1
|
Girgin B, Kocabaş F. Newly developed MEIS inhibitor selectively blocks MEIS High prostate cancer growth and induces apoptosis. Gene 2023; 871:147425. [PMID: 37044182 DOI: 10.1016/j.gene.2023.147425] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Revised: 03/18/2023] [Accepted: 04/07/2023] [Indexed: 04/14/2023]
Abstract
Prostate cancer (PCa) is the second most diagnosed cancer in males. Understanding the molecular mechanism and investigation of novel ways to block PCa growth or metastasis are vital and a medical necessity. In this study, we examined differential expression of MEIS1/2/3 and its associated factors in PCa cell lines. MEIS1/2/3 content, reactive oxygen species, and cell cycle status were analyzed in PCa cells post MEIS inhibitor (MEISi) treatments, which is developed in our laboratory as a first-in-class small molecule inhibitor. A correlation was detected between MEIS content and MEISi IC50 values of PCa cells. MEISi decreased the viability of PC-3, DU145, 22Rv-1 and LNCaP cells, and significantly increased apoptosis in parallel with the increased cellular ROS content. The efficacy of MEISi was shown to positively correlate with the levels of MEIS1/2/3 proteins and the long term exposure to MEISi elevated MEIS1/2/3 protein content in PCa cells. Our findings suggest that MEISi could be used to target PCa with high MEIS expression in order to reduce PCa viability and growth; however, more research is needed before this can be translated into clinical settings.
Collapse
Affiliation(s)
- Birkan Girgin
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Turkey; Graduate School of Natural and Applied Sciences, Yeditepe University, Istanbul, Turkey; Department of Neuropharmacology, Hokkaido University Faculty of Medicine, Sapporo, Japan
| | - Fatih Kocabaş
- Department of Genetics and Bioengineering, Faculty of Engineering, Yeditepe University, Istanbul, Turkey; Graduate School of Natural and Applied Sciences, Yeditepe University, Istanbul, Turkey.
| |
Collapse
|
2
|
Elbadawi MM, Khodair AI, Awad MK, Kassab SE, Elsaady MT, Abdellatif KR. Design, synthesis and biological evaluation of novel thiohydantoin derivatives as antiproliferative agents: A combined experimental and theoretical assessments. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2021.131574] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
3
|
Chou FJ, Chen Y, Chen D, Niu Y, Li G, Keng P, Yeh S, Chang C. Preclinical study using androgen receptor (AR) degradation enhancer to increase radiotherapy efficacy via targeting radiation-increased AR to better suppress prostate cancer progression. EBioMedicine 2019; 40:504-516. [PMID: 30692044 PMCID: PMC6412086 DOI: 10.1016/j.ebiom.2018.12.050] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2018] [Revised: 12/20/2018] [Accepted: 12/20/2018] [Indexed: 12/20/2022] Open
Abstract
Background While androgen deprivation therapy (ADT) and radiotherapy (RT) are currently used together to treat locally advanced prostate cancer (PCa), RT might have the adverse effect of increasing the PCa androgen receptor (AR) protein expression, which might then increase the resistance to continued RT. Methods We used multiple assays for RT sensitivity, protein and RNA expression of AR and related DDR genes, ROS level, DNA damage/repair level, cell cycle and apoptosis. All statistical comparisons were analyzed with t-test or one-way ANOVA. Findings We demonstrated that RT induced AR expression in C4-2 and CWR22Rv-1 cells. We found that combining RT and ASC-J9®, but not the antiandrogen, Enzalutamide, could increase radiosensitivity via inducing DNA damage, altering the AR mediated and DNA repair pathways, and activating apoptosis. ASC-J9® had little effects on normal bladder cells. Interpretation Targeting ionizing radiation (IR)-increased AR with the AR degradation enhancer, ASC-J9®, could increase the radiosensitivity while sparing adjacent normal tissue. Mechanism dissection revealed that ASC-J9®, but not Enzalutamide, treatment could increase radiosensitivity via inducing DNA damage, altering DNA repair pathways, as well as activating the IR-induced apoptosis via suppressing the pATR-CHK1 signals. Importantly, results from preclinical studies using an in vivo mouse model also demonstrated that combining RT with ASC-J9® to target AR led to better therapeutic efficacy to suppress PCa progression. ASC-J9• enhances efficacy of radiotherapy (RT) in PCa through both AR-dependent and AR-independent mechanistic pathways. In AR-independent pathway, ASC-J9• increases endogenous ROS and DNA damage and makes PCa cells more sensitive to RT ASC-J9• could also reduce the DNA damage repair after RT via suppression of AR dependent DDR genes and apoptotic pathway. From pre-clinical mouse model, we found that combining RT and ASC-J9• can provide better efficacy than RT only.
