsk, Russia
| | - Kenneth L. White
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT, United States
| | - Irina A. Polejaeva
- Department of Animal, Dairy and Veterinary Sciences, Utah State University, Logan, UT, United States
| |
Collapse
|
24
|
Associations of CAST, CAPN1 and MSTN Genes Polymorphism with Slaughter Value and Beef Quality – A Review. ANNALS OF ANIMAL SCIENCE 2020. [DOI: 10.2478/aoas-2020-0006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
The slaughter value of cattle and beef quality are influenced by many factors, which can generally be divided into antemortem (breed, sex, age, housing system, diet, pre-slaughter handling) and postmortem (post-slaughter processing, chilling temperature, packaging). Studies of many authors have shown that meat quality traits can be also influenced by the individual genetic background of an animal. Numerous studies have been conducted worldwide to determine the functions of various genes as well as polymorphisms with potential effects on fattening and slaughter value of cattle and on beef quality. This study reviews the most important research done on the associations of polymorphisms in the calpain, calpastatin and myostatin genes with carcass traits and beef quality. Knowledge about the genes and chromosome regions associated with desired meat quality characteristics may prove very helpful when selecting pairs for mating and estimating the breeding value of offspring, mainly because it is difficult to improve meat quality traits based on conventional selection methods due to their low heritability and polygenic regulation. Furthermore, meat quality evaluation is expensive and can only be carried out after slaughter.
Collapse
|
25
|
Azhar A, Akmal M, Hambal M, Sabri M, Rosa TS. Effects of polymorphism of myostatin and fatty acid-binding protein 4 genes on the chemical composition of meat in cull female Aceh cattle. Vet World 2020; 13:1334-1343. [PMID: 32848308 PMCID: PMC7429386 DOI: 10.14202/vetworld.2020.1334-1343] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2019] [Accepted: 05/14/2020] [Indexed: 11/16/2022] Open
Abstract
Aim: This study aimed to investigate the association of single nucleotide polymorphism of the myostatin (MSTN) and fatty acid-binding protein 4 (FABP4) genes on the total water, ash, fat, protein, and cholesterol contents of sirloin (gluteus medius muscle) and silverside (biceps femoris muscle) meats of cull female Aceh cattle. Materials and Methods: This analysis covered a total of 27 cull female Aceh cattle slaughtered at the Animal Slaughterhouse of Banda Aceh that was purposively selected based on hair color referred to the criteria described in the Decree of Ministry of Agriculture of the Republic of Indonesia. Genomic DNA was extracted from 25 mg of fresh meat using the spin column method before subjected to a polymerase chain reaction amplification using primer sets specific for 1346-bp and 275-bp fragments of MSTN and FABP4, respectively. A 4-h digestion reaction was done separately for the MSTN/HaeIII and FABP4/NlaIII loci genotyping. The total protein, ash, and fat of the meat were measured using the Indonesian National Standard (SNI) methods whereas its cholesterol content was determined using the AOAC method. The association between each polymorphism and the variation in meat chemical parameters was analyzed using the Pearson correlation test. Results: The results showed that the MSTN/HaeIII locus was polymorphic in Aceh cattle, but the FABP4/NlaIII locus was monomorphic. Meat chemical parameters were not influenced by different commercial cuts and MSTNgenotypes, showing that there was no association between different commercial cuts, cattle hair colors, and MSTN/HaeIII and FABP4/NlaIII markers with the meat chemical parameters in Aceh cattle. Conclusion: These results suggest that focusing on the novel effects of MSTN and FABP4 gene polymorphisms on meat production traits might not be useful for marker-assisted selection in Aceh cattle.
Collapse
Affiliation(s)
- Al Azhar
- Department of Biochemistry , Faculty of Veterinary Medicine, Universitas Syiah Kuala, Banda Aceh, Aceh 23111, Indonesia
| | - Muslim Akmal
- Department of Histology , Faculty of Veterinary Medicine, Universitas Syiah Kuala, Banda Aceh, Aceh 23111, Indonesia
| | - Muhammad Hambal
- Department of Parasitology , Faculty of Veterinary Medicine, Universitas Syiah Kuala, Banda Aceh, Aceh 23111, Indonesia
| | - Mustafa Sabri
- Department of Anatomy , Faculty of Veterinary Medicine, Universitas Syiah Kuala, Banda Aceh, Aceh 23111, Indonesia
| | - Teuku Shaddiq Rosa
- Master Program of Veterinary Public Health, Faculty of Veterinary Medicine, Universitas Syiah Kuala, Banda Aceh, Aceh 23111, Indonesia
| |
Collapse
|
26
|
Doyle JL, Berry DP, Veerkamp RF, Carthy TR, Evans RD, Walsh SW, Purfield DC. Genomic regions associated with muscularity in beef cattle differ in five contrasting cattle breeds. Genet Sel Evol 2020; 52:2. [PMID: 32000665 PMCID: PMC6993462 DOI: 10.1186/s12711-020-0523-1] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2019] [Accepted: 01/17/2020] [Indexed: 01/19/2023] Open
Abstract
BACKGROUND Linear type traits, which reflect the muscular characteristics of an animal, could provide insight into how, in some cases, morphologically very different animals can yield the same carcass weight. Such variability may contribute to differences in the overall value of the carcass since primal cuts vary greatly in price; such variability may also hinder successful genome-based association studies. Therefore, the objective of our study was to identify genomic regions that are associated with five muscularity linear type traits and to determine if these significant regions are common across five different breeds. Analyses were carried out using linear mixed models on imputed whole-genome sequence data in each of the five breeds, separately. Then, the results of the within-breed analyses were used to conduct an across-breed meta-analysis per trait. RESULTS We identified many quantitative trait loci (QTL) that are located across the whole genome and associated with each trait in each breed. The only commonality among the breeds and traits was a large-effect pleiotropic QTL on BTA2 that contained the MSTN gene, which was associated with all traits in the Charolais and Limousin breeds. Other plausible candidate genes were identified for muscularity traits including PDE1A, PPP1R1C and multiple collagen and HOXD genes. In addition, associated (gene ontology) GO terms and KEGG pathways tended to differ between breeds and between traits especially in the numerically smaller populations of Angus, Hereford, and Simmental breeds. Most of the SNPs that were associated with any of the traits were intergenic or intronic SNPs located within regulatory regions of the genome. CONCLUSIONS The commonality between the Charolais and Limousin breeds indicates that the genetic architecture of the muscularity traits may be similar in these breeds due to their similar origins. Conversely, there were vast differences in the QTL associated with muscularity in Angus, Hereford, and Simmental. Knowledge of these differences in genetic architecture between breeds is useful to develop accurate genomic prediction equations that can operate effectively across breeds. Overall, the associated QTL differed according to trait, which suggests that breeding for a morphologically different (e.g. longer and wider versus shorter and smaller) more efficient animal may become possible in the future.
