1
|
Lau IH, Vasconcelos RO. Noise-induced damage in the zebrafish inner ear endorgans: evidence for higher acoustic sensitivity of saccular and lagenar hair cells. J Exp Biol 2023; 226:jeb245992. [PMID: 37767687 DOI: 10.1242/jeb.245992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Accepted: 09/18/2023] [Indexed: 09/29/2023]
Abstract
The three otolithic endorgans of the inner ear are known to be involved in sound detection in different teleost fishes, yet their relative roles for auditory-vestibular functions within the same species remain uncertain. In zebrafish (Danio rerio), the saccule and utricle are thought to play key functions in encoding auditory and vestibular information, respectively, but the biological function of the lagena is not clear. We hypothesized that the zebrafish saccule serves as a primary auditory endorgan, making it more vulnerable to noise exposure, and that the lagena might have an auditory function given its connectivity to the saccule and the dominant vestibular function of the utricle. We compared the impact of acoustic trauma (continuous white noise at 168 dB for 24 h) between the sensory epithelia of the three otolithic endorgans. Noise treatment caused hair cell loss in both the saccule and lagena but not in the utricle. This effect was identified immediately after acoustic treatment and did not increase 24 h post-trauma. Furthermore, hair cell loss was accompanied by a reduction in presynaptic activity measured based on ribeye b presence, but mainly in the saccule, supporting its main contribution for noise-induced hearing loss. Our findings support the hypothesis that the saccule plays a major role in sound detection and that the lagena is also acoustically affected, extending the species hearing dynamic range.
Collapse
Affiliation(s)
- Ieng Hou Lau
- Institute of Science and Environment, University of Saint Joseph, Macao, S.A.R., China
| | - Raquel O Vasconcelos
- Institute of Science and Environment, University of Saint Joseph, Macao, S.A.R., China
- MARE - Marine and Environmental Sciences Centre/ARNET - Aquatic Research Network, Faculdade de Ciências, Universidade de Lisboa, 1749-016 Lisbon, Portugal
- EPCV-Department of Life Sciences, Lusófona University, 1749-024 Lisbon, Portugal
| |
Collapse
|
2
|
Chapuis L, Yopak KE, Radford CA. From the morphospace to the soundscape: Exploring the diversity and functional morphology of the fish inner ear, with a focus on elasmobranchsa). THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2023; 154:1526-1538. [PMID: 37695297 DOI: 10.1121/10.0020850] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 08/21/2023] [Indexed: 09/12/2023]
Abstract
Fishes, including elasmobranchs (sharks, rays, and skates), present an astonishing diversity in inner ear morphologies; however, the functional significance of these variations and how they confer auditory capacity is yet to be resolved. The relationship between inner ear structure and hearing performance is unclear, partly because most of the morphological and biomechanical mechanisms that underlie the hearing functions are complex and poorly known. Here, we present advanced opportunities to document discontinuities in the macroevolutionary trends of a complex biological form, like the inner ear, and test hypotheses regarding what factors may be driving morphological diversity. Three-dimensional (3D) bioimaging, geometric morphometrics, and finite element analysis are methods that can be combined to interrogate the structure-to-function links in elasmobranch fish inner ears. In addition, open-source 3D morphology datasets, advances in phylogenetic comparative methods, and methods for the analysis of highly multidimensional shape data have leveraged these opportunities. Questions that can be explored with this toolkit are identified, the different methods are justified, and remaining challenges are highlighted as avenues for future work.
Collapse
Affiliation(s)
- L Chapuis
- School of Biological Sciences, University of Bristol, Bristol BS8 1TQ, United Kingdom
| | - K E Yopak
- Department of Biology and Marine Biology, Centre for Marine Science, University of North Carolina Wilmington, Wilmington, North Carolina 28403, USA
| | - C A Radford
- Leigh Marine Laboratory, Institute of Marine Science, University of Auckland, Leigh 0985, New Zealand
| |
Collapse
|
3
|
Mackowetzky K, Yoon KH, Mackowetzky EJ, Waskiewicz AJ. Development and evolution of the vestibular apparatuses of the inner ear. J Anat 2021; 239:801-828. [PMID: 34047378 PMCID: PMC8450482 DOI: 10.1111/joa.13459] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 04/07/2021] [Accepted: 05/06/2021] [Indexed: 12/16/2022] Open
Abstract
The vertebrate inner ear is a labyrinthine sensory organ responsible for perceiving sound and body motion. While a great deal of research has been invested in understanding the auditory system, a growing body of work has begun to delineate the complex developmental program behind the apparatuses of the inner ear involved with vestibular function. These animal studies have helped identify genes involved in inner ear development and model syndromes known to include vestibular dysfunction, paving the way for generating treatments for people suffering from these disorders. This review will provide an overview of known inner ear anatomy and function and summarize the exciting discoveries behind inner ear development and the evolution of its vestibular apparatuses.