Collapse
Affiliation(s)
- Fu-Ju Chou
- George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology, The Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Yuhchyau Chen
- George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology, The Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Dong Chen
- Department of Urology, National Cancer Center/Hospital, Chinese Academy of Medical Sciences, Peking Union Medical College, Beijing 100021, China
| | - Yuanjie Niu
- George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology, The Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Gonghui Li
- George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology, The Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Peter Keng
- George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology, The Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Shuyuan Yeh
- George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology, The Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY 14642, USA
| | - Chawnshang Chang
- George Whipple Lab for Cancer Research, Departments of Pathology, Urology, Radiation Oncology, The Wilmot Cancer Institute, University of Rochester Medical Center, Rochester, NY 14642, USA; Sex Hormone Research Center, China Medical University and Hospital, Taichung 404, Taiwan.
| |
Collapse
|
4
|
Wang L, Song T, Wang X, Li J. Discovery and Identification of Pyrazolopyramidine Analogs as Novel Potent Androgen Receptor Antagonists. Front Pharmacol 2018; 9:864. [PMID: 30210333 PMCID: PMC6121070 DOI: 10.3389/fphar.2018.00864] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 07/17/2018] [Indexed: 01/21/2023] Open
Abstract
Androgen receptor (AR), an important target in the current androgen derivation therapy, plays a critical role in the development and progress of prostate cancer (PCa). Nonsteroidal antiandrogens, such as enzalutamide and bicalutamide, are commonly used in clinic to treat PCa. Though they are very effective at the beginning, drug resistance problem appears after about 18 months. One of the reasons is that these antiandrogens share similar structure skeleton. Therefore, it is urgent to discover novel antiandrogens with different skeletons for resistance problem. Herein, we combined structure- and ligand-based methodologies for virtual screening chemical databases to identify potent AR antagonists. Then the cytotoxic activities of the screened hit samples were evaluated by using LNCaP prostate cancer cells. Virtual screening and biological evaluation assay results suggest that several chemicals with novel pyrazolopyrimidine skeleton can inhibit the proliferation of prostate cancer cells with similar, or even higher, bioactivities to bicalutamide. AR reporter gene assay experiments proved that Compound III showed potential antagonistic effects. In addition, molecular dynamics simulations results proved that Compound III can properly bind to AR and prevent helix 12 (H12) from closing to distort the formation of activation function 2 (AF2) site, resulting in the invalid transcription. Hence, pyrazolopyrimidine was discovered as a novel, potent and promising antiandrogen skeleton deserved to be further studied.