Collapse
Affiliation(s)
- Jennifer L. Doyle
- Teagasc, Animal and Grassland Research and Innovation Centre, Moorepark, Fermoy, Co. Cork Ireland
- Department of Science, Waterford Institute of Technology, Cork Road, Waterford, Co. Waterford Ireland
| | - Donagh P. Berry
- Teagasc, Animal and Grassland Research and Innovation Centre, Moorepark, Fermoy, Co. Cork Ireland
| | - Roel F. Veerkamp
- Animal Breeding and Genomics Centre, Wageningen University and Research Centre, Livestock Research, Wageningen, The Netherlands
| | - Tara R. Carthy
- Teagasc, Animal and Grassland Research and Innovation Centre, Moorepark, Fermoy, Co. Cork Ireland
| | - Ross D. Evans
- Irish Cattle Breeding Federation, Bandon, Co. Cork Ireland
| | - Siobhán W. Walsh
- Department of Science, Waterford Institute of Technology, Cork Road, Waterford, Co. Waterford Ireland
| | - Deirdre C. Purfield
- Teagasc, Animal and Grassland Research and Innovation Centre, Moorepark, Fermoy, Co. Cork Ireland
| |
Collapse
|
27
|
Haruna IL, Ekegbu UJ, Ullah F, Amirpour-Najafabadi H, Zhou H, Hickford JGH. Genetic variations and haplotypic diversity in the Myostatin gene of New Zealand cattle breeds. Gene 2020; 740:144400. [PMID: 31987910 DOI: 10.1016/j.gene.2020.144400] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 01/17/2020] [Accepted: 01/23/2020] [Indexed: 01/02/2023]
Abstract
Myostatin (MSTN) is a circulating factor that is secreted by muscle cells, and that acts upon those cells to inhibit the proliferation of muscle fibres during pre-natal muscle growth. The Polymerase Chain Reaction (PCR) coupled with Single Strand Conformational Polymorphism (SSCP) analysis, was used to reveal variation in the bovine MSTN gene (MSTN) in 722 cattle from a variety of breeds farmed in New Zealand (NZ). These included Hereford, Angus, Charolais, Simmental, Red Poll, South Devon, Shorthorn, Murray Grey, cross-bred Holstein-Friesian × Jersey cattle, and other composite breeds of cattle. Sequence analysis of five regions of MSTN that encompassed coding and non-coding regions of the gene, revealed a total of twelve single-nucleotide substitutions (7 in intron 1 and 5 in a region spanning the intron 2 - exon 3 boundary), and a single nucleotide deletion. Of these 12 substitutions, five are reported here for the first time, whereas seven have been previously described. The deletion c.748-78del, was located in the intron 2 - exon 3 boundary region, and has been reported previously. No nucleotide variation was identified in exons 1, 2 and 3. A total of 18 extended haplotypes were resolved spanning two variable regions (intron 1 and the intron 2 - exon 3 boundary), some of which were common across the breeds, while others were peculiar to particular breeds. The genetic variations identified provide insight into the conserved and polymorphic nature of the coding and non-coding sequences of bovine MSTN respectively, and thus provides a baseline for further study into how variation in the gene might affect growth and carcass traits in NZ cattle.
Collapse
Affiliation(s)
- Ishaku L Haruna
- Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln 7647, New Zealand.
| | - Ugonna J Ekegbu
- Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln 7647, New Zealand
| | - Farman Ullah
- Department of Biotechnology, University of Malakand, Dir lower 18800, Chakdara, Pakistan
| | | | - Huitong Zhou
- Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln 7647, New Zealand
| | - Jon G H Hickford
- Faculty of Agriculture and Life Sciences, Lincoln University, Lincoln 7647, New Zealand.
| |
Collapse
|
28
|
Bi Y, Feng B, Wang Z, Zhu H, Qu L, Lan X, Pan C, Song X. Myostatin (MSTN) Gene Indel Variation and Its Associations with Body Traits in Shaanbei White Cashmere Goat. Animals (Basel) 2020; 10:E168. [PMID: 31963797 PMCID: PMC7022945 DOI: 10.3390/ani10010168] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 01/12/2020] [Accepted: 01/13/2020] [Indexed: 12/21/2022] Open
Abstract
Myostatin (MSTN) gene, also known as growth differentiation factor 8 (GDF8), is a member of the transforming growth factor-beta super-family and plays a negative role in muscle development. It acts as key points during pre- and post-natal life of amniotes that ultimately determine the overall muscle mass of animals. There are several studies that concentrate on the effect of a 5 bp insertion/deletion (indel) within the 5' untranslated region (5' UTR) of goat MSTN gene in goats. However, almost all sample sizes were below 150 individuals. Only in Boer goats, the sample sizes reached 482. Hence, whether the 5 bp indel was still associated with the growth traits of goats in large sample sizes which were more reliable is not clear. To find an effective and dependable DNA marker for goat rearing, we first enlarged the sample sizes (n = 1074, Shaanbei White Cashmere goat) which would enhance the robustness of the analysis and did the association analyses between the 5 bp indel and growth traits. Results uncovered that the 5 bp indel was significantly related to body height, height at hip cross, and chest width index (p < 0.05). In addition, individuals with DD genotype had a superior growing performance than those with the ID genotype. These findings suggested that the 5 bp indel in MSTN gene are significantly associated with growth traits and the specific genotype might be promising for maker-assisted selection (MAS) of goats.
Collapse
Affiliation(s)
- Yi Bi
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; (Y.B.); (B.F.); (Z.W.); (X.L.)
| | - Bo Feng
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; (Y.B.); (B.F.); (Z.W.); (X.L.)
| | - Zhen Wang
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; (Y.B.); (B.F.); (Z.W.); (X.L.)
- Shaanxi Provincial Engineering and Technology Research Center of Cashmere Goats, Yulin University, Yulin 719000, China; (H.Z.); (L.Q.)
- Life Science Research Center, Yulin University, Yulin 719000, China
| | - Haijing Zhu
- Shaanxi Provincial Engineering and Technology Research Center of Cashmere Goats, Yulin University, Yulin 719000, China; (H.Z.); (L.Q.)
- Life Science Research Center, Yulin University, Yulin 719000, China
| | - Lei Qu
- Shaanxi Provincial Engineering and Technology Research Center of Cashmere Goats, Yulin University, Yulin 719000, China; (H.Z.); (L.Q.)
- Life Science Research Center, Yulin University, Yulin 719000, China
| | - Xianyong Lan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; (Y.B.); (B.F.); (Z.W.); (X.L.)
| | - Chuanying Pan
- Key Laboratory of Animal Genetics, Breeding and Reproduction of Shaanxi Province, College of Animal Science and Technology, Northwest A&F University, Yangling 712100, China; (Y.B.); (B.F.); (Z.W.); (X.L.)
| | - Xiaoyue Song
- Shaanxi Provincial Engineering and Technology Research Center of Cashmere Goats, Yulin University, Yulin 719000, China; (H.Z.); (L.Q.)