Collapse
Affiliation(s)
- Kacey Mackowetzky
- Department of Biological SciencesUniversity of AlbertaEdmontonAlbertaCanada
| | - Kevin H. Yoon
- Department of Biological SciencesUniversity of AlbertaEdmontonAlbertaCanada
| | | | - Andrew J. Waskiewicz
- Department of Biological SciencesUniversity of AlbertaEdmontonAlbertaCanada
- Women & Children’s Health Research InstituteUniversity of AlbertaEdmontonAlbertaCanada
| |
Collapse
|
4
|
Vetter BJ, Sisneros JA. Swim bladder enhances lagenar sensitivity to sound pressure and higher frequencies in female plainfin midshipman ( Porichthys notatus). J Exp Biol 2020; 223:jeb225177. [PMID: 32587068 PMCID: PMC7406320 DOI: 10.1242/jeb.225177] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 06/16/2020] [Indexed: 11/20/2022]
Abstract
The plainfin midshipman fish (Porichthys notatus) is an established model for investigating acoustic communication because the reproductive success of this species is dependent on the production and reception of social acoustic signals. Previous work showed that female midshipman have swim bladders with rostral horn-like extensions that project close to the saccule and lagena, while nesting (type I) males lack such rostral swim bladder extensions. The relative close proximity of the swim bladder to the lagena should increase auditory sensitivity to sound pressure and higher frequencies. Here, we test the hypothesis that the swim bladder of female midshipman enhances lagenar sensitivity to sound pressure and higher frequencies. Evoked potentials were recorded from auditory hair cell receptors in the lagena in reproductive females with intact (control condition) and removed (treated condition) swim bladders while pure tone stimuli (85-1005 Hz) were presented by an underwater speaker. Females with intact swim bladders had auditory thresholds 3-6 dB lower than females without swim bladders over a range of frequencies from 85 to 405 Hz. At frequencies from 545 to 1005 Hz, only females with intact swim bladders had measurable auditory thresholds (150-153 dB re. 1 µPa). The higher percentage of evoked lagenar potentials recorded in control females at frequencies >505 Hz indicates that the swim bladder extends the bandwidth of detectable frequencies. These findings reveal that the swim bladders in female midshipman can enhance lagenar sensitivity to sound pressure and higher frequencies, which may be important for the detection of behaviorally relevant social signals.
Collapse
Affiliation(s)
- Brooke J Vetter
- Department of Psychology, University of Washington, Seattle, WA 98195-1525, USA
| | - Joseph A Sisneros
- Department of Psychology, University of Washington, Seattle, WA 98195-1525, USA
- Department of Biology, University of Washington, Seattle, WA 98195-1800, USA
- Virginia Merrill Bloedel Hearing Research Center, University of Washington, Seattle, WA 98195-7923, USA
| |
Collapse
|
5
|
Brown AD, Zeng R, Sisneros JA. Auditory evoked potentials of the plainfin midshipman fish ( Porichthys notatus): implications for directional hearing. J Exp Biol 2019; 222:jeb198655. [PMID: 31292164 PMCID: PMC6703703 DOI: 10.1242/jeb.198655] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Accepted: 07/04/2019] [Indexed: 10/26/2022]
Abstract
The plainfin midshipman (Porichthys notatus) is an acoustically communicative teleost fish. Here, we evaluated auditory evoked potentials (AEPs) in reproductive female midshipman exposed to tones at or near dominant frequencies of the male midshipman advertisement call. An initial series of experiments characterized AEPs at behaviorally relevant suprathreshold sound levels (130-140 dB SPL re. 1 µPa). AEPs decreased in magnitude with increasing stimulus frequency and featured a stereotyped component at twice the stimulus frequency. Recording electrode position was varied systematically and found to affect AEP magnitude and phase characteristics. Later experiments employed stimuli of a single frequency to evaluate contributions of the saccule to the AEP, with particular attention to the effects of sound source azimuth on AEP amplitude. Unilateral excision of saccular otoliths (sagittae) decreased AEP amplitude; unexpectedly, decreases differed for right versus left otolith excision. A final set of experiments manipulated the sound pressure-responsive swim bladder. Swim bladder excision further reduced the magnitude of AEP responses, effectively eliminating responses at the standard test intensity (130 dB SPL) in some animals. Higher-intensity stimulation yielded response minima at forward azimuths ipsilateral to the excised sagitta, but average cross-azimuth modulation generally remained slight. Collectively, the data underscore that electrode position is an essential variable to control in fish AEP studies and suggest that in female midshipman: (1) the saccule contributes to the AEP, but its directionality as indexed by the AEP is limited, (2) a left-right auditory asymmetry may exist and (3) the swim bladder provides gain in auditory sensitivity that may be important for advertisement call detection and phonotaxis.