Collapse
Affiliation(s)
- Lingyan Wang
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Tianqing Song
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Xin Wang
- School of Pharmacy, Lanzhou University, Lanzhou, China
| | - Jiazhong Li
- School of Pharmacy, Lanzhou University, Lanzhou, China
| |
Collapse
|
5
|
Hupe MC, Hoda MR, Zengerling F, Perner S, Merseburger AS, Cronauer MV. The BET-inhibitor PFI-1 diminishes AR/AR-V7 signaling in prostate cancer cells. World J Urol 2018; 37:343-349. [PMID: 29934670 DOI: 10.1007/s00345-018-2382-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2018] [Accepted: 06/16/2018] [Indexed: 10/28/2022] Open
Abstract
OBJECTIVE The bromodomain and extra-terminal (BET) family of proteins provides a scaffolding platform for the recruitment and tethering of transcription factors to acetylated chromatin, thereby modulating gene expression. In this study, we evaluated the efficacy of the BET-inhibitor PFI-1 to diminish AR/AR-V7 signaling and proliferation in castration-resistant prostate cancer cells. METHODS Prostate-specific antigen and androgen receptor (AR) protein were quantified by means of two commercial ELISAs. Transactivation of the AR, AR-V7 and Q641X was determined by reporter gene assays. Cell proliferation was measured using a colorimetric MTT-assay. RESULTS PFI-1 dose-dependently inhibited transactivation of full-length AR (non- mutated, i.e., wild-type or point-mutated/promiscuous forms) without affecting their cellular protein levels. Moreover, PFI-1 was active against C-terminally truncated constitutively active ARs like AR-V7 and Q641X. Prostate cancer cells exhibiting a transcriptionally active AR-signaling complex (LNCaP, 22Rv1) were more susceptible to the growth-inhibitory effects than the AR-negative PC-3 cells. CONCLUSION The quinazolinone PFI-1 is a highly efficient inhibitor of AR-signaling-competent prostate cancer cells in vitro. PFI-1 could serve as a lead compound for the development of new therapeutics able to block AR/AR-V7 signaling in advanced prostate cancer.
Collapse
Affiliation(s)
- Marie C Hupe
- Department of Urology, University Hospital Schleswig-Holstein, Campus Lübeck, Ratzeburger Allee 160, 23538, Lübeck, Germany
| | - M Raschid Hoda
- Department of Urology, University Hospital Schleswig-Holstein, Campus Lübeck, Ratzeburger Allee 160, 23538, Lübeck, Germany
| | | | - Sven Perner
- Pathology of the University Hospital Schleswig-Holstein, Campus Lübeck and Research Center Borstel, Leibniz Center for Medicine and Biosciences, Borstel, Germany
| | - Axel S Merseburger
- Department of Urology, University Hospital Schleswig-Holstein, Campus Lübeck, Ratzeburger Allee 160, 23538, Lübeck, Germany
| | - Marcus V Cronauer
- Department of Urology, University Hospital Schleswig-Holstein, Campus Lübeck, Ratzeburger Allee 160, 23538, Lübeck, Germany.
| |
Collapse
|
6
|
Ito Y, Sadar MD. Enzalutamide and blocking androgen receptor in advanced prostate cancer: lessons learnt from the history of drug development of antiandrogens. Res Rep Urol 2018; 10:23-32. [PMID: 29497605 PMCID: PMC5818862 DOI: 10.2147/rru.s157116] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023] Open
Abstract
Enzalutamide is a nonsteroidal antiandrogen for the treatment of metastatic castration-resistant prostate cancer (mCRPC) both before and after chemotherapy. Enzalutamide is more effective than its predecessor bicalutamide, which was analyzed in head-to-head studies of patients with CRPC. This family of nonsteroidal antiandrogens is now comprised of four drugs approved by the US Food and Drug Administration with two investigational drugs in clinical trials. Antiandrogens have been employed clinically for more than five decades to provide a rich resource of information. Steady-state concentration minimums (Cmin or trough) in the range of ~1–13 μg/mL are measured in patients at therapeutic doses. Interestingly, enzalutamide which is considered to have strong affinity for the androgen receptor (AR) requires Cmin levels >10 μg/mL. The sequence of antiandrogens and the clinical order of application in regard to other drugs that target the androgen axis remain of high interest. One novel first-in-class drug, called ralaniten, which binds to a unique region in the N-terminus domain of both the full-length and the truncated constitutively active splice variants of the AR, is currently in clinical trials for patients who previously received abiraterone, enzalutamide, or both. This highlights the trend to develop drugs with novel mechanisms of action and potentially differing mechanisms of resistance compared with antiandrogens. Better and more complete inhibition of the transcriptional activity of the AR appears to continue to provide improvements in the clinical management of mCRPC.