- Life Science Research Center, Yulin University, Yulin 719000, China
| |
Collapse
|
29
|
Yang LQ, Zhang K, Wu QY, Li J, Lai SJ, Song TZ, Zhang M. Identification of two novel single nucleotide polymorphism sites in the Myostatin (MSTN) gene and their association with carcass traits in meat-type rabbits (Oryctolagus cuniculus). WORLD RABBIT SCIENCE 2019. [DOI: 10.4995/wrs.2019.10610] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
<p>Two unknown single nucleotide polymorphism (SNP) sites in exons 1 (c.194C>T) and 2 (c.445T>A) of meat-type rabbit <em>MSTN</em> gene were identified in the study. Our objective was to analyse the population genetics structure of the two novel SNP sites in 230 individuals from six breeds and their associations with carcass traits of rabbits. We found that live body weight (BW), cold carcass weight (CCW), reference carcass weight (RCW), CCW percentage (P<sub>CCW</sub>) and RCW percentage (P<sub>RCW</sub>) of the rabbits with the genotype CC at the c.194C>T of exon 1 or AA at the c.445T>A of exon 2 were significantly higher than those with other genotypes. Diplotype significantly affected BW, RCW, CCW, P<sub>RCW</sub> (<em>P</em><0.01) and P<sub>CCW</sub> and P<sub>CM</sub> (<em>P</em><0.05). CC/AA was the advantageous diplotype for BW, RCW, CCW and P<sub>CM</sub>, and TT/AA was the advantageous diplotype for P<sub>CCW</sub> and P<sub>RCW</sub>. In contrast, TT/TT was the negative diplotype for BW, CCW, RCW, P<sub>CCW</sub> and P<sub>RCW</sub>, and TT/AA was the negative diplotype for P<sub>CM</sub>. The results suggest that the two new mutations of <em>MSTN</em> gene significantly affected BW, CCW, RCW, P<sub>CCW</sub> and P<sub>RCW</sub> of rabbits, and <em>MSTN</em> may be an important candidate gene of carcass traits in meat-type rabbits.</p>
Collapse
|
30
|
Martin P, Taussat S, Vinet A, Krauss D, Maupetit D, Renand G. Genetic parameters and genome-wide association study regarding feed efficiency and slaughter traits in Charolais cows. J Anim Sci 2019; 97:3684-3698. [PMID: 31436836 DOI: 10.1093/jas/skz240] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2019] [Accepted: 07/15/2019] [Indexed: 12/14/2022] Open
Abstract
Residual energy intake (REI) on two successive diets (hay and maize based) and slaughter traits, including visceral organs, were phenotyped in 584 adult purebred Charolais cows. To investigate the relationships between these traits and their genetic determinism, we first estimated the genetic parameters, including correlations, using REML modeling under WOMBAT software. The animals were then genotyped on the BovineSNP50 SNPchip before being imputed to the 600K density and genome wide association study was performed with GCTA software. We found low heritability for REI (h2 = 0.12 in each of the diet phases). Although the phenotypic correlation between the two diet phases was moderate (0.36), the genetic correlation was high (0.83), indicating a common genetic determinism for feed efficiency regardless of the diet. Correlations between REI and slaughter traits were negative regarding muscle-related traits and positive for fat-related traits, indicating that efficient animals generally had a more muscular carcass. It was also seen that feed efficiency was genetically and phenotypically correlated with smaller organs when expressed as a proportion of their empty body weight. From the GWAS analysis, seven QTLs were found to be associated with a trait at the genome-wide level of significance and 18 others at the chromosome-wide level. One important QTL was detected in BTA 2, reflecting the essential effect of the myostatin gene on both carcass composition and relative organ weight. Three QTLs were detected for REI during the maize diet phase on BTA 13, 19, and 28, the latter being significant at the genome-wide level. The QTLs on BTA 19 mapped into the TANC2 gene and the QTLs on BTA 28 into the KIF1BP gene, which are both known to interact with the same protein (KIF1A). However, no obvious functional link between these genes and feed efficiency could be made. Among the other QTLs detected, one association on BTA 4 with liver proportion mapped to the candidate gene WASL, which has previously been shown to be differentially expressed in liver cells and linked to feed restriction or cancer development. No QTLs were found to be common between feed efficiency and any slaughter traits.
Collapse
Affiliation(s)
- Pauline Martin
- UMR1313 GABI, Institut National de la Recherche Agronomique, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Sébastien Taussat
- UMR1313 GABI, Institut National de la Recherche Agronomique, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France.,UE0332 Domaine Expérimental Bourges-La Sapinière, Allice, Paris, France
| | - Aurélie Vinet
- UMR1313 GABI, Institut National de la Recherche Agronomique, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| | - Daniel Krauss
- UE0332 Domaine Expérimental Bourges-La Sapinière, Institut National de la Recherche Agronomique, Osmoy, France
| | - David Maupetit
- UE0332 Domaine Expérimental Bourges-La Sapinière, Institut National de la Recherche Agronomique, Osmoy, France
| | - Gilles Renand
- UMR1313 GABI, Institut National de la Recherche Agronomique, AgroParisTech, Université Paris-Saclay, Jouy-en-Josas, France
| |
Collapse
|
31
|
Savoia S, Albera A, Brugiapaglia A, Di Stasio L, Cecchinato A, Bittante G. Heritability and genetic correlations of carcass and meat quality traits in Piemontese young bulls. Meat Sci 2019; 156:111-117. [DOI: 10.1016/j.meatsci.2019.05.024] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2018] [Revised: 05/22/2019] [Accepted: 05/22/2019] [Indexed: 01/22/2023]
|
32
|
Lee J, Kim J, Garrick DJ. Increasing the accuracy of genomic prediction in pure‐bred Limousin beef cattle by including cross‐bred Limousin data and accounting for an F94L variant in
MSTN. Anim Genet 2019; 50:621-633. [DOI: 10.1111/age.12846] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/11/2019] [Indexed: 11/30/2022]
Affiliation(s)
- J. Lee
- Jung P&C Institute #1504 U‐TOWER, 120 Heungdeokjungang‐ro, Giheung‐gu Yongin‐si Gyeonggi‐do 16950 South Korea
| | - J.‐M. Kim
- Department of Animal Science and Technology Chung‐Ang University Anseong‐si Gyeonggi‐do 17546 Korea
| | - D. J. Garrick
- AL Rae Centre of Genetics and Breeding Massey University Private Bag 11 222 Palmerston North Hamilton 4442 New Zealand
| |
Collapse
|
33
|
Greenwood PL, O’Rourke BA, Brunner J, Johns WH, Arthur PF, Cafe LM. Cellular development in muscle differs between Angus steers from low and high muscle score selection lines1. J Anim Sci 2019; 97:3199-3212. [DOI: 10.1093/jas/skz144] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2019] [Accepted: 04/24/2019] [Indexed: 11/12/2022] Open
Abstract