Collapse
Affiliation(s)
- Andrew D Brown
- Department of Speech and Hearing Sciences, University of Washington, Seattle, WA 98105, USA
- Virginia Merrill Bloedel Hearing Research Center, University of Washington, Seattle, WA 98195, USA
| | - Ruiyu Zeng
- Department of Psychology, University of Washington, Seattle, WA 98195, USA
| | - Joseph A Sisneros
- Virginia Merrill Bloedel Hearing Research Center, University of Washington, Seattle, WA 98195, USA
- Department of Psychology, University of Washington, Seattle, WA 98195, USA
- Department of Biology, University of Washington, Seattle, WA 98195, USA
| |
Collapse
|
6
|
Vetter BJ, Seeley LH, Sisneros JA. Lagenar potentials of the vocal plainfin midshipman fish, Porichthys notatus. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2019; 205:163-175. [PMID: 30635725 DOI: 10.1007/s00359-018-01314-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Revised: 12/19/2018] [Accepted: 12/26/2018] [Indexed: 11/29/2022]
Abstract
The plainfin midshipman fish (Porichthys notatus) is a species of marine teleost that produces acoustic signals that are important for mediating social behavior. The auditory sensitivity of the saccule is well established in this species, but the sensitivity and function of the midshipman's putative auditory lagena are unknown. Here, we characterize the auditory-evoked potentials from hair cells in the lagena of reproductive type I males to determine the frequency response and auditory sensitivity of the lagena to behaviorally relevant acoustic stimuli. Lagenar potentials were recorded from the caudal and medial region of the lagena, while acoustic stimuli were presented by an underwater speaker. Our results indicate that the midshipman lagena has a similar low-frequency sensitivity to that of the midshipman saccule based on sound pressure and acceleration (re: 1 µPa and 1 ms-2, respectively), but the thresholds of the lagena were higher across all frequencies tested. The relatively high auditory thresholds of the lagena may be important for encoding high levels of behaviorally relevant acoustic stimuli when close to a sound source.
Collapse
Affiliation(s)
- Brooke J Vetter
- Department of Psychology, University of Washington, Seattle, WA, 98195-1525, USA.
| | - Lane H Seeley
- Department of Physics, Seattle Pacific University, Seattle, WA, 98199-1997, USA
| | - Joseph A Sisneros
- Department of Psychology, University of Washington, Seattle, WA, 98195-1525, USA.,Department of Biology, University of Washington, Seattle, WA, 98195-1800, USA.,Virginia Merrill Bloedel Hearing Research Center, University of Washington, Seattle, WA, 98195-7923, USA
| |
Collapse
|
7
|
Schulz-Mirbach T, Ladich F, Plath M, Heß M. Enigmatic ear stones: what we know about the functional role and evolution of fish otoliths. Biol Rev Camb Philos Soc 2018; 94:457-482. [DOI: 10.1111/brv.12463] [Citation(s) in RCA: 71] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2017] [Revised: 08/16/2018] [Accepted: 08/20/2018] [Indexed: 12/11/2022]
Affiliation(s)
- Tanja Schulz-Mirbach
- Department Biology II, Zoology; Ludwig-Maximilians-University; Großhaderner Strasse 2, 82152 Planegg-Martinsried Germany
| | - Friedrich Ladich
- Department of Behavioural Biology; University of Vienna; Althanstrasse 14, 1090 Vienna Austria
| | - Martin Plath
- College of Animal Science & Technology; Northwest A&F University; 22 Xinong Road, Yangling Shaanxi China
| | - Martin Heß
- Department Biology II, Zoology; Ludwig-Maximilians-University; Großhaderner Strasse 2, 82152 Planegg-Martinsried Germany
| |
Collapse
|
8
|
Zamora LY, Miguel KC, Lu Z. The alcohol-sensitive period during early octavolateral organ development in zebrafish (Danio rerio). J Neurosci Res 2017; 95:1194-1203. [PMID: 28105691 DOI: 10.1002/jnr.24017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2016] [Revised: 11/30/2016] [Accepted: 12/19/2016] [Indexed: 12/15/2022]
Abstract
Fetal alcohol exposure can cause Fetal Alcohol Spectrum Disorders (FASD), completely preventable developmental disabilities characterized by permanent birth defects. However, specific gestational timing when developing organs are most sensitive to alcohol exposure is unclear. In this study, we examined the temporal effects of embryonic alcohol exposure on octavolateral organs in zebrafish (Danio rerio), including inner ears and lateral line neuromasts that function in hearing, balance, and hydrodynamic detection, respectively. To determine an alcohol-sensitive period in the first 24 hours post fertilization (hpf), Et(krt4:EGFP)sqet4 zebrafish that express green fluorescent protein in sensory hair cells were treated in 2% alcohol for 2, 3, and 5-hours. Octavolateral organs of control and alcohol-exposed larvae were examined at 3, 5, and 7 days post fertilization (dpf). Using confocal and light microscopy, we found that alcohol-exposed larvae had significantly smaller otic vesicles and saccular otoliths than control larvae at 3 dpf. Only alcohol-exposed larvae from 12-17 hpf had smaller otic vesicles at 5 dpf, smaller saccular otoliths at 7 dpf and fewer saccular hair cells, neuromasts and hair cells per neuromast at 3 dpf. In addition, auditory function was assessed by microphonic potential recordings from inner ear hair cells in response to 200-Hz stimulation. Hearing sensitivity was reduced for alcohol-exposed larvae from 7-12 and 12-17 hpf. Our results show that 12-17 hpf is an alcohol-sensitive time window when morphology and function of zebrafish octavolateral organs are most vulnerable to alcohol exposure. This study implies that embryonic alcohol exposure timing during early development can influence severity of hearing deficits. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Lilliann Y Zamora