Collapse
Affiliation(s)
- Yusuke Ito
- Genome Sciences Centre, BC Cancer, Vancouver, BC, Canada
| | | |
Collapse
|
7
|
Imamura Y, Sadar MD. Androgen receptor targeted therapies in castration-resistant prostate cancer: Bench to clinic. Int J Urol 2016; 23:654-65. [PMID: 27302572 PMCID: PMC6680212 DOI: 10.1111/iju.13137] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 05/05/2016] [Indexed: 12/11/2022]
Abstract
The androgen receptor is a transcription factor and validated therapeutic target for prostate cancer. Androgen deprivation therapy remains the gold standard treatment, but it is not curative, and eventually the disease will return as lethal castration‐resistant prostate cancer. There have been improvements in the therapeutic landscape with new agents approved, such as abiraterone acetate, enzalutamide, sipuleucel‐T, cabazitaxel and Ra‐223, in the past 5 years. New insight into the mechanisms of resistance to treatments in advanced disease is being and has been elucidated. All current androgen receptor‐targeting therapies inhibit the growth of prostate cancer by blocking the ligand‐binding domain, where androgen binds to activate the receptor. Persuasive evidence supports the concept that constitutively active androgen receptor splice variants lacking the ligand‐binding domain are one of the resistant mechanisms underlying advanced disease. Transcriptional activity of the androgen receptor requires a functional AF‐1 region in its N‐terminal domain. Preclinical evidence proved that this domain is a druggable target to forecast a potential paradigm shift in the management of advanced prostate cancer. This review presents an overview of androgen receptor‐related mechanisms of resistance as well as novel therapeutic agents to overcome resistance that is linked to the expression of androgen receptor splice variants in castration‐resistant prostate cancer.
Collapse
Affiliation(s)
- Yusuke Imamura
- Genome Sciences Center, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| | - Marianne D Sadar
- Genome Sciences Center, British Columbia Cancer Agency, Vancouver, British Columbia, Canada
| |
Collapse
|
8
|
Ran F, Xing H, Liu Y, Zhang D, Li P, Zhao G. Recent Developments in Androgen Receptor Antagonists. Arch Pharm (Weinheim) 2015; 348:757-775. [PMID: 26462013 DOI: 10.1002/ardp.201500187] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 09/12/2015] [Accepted: 09/14/2015] [Indexed: 12/31/2022]
Abstract
The androgen receptor (AR), a ligand-dependent transcription factor that regulates the expression of a series of downstream target genes after the binding of androgens, has been a target for the discovery of drugs used to treat prostate cancer. Prostate cancer always progresses to castration-resistant prostate cancer after a period of androgen deprivation therapy. Thus, developing potent androgen receptor antagonists for the therapy of castration-resistant prostate cancer possesses great significance. This review summarizes the preclinical development of androgen receptor antagonists, conventional androgen receptor antagonists that competitively bind to the ligand binding domain of the androgen receptor and coactivator antagonists of the androgen receptor, including both activation function-2 antagonists and binding function-3 antagonists. We hope that this review can help other researchers find new scaffolds and sites for the treatment of prostate cancer.