AbstractThis study assessed cellular characteristics of longissimus lumborum (LL) and semitendinosus (ST) muscles in steers genetically selected for low (Low) or high (High) muscling using live muscle scoring, and High steers with 1 copy of the loss-of-function 821 del11 MSTN allele (HighHet). We hypothesized High and HighHet have altered muscle cellular characteristics and mechanisms influencing muscling compared with Low steers. Angus steers 25 mo old comprising 14 High, 19 Low, and 11 HighHet were backgrounded to 20 mo of age, grain finished for 150 d, and then slaughtered. Body and carcass weights did not differ due to muscling line (P = 0.46). Weight of LL was 16% greater (P = 0.004) and total protein in LL was 18% greater (P = 0.012) in HighHet than Low steers. ST weight in HighHet was 10% and 13% greater than in High and Low steers (P = 0.007), respectively, and of total ST protein 12% and 17% greater in HighHet than High or Low (P = 0.002). Cross-sectional area (CSA) of LL was greater in HighHet than in High and greater in High than in Low (85.0 vs. 77.0 vs. 70.4 cm2, P < 0.001). Apparent number of myofibers and myofibers per unit CSA did not differ between the muscling lines in LL (P = 0.14) or ST (P = 0.47). Myofiber CSA was greater in the ST of Low than of High and HighHet for type 1 (36% and 31% respectively, P = 0.005) and 2A (22% and 25%, P < 0.001). HighHet steers had greater area of glycolytic (type 2X) relative to more oxidative myofiber types within LL (P = 0.02; 11% and 43% more than High and Low, respectively) and ST (P < 0.001; 27% and 75%). Concentration of RNA in LL was 13% and 10% greater (P = 0.005) in High than in Low and HighHet, respectively, and total amount of RNA in LL was 22% greater in High and 20% greater in HighHet than in Low (P < 0.001). The LL of High steers had less protein to RNA (P = 0.03; 57.4 vs. 65.6) and more RNA to DNA (P = 0.007; 9.03 vs. 7.83) than Low. HighHet steers had 11% more DNA in ST than High (P = 0.04) and 19% more RNA in ST than Low (P = 0.012). The shift towards glycolytic myofibers was consistent with loadings in a principal component that explained 39% of the variation in LL and 38% in ST. Overall, these findings show that selection for increased muscling using live cattle muscle scoring, and 1 copy of the 821 del11 MSTN allele, results in more glycolytic muscle. They also suggest that increased muscling of the High compared with Low steers may be associated with increased translational capacity in the LL.
Collapse
Affiliation(s)
- Paul L Greenwood
- New South Wales Department of Primary Industries, Armidale Livestock Industries Centre, University of New England, Armidale, NSW, Australia
| | - Brendon A O’Rourke
- New South Wales Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Menangle, NSW, Australia
| | - Joe Brunner
- New South Wales Department of Primary Industries, Armidale Livestock Industries Centre, University of New England, Armidale, NSW, Australia
| | - William H Johns
- New South Wales Department of Primary Industries, Armidale Livestock Industries Centre, University of New England, Armidale, NSW, Australia
| | - Paul F Arthur
- New South Wales Department of Primary Industries, Elizabeth Macarthur Agricultural Institute, Menangle, NSW, Australia
| | - Linda M Cafe
- New South Wales Department of Primary Industries, Armidale Livestock Industries Centre, University of New England, Armidale, NSW, Australia
| |
Collapse
|
34
|
'Double-muscling' and pelvic tilt phenomena in rabbits with the cystine-knot motif deficiency of myostatin on exon 3. Biosci Rep 2019; 39:BSR20190207. [PMID: 31072915 PMCID: PMC6527932 DOI: 10.1042/bsr20190207] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2019] [Revised: 04/18/2019] [Accepted: 05/06/2019] [Indexed: 11/30/2022] Open
Abstract
Gene mutations at different gene sites will produce totally different phenotypes or biological functions in gene-edited animals. An allelic series of mutations in the myostatin (MSTN) gene can cause the ‘double-muscling’ phenotype. Although there have been many studies performed on MSTN-mutant animals, there have been few studies that have investigated the cystine-knot motif in exon 3 of MSTN in rabbits. In the current study, CRISPR/Cas9 sgRNA anchored exon 3 of a rabbit’s MSTN was used to disrupt the cystine-knot motif to change the MSTN construction and cause a loss of its function. Eleven MSTN-KO founder rabbits were generated, and all of them contained biallelic modifications. Various mutational MSTN amino acid sequences of the 11 founder rabbits were modeled to the tertiary structure using the SWISS-MODEL, and the results showed that the structure of the cystine-knot motif of each protein in the founder rabbits differed from the wild-type (WT). The MSTN-KO rabbits displayed an obvious ‘double-muscling’ phenomena, with a 20−30% increase in body weight compared with WT rabbits. In the MSTN-KO rabbits, all of the MSTN−/− rabbits showed teeth dislocation and tongue enlargement, and the percentage of rabbits having pelvic tilt was 0% in MSTN+/+, 0% in MSTN+/−, 77.78% in female MSTN−/− rabbits, and 37.50% in male MSTN−/− rabbits. The biomechanical mechanism of pelvic tilt and teeth dislocation in the MSTN-KO rabbits requires further investigation. These newly generated MSTN-KO rabbits will serve as an important animal model, not only for studying skeletal muscle development, but also for biomedical studies in pelvic tilt correction and craniofacial research.
Collapse
|
35
|
Bennett GL, Tait RG, Shackelford SD, Wheeler TL, King DA, Casas E, Smith TPL. Enhanced estimates of carcass and meat quality effects for polymorphisms in myostatin and µ-calpain genes. J Anim Sci 2019; 97:569-577. [PMID: 30476168 DOI: 10.1093/jas/sky451] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2018] [Accepted: 11/21/2018] [Indexed: 01/20/2023] Open
Abstract
The objective of this study was to enhance estimates of additive, dominance, and epistatic effects of marker polymorphisms on beef carcass and quality traits. Myostatin (MSTN) F94L SNP and the µ-calpain (CAPN1) 316 and 4751 SNP haplotype have previously been associated with fat and muscle traits in beef cattle. Multiyear selection in a composite population segregating these polymorphisms increased minor allele (F94L L) and chosen haplotype (CAPN1 CC and GT) frequencies to intermediate levels resulting in more precise estimates of additive and nonadditive genetic effects. During the 3 yr after selection, 176 steers were evaluated for growth, carcass, meat quality, tenderness (n = 103), and meat color traits. The statistical model included year, age of dam, age of the steer, and genotype in a random animal model. The 9 genotypes (3 CAPN1 diplotypes × 3 F94L genotypes) affected marbling score, ribeye area, adjusted fat thickness, vision yield grade (all P < 0.001), slice shear force (P = 0.03), and CIE L* reflectance (P = 0.01). Linear contrasts of the 9 genotypes estimated additive, recessive, and epistatic genetic effects. Significant additive effects of the F94L L allele decreased marbling score, adjusted fat thickness, vision yield grade, and slice shear force; and increased ribeye area and CIE L* reflectance. The homozygous F94L FF and LL genotypes differed by 1.3 to 1.9 phenotypic SD for most carcass traits and by 0.8 to 0.9 SD for slice shear force and CIE L* reflectance but carcass weight differed by only 3 kg (0.1 SD). The L allele was partially recessive to F for ribeye area (P = 0.02) and the heterozygous FL means tended to be closer to the FF genotype than the LL genotype for other carcass traits but differences from additive were not significant. The CAPN1 additive × F94L additive effect on slice shear force was the only significant epistatic estimate. The F94L L allele is prevalent in Limousin but nearly absent in other U.S. purebreds. This allele had about half of the effects on birth weight, muscle, and fat traits reported for severe MSTN mutations in Belgian Blue and Piedmontese breeds. The interaction between MSTN and CAPN1 genotypes may reflect the strong additive effects of MSTN F94L L allele on fat and muscle traits interfering with the phenotypic effect of CAPN1 genotype on meat tenderness.