- University of Miami, Department of Biology, Coral Gables, Florida.,University of Miami, Neuroscience Program, Miami, Florida
| | - Kayla C Miguel
- University of Miami, Neuroscience Program, Miami, Florida
| | - Zhongmin Lu
- University of Miami, Department of Biology, Coral Gables, Florida.,University of Miami, Neuroscience Program, Miami, Florida.,International Center for Marine Studies, Shanghai Ocean University, Shanghai, China
| |
Collapse
|
9
|
Ladich F, Schulz-Mirbach T. Diversity in Fish Auditory Systems: One of the Riddles of Sensory Biology. Front Ecol Evol 2016. [DOI: 10.3389/fevo.2016.00028] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
10
|
Yao Q, DeSmidt AA, Tekin M, Liu X, Lu Z. Hearing Assessment in Zebrafish During the First Week Postfertilization. Zebrafish 2016; 13:79-86. [PMID: 26982161 DOI: 10.1089/zeb.2015.1166] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
The zebrafish (Danio rerio) is a valuable vertebrate model for human hearing disorders because of many advantages in genetics, embryology, and in vivo visualization. In this study, we investigated auditory function of zebrafish during the first week postfertilization using microphonic potential recording. Extracellular microphonic potentials were recorded from hair cells in the inner ear of wild-type AB and transgenic Et(krt4:GFP)(sqet4) zebrafish at 3, 5, and 7 days postfertilization in response to 20, 50, 100, 200, 300, and 400-Hz acoustic stimulation. We found that microphonic threshold significantly decreased with age in zebrafish. However, there was no significant difference of microphonic responses between wild-type and transgenic zebrafish, indicating that the transgenic zebrafish have normal hearing like wild-type zebrafish. In addition, we observed that microphonic threshold did not change with the recording electrode location. Furthermore, microphonic threshold increased significantly at all tested stimulus frequencies after displacement of the saccular otolith but only increased at low frequencies after displacement of the utricular otolith, showing that the saccule rather than the utricle plays the major role in larval zebrafish hearing. These results enhance our knowledge of early development of auditory function in zebrafish and the factors affecting hearing assessment with microphonic potential recording.
Collapse
Affiliation(s)
- Qi Yao
- 1 Department of Biology, University of Miami , Coral Gables, Florida
- 2 Department of Otolaryngology, University of Miami Miller School of Medicine , Miami, Florida
| | | | - Mustafa Tekin
- 2 Department of Otolaryngology, University of Miami Miller School of Medicine , Miami, Florida
- 3 Dr. John T. Macdonald Foundation Department of Human Genetics, John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine , Miami, Florida
| | - Xuezhong Liu
- 2 Department of Otolaryngology, University of Miami Miller School of Medicine , Miami, Florida
- 3 Dr. John T. Macdonald Foundation Department of Human Genetics, John P. Hussman Institute for Human Genomics, University of Miami Miller School of Medicine , Miami, Florida
- 4 Department of Otolaryngology, Xiangya Hospital, Central South University, Changsha, Hunan, People's Republic of China
| | - Zhongmin Lu
- 1 Department of Biology, University of Miami , Coral Gables, Florida
- 5 Neuroscience Program, University of Miami , Miami, Florida
- 6 International Center for Marine Studies, Shanghai Ocean University , Shanghai, People's Republic of China
| |
Collapse
|
11
|
What the Toadfish Ear Tells the Toadfish Brain About Sound. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2016; 877:197-226. [PMID: 26515316 DOI: 10.1007/978-3-319-21059-9_10] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Of the three, paired otolithic endorgans in the ear of teleost fishes, the saccule is the one most often demonstrated to have a major role in encoding frequencies of biologically relevant sounds. The toadfish saccule also encodes sound level and sound source direction in the phase-locked activity conveyed via auditory afferents to nuclei of the ipsilateral octaval column in the medulla. Although paired auditory receptors are present in teleost fishes, binaural processes were believed to be unimportant due to the speed of sound in water and the acoustic transparency of the tissues in water. In contrast, there are behavioral and anatomical data that support binaural processing in fishes. Studies in the toadfish combined anatomical tract-tracing and physiological recordings from identified sites along the ascending auditory pathway to document response characteristics at each level. Binaural computations in the medulla and midbrain sharpen the directional information provided by the saccule. Furthermore, physiological studies in the central nervous system indicated that encoding frequency, sound level, temporal pattern, and sound source direction are important components of what the toadfish ear tells the toadfish brain about sound.