Collapse
Affiliation(s)
- Fansheng Ran
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong, P. R. China
| | - Hualu Xing
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong, P. R. China
| | - Yang Liu
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong, P. R. China
| | - Daoguang Zhang
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong, P. R. China
| | - Pengzhan Li
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong, P. R. China
| | - Guisen Zhao
- Department of Medicinal Chemistry, Key Laboratory of Chemical Biology (Ministry of Education), School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong, P. R. China
| |
Collapse
|
9
|
Jentzmik F, Azoitei A, Zengerling F, Damjanoski I, Cronauer MV. Androgen receptor aberrations in the era of abiraterone and enzalutamide. World J Urol 2015; 34:297-303. [PMID: 26100946 DOI: 10.1007/s00345-015-1624-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2015] [Accepted: 06/15/2015] [Indexed: 10/23/2022] Open
Abstract
Prostate cancer is the most prevalent non-skin cancer and the second leading cause of cancer death in men of the western world. As growth and differentiation of prostate cancer largely depend on androgens, inhibition of the androgen/androgen receptor signaling axis is the main treatment for locally advanced and/or metastatic tumors. Although first-line androgen deprivation therapies like chemical/surgical castration and/or administration of anti-androgens are able to control the disease for several years, prostate cancer almost invariably recurs as castration-resistant prostate cancer. This stage of the disease is characterized by a sustained AR-signaling despite castrate levels of circulating androgens. Various molecular mechanisms were shown to induce castration resistance. This review will discuss the most recent and relevant experimental findings on AR-signaling in castration-resistant prostate cancer in order to provide a comprehensive interpretation of the clinical behavior of this tumor entity following treatments with abiraterone, enzalutamide, ARN-509 or taxanes.
Collapse
Affiliation(s)
- Florian Jentzmik
- Department of Urology, Ulm University Medical Center, Prittwitzstrasse 43, 89075, Ulm, Germany
| | - Anca Azoitei
- Department of Urology, Ulm University Medical Center, Prittwitzstrasse 43, 89075, Ulm, Germany
| | - Friedemann Zengerling
- Department of Urology, Ulm University Medical Center, Prittwitzstrasse 43, 89075, Ulm, Germany
| | - Ilija Damjanoski
- Department of Urology, Ulm University Medical Center, Prittwitzstrasse 43, 89075, Ulm, Germany
| | - Marcus V Cronauer
- Department of Urology, Ulm University Medical Center, Prittwitzstrasse 43, 89075, Ulm, Germany.
| |
Collapse
|
10
|
Levine PM, Garabedian MJ, Kirshenbaum K. Targeting the androgen receptor with steroid conjugates. J Med Chem 2014; 57:8224-37. [PMID: 24936953 PMCID: PMC4207530 DOI: 10.1021/jm500101h] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
The androgen receptor (AR) is a major therapeutic target in prostate cancer pharmacology. Progression of prostate cancer has been linked to elevated expression of AR in malignant tissue, suggesting that AR plays a central role in prostate cancer cell biology. Potent therapeutic agents can be precisely crafted to specifically target AR, potentially averting systemic toxicities associated with nonspecific chemotherapies. In this review, we describe various strategies to generate steroid conjugates that can selectively engage AR with high potency. Analogies to recent developments in nonsteroidal conjugates targeting AR are also evaluated. Particular focus is placed on potential applications in AR pharmacology. The review culminates with a description of future prospects for targeting AR.