Collapse
Affiliation(s)
- Gary L Bennett
- USDA, Agricultural Research Service, Roman L. Hruska US Meat Animal Research Center, Clay Center, NE
| | - Richard G Tait
- USDA, Agricultural Research Service, Roman L. Hruska US Meat Animal Research Center, Clay Center, NE
| | - Steven D Shackelford
- USDA, Agricultural Research Service, Roman L. Hruska US Meat Animal Research Center, Clay Center, NE
| | - Tommy L Wheeler
- USDA, Agricultural Research Service, Roman L. Hruska US Meat Animal Research Center, Clay Center, NE
| | - David A King
- USDA, Agricultural Research Service, Roman L. Hruska US Meat Animal Research Center, Clay Center, NE
| | - Eduardo Casas
- USDA, Agricultural Research Service, Roman L. Hruska US Meat Animal Research Center, Clay Center, NE
| | - Timothy P L Smith
- USDA, Agricultural Research Service, Roman L. Hruska US Meat Animal Research Center, Clay Center, NE
| |
Collapse
|
36
|
Sahu AR, V J, R R, A R. Novel report on mutation in exon 3 of myostatin (MSTN) gene in Nilagiri sheep: an endangered breed of South India. Trop Anim Health Prod 2019; 51:1817-1822. [PMID: 30941707 DOI: 10.1007/s11250-019-01873-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2018] [Accepted: 03/21/2019] [Indexed: 10/27/2022]
Abstract
The variability in breeding program leads to rapid loss of genetic potential for which National Bureau of Animal Genetic Resources is emphasized to conserve the indigenous breeds. The variation in myostatin (MSTN) gene and its association with growth traits will throw light on its potential use as marker in selection. Hence, the study was conducted to detect polymorphism in exon 3 of MSTN, one of the most important growth regulatory gene and its association with growth in Nilagiri sheep breed. Blood samples were collected from Nilagiri sheep (n = 103) of South India and growth data up to 1 year of age was recorded. Genomic DNA was isolated and amplified for part of MSTN gene; PCR products were genotyped by restriction digestion (MspI) and confirmed by sequencing. Restriction digestion has revealed a single nucleotide polymorphism at locus G5622C in exon 3 which was confirmed by sequencing. The wild-type DNA molecule (MM) cleaved by MspI produced 301-bp and 314-bp fragments and those with mutation (mm) would remain undigested. The genotypic frequencies were MM (0.689) and Mm (0.311) with complete absence of mm genotype; and allelic frequencies were M (0.8445) and m (0.1555). The locus was in Hardy-Weinberg equilibrium. The association analysis revealed that there was no significant difference in mean birth, weaning, 6-, 9-, and 12-month weight between MM and Mm genotypes at g.5622G>C locus of exon 3 of MSTN gene. This is the first report of mutation in exon 3 of MSTN gene. The non-significant effect and absence of mm genotype at this locus needs further studies based on large population size and haplotype analysis.
Collapse
Affiliation(s)
- Amiya Ranjan Sahu
- Animal Genetics and Breeding, ICAR-NRC on Pig, Guwahati, Assam, India.
| | - Jeichitra V
- Animal Genetics and Breeding, Post Graduate Research Institute in Animal Sciences, Kattupakkam, Kancheepuram, TN, India
| | - Rajendran R
- Animal Genetics and Breeding, Post Graduate Research Institute in Animal Sciences, Kattupakkam, Kancheepuram, TN, India
| | - Raja A
- Animal Biotechnology, Madras Veterinary College, Chennai, TN, India
| |
Collapse
|
37
|
Savoia S, Brugiapaglia A, Pauciullo A, Di Stasio L, Schiavon S, Bittante G, Albera A. Characterisation of beef production systems and their effects on carcass and meat quality traits of Piemontese young bulls. Meat Sci 2019; 153:75-85. [PMID: 30913411 DOI: 10.1016/j.meatsci.2019.03.010] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2018] [Revised: 02/21/2019] [Accepted: 03/12/2019] [Indexed: 11/18/2022]
Abstract
Using the Piemontese breed as a case study, we characterised beef production systems within the EU classification, and investigated their effects on carcass and meat quality traits. The research involved 1,327 young bulls fattened on 115 farms. The production systems identified by hierarchical cluster analysis were: traditional (restricted feeding and either tie-stalls or loose-housing), modern breeders and fatteners and specialised fatteners (the last two were divided in those using or not using total mixed rations). Despite the large variability in management techniques within production systems, production systems affected (P < 0.05) farm size, animal density, environmental scoring, diet, slaughter age and all carcass traits except weight. Lightness (L*) of Longissimus thoracis was the only meat quality trait affected (P < 0.05), with values greater in the traditional tie-stall system (+0.9 L*). Given the very limited effect of production systems on meat quality traits, factors related to individual animals within farms, such as genetics, should be considered for their improvement.
Collapse
Affiliation(s)
- Simone Savoia
- Associazione Nazionale Allevatori Bovini di Razza Piemontese (Anaborapi), Strada Trinità 32/A, 12061 Carrù, CN, Italy; Department of Agronomy, Food, Natural Resources, Animals and the Environment (DAFNAE), Università degli studi di Padova, Viale dell'Università 16, 35020 Legnaro, PD, Italy.