Collapse
|
12
|
Kéver L, Colleye O, Herrel A, Romans P, Parmentier E. Hearing capacities and otolith size in two ophidiiform species (Ophidion rochei and Carapus acus). J Exp Biol 2014; 217:2517-25. [DOI: 10.1242/jeb.105254] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
Numerous studies have highlighted the diversity of fish inner ear morphology. However, the function of shape, size, and orientation of the different structures remains poorly understood. The saccule (otolithic endorgan) is considered as the principal hearing organ in fishes and it has been hypothesized that sagitta (saccular otolith) shape and size affect hearing capacities: large sagittae are thought to increase sensitivity. The sagittae of many ophidiids and carapids occupy a large volume inside the neurocranium. Hence they are of great interest to test the size hypothesis. The main aim of this study was to investigate hearing capacities and inner ear morphology in two ophidiiform species: Ophidion rochei and Carapus acus. We used a multidisciplinary approach that combines dissections, μCT-scan examinations, and auditory evoked potential technique. Carapus acus and O. rochei sagittae have similar maximal diameter, both species have larger otoliths than many non-ophidiiform species especially compared to the intra-neurocranium (INC) volume. Both species are sensitive to sounds up to 2100 Hz. Relative to the skull, O. rochei had smaller sagittae than the carapid but better hearing capacities from 300 to 900 Hz and similar sensitivities at 150 Hz and from 1200 to 2100 Hz. Results show that hearing capacities of a fish species cannot be predicted only based on sagitta size. Larger otoliths (in size relative to the skull) may have evolved mainly for performing vestibular functions in fishes, especially those ones that need to execute precise and complex movements.
Collapse
Affiliation(s)
| | | | | | - Pascal Romans
- Observatoire Océanologique-Laboratoire Arago, France
| | | |
Collapse
|
13
|
Gierl C, Reichenbacher B, Gaudant J, Erpenbeck D, Pharisat A. An extraordinary gobioid fish fossil from Southern France. PLoS One 2013; 8:e64117. [PMID: 23691158 PMCID: PMC3655028 DOI: 10.1371/journal.pone.0064117] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Accepted: 04/09/2013] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The classification of gobioid fishes is still under discussion. Several lineages, including the Eleotridae and Butidae, remain difficult to characterize because synapomorphies are rare (Eleotridae) or have not yet been determined (Butidae). Moreover, the fossil record of these groups is scarce. RESULTS Exceptionally well-preserved fish fossils with otoliths in situ from uppermost Oligocene sediments (≈23-24 Mio. y. ago) in Southern France provide the most in-depth description of a fossil gobioid to date. The species was initially described as Cottus aries Agassiz, then transferred to †Lepidocottus Sauvage, and subsequently assigned to Gobius. Based on a comparative analysis of meristic, osteological and otolith data, this species most likely is a member of the family Butidae. This discovery is important because it represents the first record of a fossil butid fish based on articulated skeletons from Europe. SIGNIFICANCE The Butidae and Eleotridae are currently distributed in W-Africa, Madagascar, Asia and Australia, but they do not appear in Europe and also not in the Mediterranean Sea. The new results indicate that several species of the Butidae thrived in Europe during the Oligocene and Early Miocene. Similar to the recent Butidae and Eleotridae, these fishes were adapted to a wide range of salinities and thrived in freshwater, brackish and marginal marine habitats. The fossil Butidae disappeared from Europe and the Mediterranean and Paratethys areas during the Early Miocene, due probably to their lack of competitiveness compared to other Gobioidei that radiated during this period of time. In addition, this study documents the great value of otoliths for gobioid systematics.
Collapse
Affiliation(s)
- Christoph Gierl
- Department of Earth and Environmental Sciences, Ludwig-Maximilians University, Munich, Germany
- * E-mail: (CG); (BR)
| | - Bettina Reichenbacher
- Department of Earth and Environmental Sciences, Ludwig-Maximilians University, Munich, Germany
- * E-mail: (CG); (BR)
| | - Jean Gaudant
- Muséum National d’Histoire Naturelle, Paris, France
| | - Dirk Erpenbeck
- Department of Earth and Environmental Sciences, Ludwig-Maximilians University, Munich, Germany
| | | |
Collapse
|
14
|
Lu Z, DeSmidt AA. Early development of hearing in zebrafish. J Assoc Res Otolaryngol 2013; 14:509-21. [PMID: 23575600 DOI: 10.1007/s10162-013-0386-z] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2012] [Accepted: 03/17/2013] [Indexed: 01/27/2023] Open
Abstract
The zebrafish (Danio rerio) has become a valuable vertebrate model for human hearing and balance disorders because it combines powerful genetics, excellent embryology, and exceptional in vivo visualization in one organism. In this study, we investigated auditory function of zebrafish at early developmental stages using the microphonic potential method. This is the first study to report ontogeny of response of hair cells in any fish during the first week post fertilization. The right ear of each zebrafish embedded in agarose was linearly stimulated with a glass probe that was driven by a calibrated piezoelectric actuator. Using beveled micropipettes filled with standard fish saline, extracellular microphonic potentials were recorded from hair cells in the inner ear of zebrafish embryos or larvae in response to 20, 50, 100, and 200-Hz stimulation. Saccular hair cells expressing green fluorescent protein of the transgenic zebrafish from 2 to 7 days post fertilization (dpf) were visualized and quantified using confocal microscopy. The otic vesicles' areas, otoliths' areas, and saccular hair cell count and density increased linearly with age and standard body length. Microphonic responses increased monotonically with stimulus intensity, stimulus frequency, and age of zebrafish. Microphonic threshold at 200 Hz gradually decreased with zebrafish age. The increases in microphonic response and sensitivity correlate with the increases in number and density of hair cells in the saccule. These results enhance our knowledge of early development of auditory function in zebrafish and provide the control data that can be used to evaluate hearing of young zebrafish morphants or mutants.