Collapse
Affiliation(s)
- Paul M Levine
- Department of Chemistry, New York University , New York, New York 10003, United States
| | | | | |
Collapse
|
11
|
Stilbene induced inhibition of androgen receptor dimerization: implications for AR and ARΔLBD-signalling in human prostate cancer cells. PLoS One 2014; 9:e98566. [PMID: 24887556 PMCID: PMC4041728 DOI: 10.1371/journal.pone.0098566] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2014] [Accepted: 05/05/2014] [Indexed: 12/25/2022] Open
Abstract
Background Advanced castration resistant prostate cancer (CRPC) is often characterized by an increase of C-terminally truncated, constitutively active androgen receptor (AR) variants. Due to the absence of a ligand binding domain located in the AR-C-terminus, these receptor variants (also termed ARΔLBD) are unable to respond to all classical forms of endocrine treatments like surgical/chemical castration and/or application of anti-androgens. Methodology In this study we tested the effects of the naturally occurring stilbene resveratrol (RSV) and (E)-4-(2, 6-Difluorostyryl)-N, N-dimethylaniline, a fluorinated dialkylaminostilbene (FIDAS) on AR- and ARΔLBD in prostate cancer cells. The ability of the compounds to modulate transcriptional activity of AR and the ARΔLBD-variant Q640X was shown by reporter gene assays. Expression of endogenous AR and ARΔLBD mRNA and protein levels were determined by qRT-PCR and Western Blot. Nuclear translocation of AR-molecules was analyzed by fluorescence microscopy. AR and ARΔLBD/Q640X homo-/heterodimer formation was assessed by mammalian two hybrid assays. Biological activity of both compounds in vivo was demonstrated using a chick chorioallantoic membrane xenograft assay. Results The stilbenes RSV and FIDAS were able to significantly diminish AR and Q640X-signalling. Successful inhibition of the Q640X suggests that RSV and FIDAS are not interfering with the AR-ligand binding domain like all currently available anti-hormonal drugs. Repression of AR and Q640X-signalling by RSV and FIDAS in prostate cancer cells was caused by an inhibition of the AR and/or Q640X-dimerization. Although systemic bioavailability of both stilbenes is very low, both compounds were also able to downregulate tumor growth and AR-signalling in vivo. Conclusion RSV and FIDAS are able to inhibit the dimerization of AR and ARΔLBD molecules suggesting that stilbenes might serve as lead compounds for a novel generation of AR-inhibitors.
Collapse
|
12
|
Gacci M, Baldi E, Tamburrino L, Detti B, Livi L, De Nunzio C, Tubaro A, Gravas S, Carini M, Serni S. Quality of Life and Sexual Health in the Aging of PCa Survivors. Int J Endocrinol 2014; 2014:470592. [PMID: 24744780 PMCID: PMC3976934 DOI: 10.1155/2014/470592] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/27/2013] [Accepted: 02/02/2014] [Indexed: 12/19/2022] Open
Abstract
Prostate cancer (PCa) is the most common malignancy in elderly men. The progressive ageing of the world male population will further increase the need for tailored assessment and treatment of PCa patients. The determinant role of androgens and sexual hormones for PCa growth and progression has been established. However, several trials on androgens and PCa are recently focused on urinary continence, quality of life, and sexual function, suggesting a new point of view on the whole endocrinological aspect of PCa. During aging, metabolic syndrome, including diabetes, hypertension, dyslipidemia, and central obesity, can be associated with a chronic, low-grade inflammation of the prostate and with changes in the sex steroid pathways. These factors may affect both the carcinogenesis processes and treatment outcomes of PCa. Any treatment for PCa can have a long-lasting negative impact on quality of life and sexual health, which should be assessed by validated self-reported questionnaires. In particular, sexual health, urinary continence, and bowel function can be worsened after prostatectomy, radiotherapy, or hormone treatment, mostly in the elderly population. In the present review we summarized the current knowledge on the role of hormones, metabolic features, and primary treatments for PCa on the quality of life and sexual health of elderly Pca survivors.