| | - Alberto Brugiapaglia
- Department of Agricultural, Forest and Food Science, Università degli studi di Torino, Via L. Da Vinci 44, 10095 Grugliasco, TO, Italy
| | - Alfredo Pauciullo
- Department of Agricultural, Forest and Food Science, Università degli studi di Torino, Via L. Da Vinci 44, 10095 Grugliasco, TO, Italy
| | - Liliana Di Stasio
- Department of Agricultural, Forest and Food Science, Università degli studi di Torino, Via L. Da Vinci 44, 10095 Grugliasco, TO, Italy
| | - Stefano Schiavon
- Department of Agronomy, Food, Natural Resources, Animals and the Environment (DAFNAE), Università degli studi di Padova, Viale dell'Università 16, 35020 Legnaro, PD, Italy
| | - Giovanni Bittante
- Department of Agronomy, Food, Natural Resources, Animals and the Environment (DAFNAE), Università degli studi di Padova, Viale dell'Università 16, 35020 Legnaro, PD, Italy
| | - Andrea Albera
- Associazione Nazionale Allevatori Bovini di Razza Piemontese (Anaborapi), Strada Trinità 32/A, 12061 Carrù, CN, Italy
| |
Collapse
|
38
|
Choi DH, Yang J, Kim YS. Rapamycin suppresses postnatal muscle hypertrophy induced by myostatin-inhibition accompanied by transcriptional suppression of the Akt/mTOR pathway. Biochem Biophys Rep 2019; 17:182-190. [PMID: 30805561 PMCID: PMC6362869 DOI: 10.1016/j.bbrep.2018.12.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2018] [Revised: 10/26/2018] [Accepted: 12/20/2018] [Indexed: 01/16/2023] Open
Abstract
Myostatin (MSTN) is a well-known negative growth factor of muscle mass, and studies have shown that MSTN-inhibition would be a potential strategy to treat muscle atrophy seen in various clinical conditions. Recent studies suggest that MSTN-inhibition induces skeletal muscle hypertrophy through up-regulation of the anabolic Akt/mTOR pathway. Therefore, it was hypothesized that the muscle hypertrophy induced by MSTN-inhibition would be suppressed by the administration of rapamycin (RAP), a mTOR suppressor. A MSTN transgenic mouse strain (MSTN-pro), which is characterized by a postnatal hyper-muscularity due to MSTN inhibition through transgenic overexpression of MSTN propeptide, was used in producing experimental animals. Five-week-old male heterozygous MSTN-pro mice and wild-type littermates were administered with 0 or 3 mg/kg body weight of RAP intraperitoneally every other day for 4 weeks. The effects of RAP on muscle growth, mRNA abundance of signaling components of the Akt/mTOR pathway, and myogenic regulatory factors (MyoD, Myf5, MyoG, and Mrf4) were examined in comparison to wild-type mice. Body weight gain of MSTN-pro mice was significantly greater than that of wild-type mice. RAP suppressed body weight gain and muscle mass in both MSTN-pro and wild-type mice. The extent of both body weight and muscle mass suppression was significantly greater in MSTN-pro mice than in wild-type mice. Real-time qPCR analysis showed that mRNA abundance of the signaling molecules of the Akt/mTOR pathway, including Akt, p70S6K, and 4E-BP1, were significantly higher in MSTN-pro mice. RAP treatment decreased mRNA abundance of Akt, p70S6K and 4E-BP1 only in MSTN-pro mice. mRNA abundances of MyoD and MyoG were not affected by MSTN suppression or RAP treatment. mRNA abundance of Myf5 was decreased by RAP, but not affected by MSTN suppression. mRNA abundance of Mrf4 was decreased by MSTN suppression. RAP treatment decreased mRNA abundance of Mrf4 only in wild type mice. Results of this study indicate that transcriptional regulation of signaling components of the Akt/mTOR pathway and myogenic regulatory transcription factor Mrf4 is involved in the enhancement of skeletal muscle mass induced by MSTN suppression. Muscle mass increase induced by myostatin inhibition was suppressed by rapamycin administration. Myostatin suppression enhanced mRNA abundance of Akt, p70S6K and 4E-BP1 in mice. Rapamycin decreased the expression of Akt, p70S6K and 4E-BP1 in mice with myostatin suppression.
Collapse
Affiliation(s)
- Dong Hyuck Choi
- Department of Molecular Bioscience and Bioengineering, University of Hawaii, Honolulu, HI 96822, USA
| | - Jinzeng Yang
- Department of Human Nutrition, Food and Animal Sciences, University of Hawaii, Honolulu, HI 96822, USA
| | - Yong Soo Kim
- Department of Human Nutrition, Food and Animal Sciences, University of Hawaii, Honolulu, HI 96822, USA
| |
Collapse
|
39
|
Román-Trufero A, García-Prieto V, Martínez A, Osoro K, Celaya R. Beef steer production from two local breeds under two management systems differing in the utilisation of mountain pastures. ITALIAN JOURNAL OF ANIMAL SCIENCE 2019. [DOI: 10.1080/1828051x.2019.1638837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
| | | | - Antonio Martínez
- Regional Service for Agri-food Research and Development, Villaviciosa, Spain
| | - Koldo Osoro
- Regional Service for Agri-food Research and Development, Villaviciosa, Spain
| | - Rafael Celaya
- Regional Service for Agri-food Research and Development, Villaviciosa, Spain
| |
Collapse
|
40
|
|
41
|
Calus MPL, Goddard ME, Wientjes YCJ, Bowman PJ, Hayes BJ. Multibreed genomic prediction using multitrait genomic residual maximum likelihood and multitask Bayesian variable selection. J Dairy Sci 2018; 101:4279-4294. [PMID: 29550121 DOI: 10.3168/jds.2017-13366] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2017] [Accepted: 01/04/2018] [Indexed: 11/19/2022]
Abstract
Genomic prediction is applicable to individuals of different breeds. Empirical results to date, however, show limited benefits in using information on multiple breeds in the context of genomic prediction. We investigated a multitask Bayesian model, presented previously by others, implemented in a Bayesian stochastic search variable selection (BSSVS) model. This model allowed for evidence of quantitative trait loci (QTL) to be accumulated across breeds or for both QTL that segregate across breeds and breed-specific QTL. In both cases, single nucleotide polymorphism effects were estimated with information from a single breed. Other models considered were a single-trait and multitrait genomic residual maximum likelihood (GREML) model, with breeds considered as different traits, and a single-trait BSSVS model. All single-trait models were applied to each of the 2 breeds separately and to the pooled data of both breeds. The data used included a training data set of 6,278 Holstein and 722 Jersey bulls, as well as 374 Jersey validation bulls. All animals had genotypes for 474,773 single nucleotide polymorphisms after editing and phenotypes for milk, fat, and protein yields. Using the same training data, BSSVS consistently outperformed GREML. The multitask BSSVS, however, did not outperform single-trait BSSVS, which used pooled Holstein and Jersey data for training. Thus, the rigorous assumption that the traits are the same in both breeds yielded a slightly better prediction than a model that had to estimate the correlation between the breeds from the data. Adding the Holstein data significantly increased the accuracy of the single-trait GREML and BSSVS in predicting the Jerseys for milk and protein, in line with estimated correlations between the breeds of 0.66 and 0.47 for milk and protein yields, whereas only the BSSVS model significantly improved the accuracy for fat yield with an estimated correlation between breeds of only 0.05. The relatively high genetic correlations for milk and protein yields, and the superiority of the pooling strategy, is likely the result of the observed admixture between both breeds in our data. The Bayesian model was able to detect several QTL in Holsteins, which likely enabled it to outperform GREML. The inability of the multitask Bayesian models to outperform a simple pooling strategy may be explained by the fact that the pooling strategy assumes equal effects in both breeds; furthermore, this assumption may be valid for moderate- to large-sized QTL, which are important for multibreed genomic prediction.