Collapse
Affiliation(s)
- Zhongmin Lu
- Department of Biology, University of Miami, 1301 Memorial Drive, Coral Gables, FL 33146, USA.
| | | |
Collapse
|
15
|
Belanger AJ, Bobeica I, Higgs DM. The effect of stimulus type and background noise on hearing abilities of the round goby Neogobius melanostomus. JOURNAL OF FISH BIOLOGY 2010; 77:1488-504. [PMID: 21078014 DOI: 10.1111/j.1095-8649.2010.02773.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
The auditory abilities of the round goby Neogobius melanostomus were quantified using auditory evoked potential recordings, using tone bursts and conspecific call stimuli. Fish were tested over a range of sizes to assess effects of growth on hearing ability. Tests were also run with and without background noise to assess the potential effects of masking in a natural setting. Neogobius melanostomus detected tone bursts from 100 to 600 Hz with no clear best frequency in the pressure domain but were most sensitive to 100 Hz tone stimuli when examined in terms of particle acceleration. Responses to a portion of the N. melanostomus call occurred at a significantly lower threshold than responses to pure tone stimulation. There was no effect of size on N. melanostomus hearing ability, perhaps due to growth of the otolith keeping pace with growth of the auditory epithelium. Neogobius melanostomus were masked by both ambient noise and white noise, but not until sound pressure levels were relatively high, having a 5-10 dB threshold shift at noise levels of 150 dB re 1 µPa and higher but not at lower noise levels.
Collapse
Affiliation(s)
- A J Belanger
- Department of Biological Sciences, University of Windsor, Windsor, ON, N9B 3P4 Canada
| | | | | |
Collapse
|
16
|
Lu Z, Xu Z, Buchser WJ. Frequency coding of particle motion by saccular afferents of a teleost fish. ACTA ACUST UNITED AC 2010; 213:1591-601. [PMID: 20400645 DOI: 10.1242/jeb.038836] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The saccule is known to play an important role in hearing in fishes. In this study we investigated spatial frequency selectivity of single saccular afferents in a teleost fish (the sleeper goby, Dormitator latifrons) to acoustic particle motion at 50-400 Hz. Saccular afferents have similar distributions of best sensitivity (-90.0 to -54.8 dB re. 1 g, mean +/- s.d.=-81.1+/-8.0 dB) and characteristic frequencies (<or=50-400 Hz, median=80 Hz) along the longitudinal, side-to-side and dorsoventral axes of fish. They were lowpass, bandpass or broadly tuned to low frequencies with Q(50%) at 15 dB above threshold in ranges from 0.28 to 3.30 (1.46+/-0.71), 0.18 to 2.54 (1.36+/-0.78), and 0.41 to 4.26 (2.25+/-0.1.12) along the three axes, showing slightly greater frequency tuning in the vertical axis than horizontal axes. At supra threshold we found tuning plasticity, i.e. best frequencies of saccular afferents shifted to high frequencies as stimulus level increased. Isolevel rate-frequency curves were asymmetrical with shallow slopes at the low-frequency edge and steep slopes at the high-frequency edge. Saccular afferents of the sleeper goby have similar capabilities of coding particle motion frequencies in the three orthogonal axes. Results from this and other studies suggest that (1) the saccule is the major hearing organ in this species, (2) the saccule of this species is capable of encoding sound frequencies in three dimensional space, and (3) saccular afferents in fishes without accessory auditory structures exhibit similar frequency selectivity in response to particle motion.
Collapse
Affiliation(s)
- Zhongmin Lu
- Department of Biology, University of Miami, 1301 Memorial Drive, Room 4, Coral Gables, FL 33146, USA.
| | | | | |
Collapse
|
17
|
Mann D, Cott P, Horne B. Under-ice noise generated from diamond exploration in a Canadian sub-arctic lake and potential impacts on fishes. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2009; 126:2215-2222. [PMID: 19894802 DOI: 10.1121/1.3203865] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
Mineral exploration is increasing in Canada, particularly in the north where extensive diamond mining and exploration are occurring. This study measured the under-ice noise produced by a variety of anthropogenic sources (drilling rigs, helicopters, aircraft landing and takeoff, ice-road traffic, augers, snowmobiles, and chisels) at a winter-based diamond exploration project on Kennady Lake in the Northwest Territories, Canada to infer the potential impact of noise on fishes in the lake. The root-mean-square noise level measured 5 m from a small diameter drill was approximately 46 dB greater (22 kHz bandwidth) than ambient noise, while the acoustic particle velocity was approximately 40 dB higher than ambient levels. The loudest sounds at the exploration site were produced by ice cracking, both natural and during landing and takeoff of a C130 Hercules aircraft. However, even walking on the snow above the ice raised ambient sound levels by approximately 30 dB. Most of the anthropogenic sounds are likely detectable by fishes with hearing specializations, such as chubs and suckers. Other species without specialized hearing adaptations will detect these sounds only close to the source. The greatest potential impact of noise from diamond exploration is likely to be the masking of sounds for fishes with sensitive hearing.