Collapse
Affiliation(s)
- Mauro Gacci
- Department of Urology, University of Florence, Careggi Hospital, Viale Gramsci 7, 50121 Florence, Italy
| | - Elisabetta Baldi
- Department of Experimental and Clinical Biomedical Sciences, Section of Clinical Pathophysiology, University of Florence, Italy
| | - Lara Tamburrino
- Department of Experimental and Clinical Biomedical Sciences, Section of Clinical Pathophysiology, University of Florence, Italy
| | - Beatrice Detti
- Radiotherapy, University Hospital Careggi, University of Florence, Italy
| | - Lorenzo Livi
- Radiotherapy, University Hospital Careggi, University of Florence, Italy
| | - Cosimo De Nunzio
- Department of Urology, Sant'Andrea Hospital, University “La Sapienza”, Rome, Italy
| | - Andrea Tubaro
- Department of Urology, Sant'Andrea Hospital, University “La Sapienza”, Rome, Italy
| | - Stavros Gravas
- Department of Urology, University Hospital of Larissa, Larissa, Greece
| | - Marco Carini
- Department of Urology, University of Florence, Careggi Hospital, Viale Gramsci 7, 50121 Florence, Italy
| | - Sergio Serni
- Department of Urology, University of Florence, Careggi Hospital, Viale Gramsci 7, 50121 Florence, Italy
| |
Collapse
|
13
|
Schrader AJ, Boegemann M, Ohlmann CH, Schnoeller TJ, Krabbe LM, Hajili T, Jentzmik F, Stoeckle M, Schrader M, Herrmann E, Cronauer MV. Enzalutamide in castration-resistant prostate cancer patients progressing after docetaxel and abiraterone. Eur Urol 2013; 65:30-6. [PMID: 23849416 DOI: 10.1016/j.eururo.2013.06.042] [Citation(s) in RCA: 223] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2013] [Accepted: 06/21/2013] [Indexed: 01/17/2023]
Abstract
BACKGROUND Abiraterone, an androgen synthesis inhibitor, has been successfully used in the treatment of castration-resistant prostate cancer (CRPC) for 2 yr. Enzalutamide is a second-generation nonsteroidal antiandrogen that has recently been approved for the same indication. OBJECTIVE This is the first study to evaluate the effectiveness of enzalutamide after failure of abiraterone. DESIGN, SETTING, AND PARTICIPANTS Thirty-five patients were identified as having received sequential therapy with abiraterone followed by enzalutamide. All patients had undergone prior docetaxel chemotherapy, and no patient had received ketoconazole. OUTCOME MEASUREMENTS AND STATISTICAL ANALYSIS Posttreatment changes in prostate-specific antigen (PSA) were used to determine the activity of enzalutamide in patients who had received prior abiraterone. RESULTS AND LIMITATIONS The median duration of abiraterone treatment was 9.0 mo (range: 2.0-19.0 mo). Of the 35 patients, 16 (45.7%) achieved a >50% decline in PSA, and 14 (40%) had a rising PSA as the best response. The median duration of subsequent enzalutamide treatment was 4.9 mo (Kaplan-Meier estimate; 95% confidence interval [CI], 2.4-7.4). Seven of 16 CRPC patients who were initially abiraterone-sensitive (43.8%) and 3 of 19 CRPC patients who were initially abiraterone-insensitive (15.8%) showed a >50% PSA decline while taking enzalutamide. Of the 35 patients, 17 (48.6%) were primarily enzalutamide-resistant and showed a rising PSA as the best response. Median time to progression was 4.0 mo (95% CI, 2.0-6.0) for 18 of 35 patients with at least one declining PSA value while taking enzalutamide (51.4%). Of the 17 patients who were assessable radiologically, only 1 (2.9%) attained a confirmed partial response. Small sample size was the major limitation. CONCLUSIONS Enzalutamide treatment achieved only a modest response rate in patients progressing after abiraterone. Although cross-resistance between abiraterone and enzalutamide was a common phenomenon, it was not inevitable, and a small but significant number of patients showed significant benefit from sequential treatment.