Collapse
Affiliation(s)
- M P L Calus
- Wageningen University & Research, Animal Breeding and Genomics, PO Box 338, 6700 AH Wageningen, the Netherlands.
| | - M E Goddard
- Faculty of Veterinary and Agricultural Science, University of Melbourne, Melbourne, Victoria 3010, Australia; Agriculture Research, Department of Economic Development, Jobs, Transport and Resources, Melbourne, Victoria 3083, Australia
| | - Y C J Wientjes
- Wageningen University & Research, Animal Breeding and Genomics, PO Box 338, 6700 AH Wageningen, the Netherlands
| | - P J Bowman
- Agriculture Research, Department of Economic Development, Jobs, Transport and Resources, Melbourne, Victoria 3083, Australia; School of Applied Systems Biology, La Trobe University, Bundoora, Victoria 3083, Australia
| | - B J Hayes
- School of Applied Systems Biology, La Trobe University, Bundoora, Victoria 3083, Australia; Queensland Alliance for Agriculture and Food Innovation, Centre for Animal Science, The University of Queensland, St. Lucia, Queensland 4072, Australia
| |
Collapse
|
42
|
Browett S, McHugo G, Richardson IW, Magee DA, Park SDE, Fahey AG, Kearney JF, Correia CN, Randhawa IAS, MacHugh DE. Genomic Characterisation of the Indigenous Irish Kerry Cattle Breed. Front Genet 2018. [PMID: 29520297 PMCID: PMC5827531 DOI: 10.3389/fgene.2018.00051] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Kerry cattle are an endangered landrace heritage breed of cultural importance to Ireland. In the present study we have used genome-wide SNP array data to evaluate genomic diversity within the Kerry population and between Kerry cattle and other European breeds. Patterns of genetic differentiation and gene flow among breeds using phylogenetic trees with ancestry graphs highlighted historical gene flow from the British Shorthorn breed into the ancestral population of modern Kerry cattle. Principal component analysis (PCA) and genetic clustering emphasised the genetic distinctiveness of Kerry cattle relative to comparator British and European cattle breeds. Modelling of genetic effective population size (Ne) revealed a demographic trend of diminishing Ne over time and that recent estimated Ne values for the Kerry breed may be less than the threshold for sustainable genetic conservation. In addition, analysis of genome-wide autozygosity (FROH) showed that genomic inbreeding has increased significantly during the 20 years between 1992 and 2012. Finally, signatures of selection revealed genomic regions subject to natural and artificial selection as Kerry cattle adapted to the climate, physical geography and agro-ecology of southwest Ireland.
Collapse
Affiliation(s)
- Sam Browett
- Ecosystems and Environment Research Centre, School of Environment and Life Sciences, University of Salford, Salford, United Kingdom
| | - Gillian McHugo
- Animal Genomics Laboratory, UCD School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | | | - David A Magee
- Animal Genomics Laboratory, UCD School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | | | - Alan G Fahey
- Animal Genomics Laboratory, UCD School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | | | - Carolina N Correia
- Animal Genomics Laboratory, UCD School of Agriculture and Food Science, University College Dublin, Dublin, Ireland
| | - Imtiaz A S Randhawa
- Sydney School of Veterinary Science, The University of Sydney, Camden, NSW, Australia
| | - David E MacHugh
- Animal Genomics Laboratory, UCD School of Agriculture and Food Science, University College Dublin, Dublin, Ireland.,UCD Conway Institute of Biomolecular and Biomedical Research, University College Dublin, Dublin, Ireland
| |
Collapse
|
43
|
te Pas MFW, Lebret B, Oksbjerg N. Invited review: Measurable biomarkers linked to meat quality from different pig production systems. Arch Anim Breed 2017. [DOI: 10.5194/aab-60-271-2017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Abstract. Biological processes underlie all livestock traits, including post-mortem meat quality traits. Biomarkers are molecular components of the biological processes showing differential expression associated with the phenotype of the trait. The phenotypes of the meat quality traits are determined by the animal's genotype interacting with the environment affecting the expression of the genome. The omics technologies enable measuring the expression of the genome at all levels: transcriptome, proteome, and metabolome. Associations between the phenotype of the traits and expressions measured with the omics techniques are a first step in developing biomarkers. Biomarkers enable the monitoring, diagnosis, and prediction of changes in meat quality related to external (environmental, e.g. feed and animal management conditions) stimuli and interactions with the genotype. In this paper we review the development of biomarkers for meat quality of pigs in diverse pig breeds, environments, and pork production chains.
Collapse
|
44
|
Khalil K, Elayat M, Khalifa E, Daghash S, Elaswad A, Miller M, Abdelrahman H, Ye Z, Odin R, Drescher D, Vo K, Gosh K, Bugg W, Robinson D, Dunham R. Generation of Myostatin Gene-Edited Channel Catfish (Ictalurus punctatus) via Zygote Injection of CRISPR/Cas9 System. Sci Rep 2017; 7:7301. [PMID: 28779173 PMCID: PMC5544710 DOI: 10.1038/s41598-017-07223-7] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Accepted: 06/26/2017] [Indexed: 11/23/2022] Open
Abstract
The myostatin (MSTN) gene is important because of its role in regulation of skeletal muscle growth in all vertebrates. In this study, CRISPR/Cas9 was utilized to successfully target the channel catfish, Ictalurus punctatus, muscle suppressor gene MSTN. CRISPR/Cas9 induced high rates (88-100%) of mutagenesis in the target protein-encoding sites of MSTN. MSTN-edited fry had more muscle cells (p < 0.001) than controls, and the mean body weight of gene-edited fry increased by 29.7%. The nucleic acid alignment of the mutated sequences against the wild-type sequence revealed multiple insertions and deletions. These results demonstrate that CRISPR/Cas9 is a highly efficient tool for editing the channel catfish genome, and opens ways for facilitating channel catfish genetic enhancement and functional genomics. This approach may produce growth-enhanced channel catfish and increase productivity.
Collapse
Affiliation(s)
- Karim Khalil
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA.
- Anatomy and Embryology Department, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt.
| | - Medhat Elayat
- Anatomy and Embryology Department, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Elsayed Khalifa
- Anatomy and Embryology Department, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Samer Daghash
- Anatomy and Embryology Department, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Ahmed Elaswad
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA.