Collapse
Affiliation(s)
- D Mann
- College of Marine Science, University of South Florida, St. Petersburg, FL 33701-5016, USA.
| | | | | |
Collapse
|
18
|
Zhao Y, Huang YN, Shi L, Chen L. Analysis of magnetic elements in otoliths of the macula lagena in homing pigeons with inductively coupled plasma mass spectrometry. Neurosci Bull 2009; 25:101-8. [PMID: 19448683 DOI: 10.1007/s12264-009-0311-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Abstract
OBJECTIVE The macula lagena in birds is located at the apical end of the cochlea and contains many tiny otoliths. The macula lagena is innervated and has neural projections to the brainstem, but its physiological function is still unclear. It remains disputable that it is because otoliths in the lagena are rich in elements Fe and Zn that birds can obtain geomagnetic information for homing. To clarify this issue, we carried out a study to determine whether or not otoliths in the lagena of homing pigeons are richer in magnetic elements than those in the saccule and the utricle. METHODS The contents of ferromagnetic elements (Fe, Co, Ni) and other metal elements in lagenal otoliths of adult homing pigeons were precisely analyzed with inductively coupled plasma mass spectrometry (ICP-MS) of high sensitivity, and then they were compared with those in saccular and utricular otoliths (all the contents were normalized to Ca). RESULTS In adult homing pigeons, the contents of ferromagnetic elements (Fe, Co, Ni) in lagenal otoliths were less than 0.7% (normalized to Ca element) and were the same order in magnitude as those in saccular and utricular otoliths. The content of Fe in lagenal otoliths was not significantly different from that in utricular otoliths and was even lower than that in saccular otoliths. The content of Co in lagenal otoliths was lower than that in saccular otoliths and higher than that in utricular otoliths. The content of Ni in lagenal otoliths was not significantly different from that in saccular otoliths and was higher than that in utricular otoliths. The contents of other metal elements Na, Mg, K, Al, Mn and Pb in lagenal otoliths were not significantly different from those in utricular and saccular otoliths. The contents of metal elements Zn, Ba and Cu in lagenal otoliths were lower than those in saccular otoliths. CONCLUSION The contents of magnetic elements in lagenal otoliths of homing pigeons are not much higher than those in utricular and saccular otoliths, which does not support the hypothesis that birds depend on high contents of Fe and Zn in lagenal otoliths for sensation of geomagnetic information. Similarities in morphology, element ingredient and element content between lagenal otoliths and utricular otoliths suggest that the two types of otolithic organs may play similar roles in sensing gravitational and acceleration signals.
Collapse
Affiliation(s)
- Ying Zhao
- Auditory Research Laboratory, School of Life Sciences, University of Science and Technology of China, Hefei 230027, China
| | | | | | | |
Collapse
|
19
|
Ramcharitar JU, Higgs DM, Popper AN. Audition in sciaenid fishes with different swim bladder-inner ear configurations. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2006; 119:439-43. [PMID: 16454298 DOI: 10.1121/1.2139068] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
We investigated how morphological differences in the auditory periphery of teleost fishes may relate to hearing capabilities. Two species of western Atlantic sciaenids were examined: weakfish (Cynoscion regalis, Block and Schneider) and spot (Leiostomus xanthurus, Lacepede). These species differ in the anatomical relationship between the swim bladder and the inner ear. In weakfish, the swim bladder has a pair of anterior horns that terminate close to the ear, while there are no extensions of the swim bladder in spot. Thus, the swim bladder in spot terminates at a greater distance from the ear when compared to weakfish. With the use of the auditory brainstem response technique, Cynoscion regalis were found to detect frequencies up to 2000 Hz, while Leiostomus xanthurus detected up to 700 Hz. There were, however, no significant interspecific differences in auditory sensitivity for stimuli between 200 and 700 Hz. These data support the hypothesis that the swim bladder can potentially expand the frequency range of detection.