Collapse
|
14
|
Lallous N, Dalal K, Cherkasov A, Rennie PS. Targeting alternative sites on the androgen receptor to treat castration-resistant prostate cancer. Int J Mol Sci 2013; 14:12496-519. [PMID: 23771019 PMCID: PMC3709796 DOI: 10.3390/ijms140612496] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2013] [Revised: 05/29/2013] [Accepted: 06/03/2013] [Indexed: 01/22/2023] Open
Abstract
Recurrent, metastatic prostate cancer continues to be a leading cause of cancer-death in men. The androgen receptor (AR) is a modular, ligand-inducible transcription factor that regulates the expression of genes that can drive the progression of this disease, and as a consequence, this receptor is a key therapeutic target for controlling prostate cancer. The current drugs designed to directly inhibit the AR are called anti-androgens, and all act by competing with androgens for binding to the androgen/ligand binding site. Unfortunately, with the inevitable progression of the cancer to castration resistance, many of these drugs become ineffective. However, there are numerous other regulatory sites on this protein that have not been exploited therapeutically. The regulation of AR activity involves a cascade of complex interactions with numerous chaperones, co-factors and co-regulatory proteins, leading ultimately to direct binding of AR dimers to specific DNA androgen response elements within the promoter and enhancers of androgen-regulated genes. As part of the family of nuclear receptors, the AR is organized into modular structural and functional domains with specialized roles in facilitating their inter-molecular interactions. These regions of the AR present attractive, yet largely unexploited, drug target sites for reducing or eliminating androgen signaling in prostate cancers. The design of small molecule inhibitors targeting these specific AR domains is only now being realized and is the culmination of decades of work, including crystallographic and biochemistry approaches to map the shape and accessibility of the AR surfaces and cavities. Here, we review the structure of the AR protein and describe recent advancements in inhibiting its activity with small molecules specifically designed to target areas distinct from the receptor’s androgen binding site. It is anticipated that these new classes of anti-AR drugs will provide an additional arsenal to treat castration-resistant prostate cancer.
Collapse
Affiliation(s)
- Nada Lallous
- Vancouver Prostate Centre, University of British Columbia, 2660 Oak Street, Vancouver, BC V6H 3Z6, Canada.
| | | | | | | |
Collapse
|
15
|
Current World Literature. Curr Opin Urol 2013. [DOI: 10.1097/mou.0b013e3283605159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
16
|
Lonergan PE, Tindall DJ. Truncated Androgen Receptor Splice Variants in Prostate Cancer. Prostate Cancer 2013. [DOI: 10.1007/978-1-4614-6828-8_13] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022] Open
|
17
|
Seoane MD, Petkau-Milroy K, Vaz B, Möcklinghoff S, Folkertsma S, Milroy LG, Brunsveld L. Structure–activity relationship studies of miniproteins targeting the androgen receptor–coactivator interaction. MEDCHEMCOMM 2013. [DOI: 10.1039/c2md20182h] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Miniproteins featuring a stable α-helical motif allow exploring point mutations in and around FXXLF motifs to improve androgen receptor affinity.
Collapse
Affiliation(s)
| | - Katja Petkau-Milroy
- Laboratory of Chemical Biology
- Department of Biomedical Engineering
- Eindhoven University of Technology
- Eindhoven
- The Netherlands
| | - Belen Vaz
- Chemical Genomics Centre of the Max Planck Society
- 44227 Dortmund
- Germany
| | - Sabine Möcklinghoff
- Laboratory of Chemical Biology
- Department of Biomedical Engineering
- Eindhoven University of Technology
- Eindhoven
- The Netherlands
| | - Simon Folkertsma
- Computational Drug Discovery
- Centre for Molecular and Biomolecular Informatics
- Radboud University
- Nijmegen
- The Netherlands
| | - Lech-Gustav Milroy
- Laboratory of Chemical Biology
- Department of Biomedical Engineering
- Eindhoven University of Technology
- Eindhoven
- The Netherlands
| | - Luc Brunsveld
- Laboratory of Chemical Biology
- Department of Biomedical Engineering
- Eindhoven University of Technology
- Eindhoven
- The Netherlands
| |
Collapse
|
18
|
Sheikh H, Abdulghani J, Ali S, Sinha R, Lipton A. Impact of Genetic Targets on Prostate Cancer Therapy. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 779:359-83. [DOI: 10.1007/978-1-4614-6176-0_17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
19
|
Cronauer MV, Culig Z. Molecular aspects of prostate cancer. World J Urol 2012; 30:277-8. [PMID: 22391649 DOI: 10.1007/s00345-012-0853-x] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2012] [Accepted: 02/27/2012] [Indexed: 01/20/2023] Open
|