- Department of Animal Wealth Development, Faculty of Veterinary Medicine, Suez Canal University, Ismailia, 41522, Egypt.
| | - Michael Miller
- Harrison School of Pharmacy, Auburn University, Auburn, AL, 36849, USA
| | - Hisham Abdelrahman
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
- Department of Veterinary Hygiene and Management, Faculty of Veterinary Medicine, Cairo University, Giza, 12211, Egypt
| | - Zhi Ye
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Ramjie Odin
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - David Drescher
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Khoi Vo
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Kamal Gosh
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - William Bugg
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Dalton Robinson
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA
| | - Rex Dunham
- School of Fisheries, Aquaculture and Aquatic Sciences, Auburn University, Auburn, AL, 36849, USA.
| |
Collapse
|
45
|
Mitrofanova OV, Dementeva NV, Krutikova AA, Yurchenko OP, Vakhrameev AB, Terletskiy VP. Association of polymorphic variants in MSTN, PRL, and DRD2 genes with intensity of young animal growth in Pushkin breed chickens. CYTOL GENET+ 2017. [DOI: 10.3103/s0095452717030082] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
46
|
Vallée A, Daures J, van Arendonk JAM, Bovenhuis H. Genome-wide association study for behavior, type traits, and muscular development in Charolais beef cattle. J Anim Sci 2017; 94:2307-16. [PMID: 27285908 DOI: 10.2527/jas.2016-0319] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Behavior, type traits, and muscular development are of interest for beef cattle breeding. Genome-wide association studies (GWAS) enable the identification of candidate genes, which enables gene-based selection and provides insight in the genetic architecture of these traits. The objective of the current study was to perform a GWAS for 3 behavior traits, 12 type traits, and muscular development in Charolais cattle. Behavior traits, including aggressiveness at parturition, aggressiveness during gestation period, and maternal care, were scored by farmers. Type traits, including udder conformation, teat, feet and legs, and locomotion, were scored by trained classifiers. Data used in the GWAS consisted of 3,274 cows with phenotypic records and genotyping information for 44,930 SNP. When SNP had a false discovery rate (FDR) smaller than 0.05, they were referred to as significant. When SNP had a FDR between 0.05 and 0.20, they were referred to as suggestive. Four significant and 12 suggestive regions were detected for aggressiveness during gestation, maternal care, udder balance, teat thinness, teat length, foot angle, foot depth, and locomotion. These 4 significant and 12 suggestive regions were not supported by other significant SNP in close proximity. No SNP with major effects were detected for behavior and type traits, and SNP associations for these traits were spread across the genome, suggesting that behavior and type traits were influenced by many genes, each explaining a small part of genetic variance. The GWAS identified 1 region on chromosome 2 significantly associated with muscular development, which included the myostatin gene (), which is known to affect muscularity. No other regions associated with muscular development were found. Results showed that the myostatin region associated with muscular development had pleiotropic effects on udder volume, teat thinness, rear leg, and leg angle.
Collapse
|
47
|
Pereira V, López-Alonso M, Miranda M, Benedito JL, García-Vaquero M. Relationship between the essential and toxic element concentrations and the proximate composition of different commercial and internal cuts of young beef. Eur Food Res Technol 2017. [DOI: 10.1007/s00217-017-2888-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
48
|
Sahu AR, Jeichitra V, Rajendran R, Raja A. Polymorphism in exon 3 of myostatin ( MSTN ) gene and its association with growth traits in Indian sheep breeds. Small Rumin Res 2017. [DOI: 10.1016/j.smallrumres.2017.01.009] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
|
49
|
Te Pas MFW, Madsen O, Calus MPL, Smits MA. The Importance of Endophenotypes to Evaluate the Relationship between Genotype and External Phenotype. Int J Mol Sci 2017; 18:E472. [PMID: 28241430 PMCID: PMC5344004 DOI: 10.3390/ijms18020472] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Revised: 02/02/2017] [Accepted: 02/13/2017] [Indexed: 02/06/2023] Open
Abstract
With the exception of a few Mendelian traits, almost all phenotypes (traits) in livestock science are quantitative or complex traits regulated by the expression of many genes. For most of the complex traits, differential expression of genes, rather than genomic variation in the gene coding sequences, is associated with the genotype of a trait. The expression profiles of the animal's transcriptome, proteome and metabolome represent endophenotypes that influence/regulate the externally-observed phenotype. These expression profiles are generated by interactions between the animal's genome and its environment that range from the cellular, up to the husbandry environment. Thus, understanding complex traits requires knowledge about not only genomic variation, but also environmental effects that affect genome expression. Gene products act together in physiological pathways and interaction networks (of pathways). Due to the lack of annotation of the functional genome and ontologies of genes, our knowledge about the various biological systems that contribute to the development of external phenotypes is sparse. Furthermore, interaction with the animals' microbiome, especially in the gut, greatly influences the external phenotype. We conclude that a detailed understanding of complex traits requires not only understanding of variation in the genome, but also its expression at all functional levels.
Collapse
Affiliation(s)
- Marinus F W Te Pas
- Animal Breeding and Genomics Centre, Wageningen UR Livestock Research, 6700AH Wageningen, The Netherlands.
| | - Ole Madsen
- Animal Breeding and Genomics, Wageningen University, 6700AH Wageningen, The Netherlands.
| | - Mario P L Calus
- Animal Breeding and Genomics Centre, Wageningen UR Livestock Research, 6700AH Wageningen, The Netherlands.
| | - Mari A Smits
- Animal Breeding and Genomics Centre, Wageningen UR Livestock Research, 6700AH Wageningen, The Netherlands.
| |
Collapse
|
50
|
Serpa PBS, Garbade P, Natalini CC, Pires AR, Tisotti TM. High-resolution melting analysis for detection of a single-nucleotide polymorphism and the genotype of the myostatin gene in warmblood horses. Am J Vet Res 2017; 78:63-68. [PMID: 28029290 DOI: 10.2460/ajvr.78.1.63] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
OBJECTIVE To develop a high-resolution melting (HRM) assay to detect the g.66493737C>T polymorphism in the myostatin gene (MSTN) and determine the frequency of 3 previously defined g.66493737 genotypes (T/T, T/C, and C/C) in warmblood horses. SAMPLES Blood samples from 23 horses. PROCEDURES From each blood sample, DNA was extracted and analyzed by standard PCR methods and an HRM assay to determine the MSTN genotype. Three protocols (standard protocol, protocol in which a high-salt solution was added to the reaction mixture before the first melting cycle, and protocol in which an unlabeled probe was added to the reaction mixture before analysis) for the HRM assay were designed and compared. Genotype results determined by the HRM protocol that generated the most consistent melting curves were compared with those determined by sequencing. RESULTS The HRM protocol in which an unlabeled probe was added to the reaction mixture generated the most consistent melting curves. The genotypes of the g.66493737C>T polymorphism were determined for 22 horses (16 by HRM analysis and 20 by sequencing); 14, 7, and 1 had the T/T, T/C, and C/C genotypes, respectively. The genotype determined by HRM analysis agreed with that determined by sequencing for 14 of 16 horses. The frequency of alleles T and C was 79.5% and 20.5%, respectively. CONCLUSIONS AND CLINICAL RELEVANCE Results indicated that HRM analysis may be a faster and more economical alternative than PCR methods for genotyping. Genotyping results might be useful as predictors of athletic performance for horses.
Collapse
|