Collapse
Affiliation(s)
- John U Ramcharitar
- Department of Biology & Neuroscience and Cognitive Science Program, University of Maryland, College Park, Maryland 20742, USA.
| | | | | |
Collapse
|
20
|
Tomchik SM, Lu Z. Auditory physiology and anatomy of octavolateral efferent neurons in a teleost fish. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2005; 192:51-67. [PMID: 16180037 DOI: 10.1007/s00359-005-0050-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2005] [Revised: 08/05/2005] [Accepted: 08/07/2005] [Indexed: 12/19/2022]
Abstract
Vertebrate hair cell systems receive innervation from efferent neurons in the brain. Here we report the responses of octavolateral efferent neurons that innervate the inner ear and lateral lines in a teleost fish, Dormitator latifrons, to directional linear accelerations, and compare them with the afferent responses from the saccule, the main auditory organ in the inner ear of this species. Efferent neurons responded to acoustic stimuli, but had significantly different response properties than saccular afferents. The efferents produced uniform, omnidirectional responses with no phase-locking. Evoked spike rates increased monotonically with stimulus intensity. Efferents were more broadly tuned and responsive to lower frequencies than saccular afferents, and efferent modulation of the otolithic organs and lateral lines is likely more pronounced at lower frequencies. The efferents had wide dynamic ranges, shallow rate-level function slopes, and low maximum discharge rates. These findings support the role of the efferent innervation of the otolithic organs as part of a general arousal system that modulates overall sensitivity of the peripheral octavolateral organs. In addition, efferent feedback may help unmask biologically relevant directional stimuli, such as those emitted by a predator, prey, or conspecific, by reducing sensitivity of the auditory system to omnidirectional ambient noise.
Collapse
Affiliation(s)
- Seth M Tomchik
- Department of Biology, University of Miami, Coral Gables, FL 33146, USA.
| | | |
Collapse
|
21
|
Lu Z, Xu Z, Buchser WJ. Coding of acoustic particle motion by utricular fibers in the sleeper goby, Dormitator latifrons. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2004; 190:923-38. [PMID: 15316732 DOI: 10.1007/s00359-004-0550-3] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2004] [Revised: 07/07/2004] [Accepted: 07/08/2004] [Indexed: 10/26/2022]
Abstract
It is unknown whether the fish utricle contributes to directional hearing. Here, we report response properties of single utricular fibers in a teleost fish ( Dormitator latifrons) to linear accelerations at various stimulus frequencies and axes. Characteristic frequencies ranged from < or =50-400 Hz (median=80 Hz), and best frequencies shifted from 50 to 250 Hz with stimulus level. Best sensitivity of utricular fibers was distributed from -70 to -40 dB re: 1 g (mean=-52 dB), which is about 30 dB less sensitive than saccular fibers. Q50% fell between 0.16 and 11.50 (mean=2.04) at 15 dB above threshold. We observed temporal response patterns of entrained phase-locking, double phase-locking, phase-locked bursting, and non-phase-locked bursting. Most utricular fibers were directionally selective with various directional response profiles, and directional selectivity was stimulus-level dependent. Horizontal best-response axes were distributed in a 152 degrees range while mid-sagittal best-response axes were clustered around the fish longitudinal axis, which is consistent with the horizontal orientation of the utricle and morphological polarizations of utricular hair cells. Therefore, results of this study indicate that the utricle in this vertebrate plays an auditory role in azimuth and that utricular fibers extend the response dynamic range of this species in directional hearing.
Collapse
Affiliation(s)
- Z Lu
- Department of Biology, University of Miami, 1301 Memorial Drive, Room 4, Coral Gables, FL 33146, USA.
| | | | | |
Collapse
|
22
|
Tomchik SM, Lu Z. Octavolateral projections and organization in the medulla of a teleost fish, the sleeper goby (Dormitator latifrons). J Comp Neurol 2004; 481:96-117. [PMID: 15558734 DOI: 10.1002/cne.20363] [Citation(s) in RCA: 31] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
This study is the first to employ simultaneous labeling with different colored fluorescent dyes and confocal microscopy to investigate the central projections of the octavolateral nerves in any fish. Three-dimensional reconstructions of the hindbrain octavolateral nuclei were made and overlap of octavolateral projections was assessed in a teleost, the sleeper goby (Dormitator latifrons). The octavolateral nerves, which innervate the otolithic organs, semicircular canals, and lateral lines, project to seven hindbrain nuclei in diverse, complex patterns. The medulla is generally organized with auditory regions dorsal to vestibular regions. The intermediate subdivision of the descending octaval nucleus (DON) receives interdigitating projections from the otolithic organs, and the dorsomedial DON likely integrates multiple auditory inputs. Afferents from the three otolithic organs (the utricle, saccule, and lagena) project to the intermediate DON in approximately equal proportion, supporting physiological evidence that suggests auditory roles for all three otolithic organs in the sleeper goby. The anterior octaval nucleus receives partially segregated inputs from the octavolateral organs. The dorsal division of the magnocellular octaval nucleus (MgON) receives highly overlapping otolithic organ and semicircular canal input, and we propose that this region is a major octaval integration center. Regions in the ventral medulla (the tangential octaval nucleus, ventral DON, and ventral MgON) receive mainly utricular and semicircular canal inputs, suggesting vestibular roles. Each semicircular canal nerve projects to distinct regions of the hindbrain, with little overlap in most octaval nuclei. Efferent neurons receive bilateral input and project unilaterally to the octavolateral organs.
Collapse
Affiliation(s)
- Seth M Tomchik
- University of Miami, Department of Biology, Coral Gables, Florida 33146, USA
| | | |
Collapse
|