1
|
Pokusaeva VO, Satapathy R, Symonova O, Joesch M. Bilateral interactions of optic-flow sensitive neurons coordinate course control in flies. Nat Commun 2024; 15:8830. [PMID: 39396050 PMCID: PMC11470938 DOI: 10.1038/s41467-024-53173-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Accepted: 10/02/2024] [Indexed: 10/14/2024] Open
Abstract
Animals rely on compensatory actions to maintain stability and navigate their environment efficiently. These actions depend on global visual motion cues known as optic-flow. While the optomotor response has been the traditional focus for studying optic-flow compensation in insects, its simplicity has been insufficient to determine the role of the intricate optic-flow processing network involved in visual course control. Here, we reveal a series of course control behaviours in Drosophila and link them to specific neural circuits. We show that bilateral electrical coupling of optic-flow-sensitive neurons in the fly's lobula plate are required for a proper course control. This electrical interaction works alongside chemical synapses within the HS-H2 network to control the dynamics and direction of turning behaviours. Our findings reveal how insects use bilateral motion cues for navigation, assigning a new functional significance to the HS-H2 network and suggesting a previously unknown role for gap junctions in non-linear operations.
Collapse
Affiliation(s)
- Victoria O Pokusaeva
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, ON, Canada
| | - Roshan Satapathy
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | - Olga Symonova
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria
| | - Maximilian Joesch
- Institute of Science and Technology Austria (ISTA), Klosterneuburg, Austria.
| |
Collapse
|
2
|
Zhao A, Nern A, Koskela S, Dreher M, Erginkaya M, Laughland CW, Ludwigh H, Thomson A, Hoeller J, Parekh R, Romani S, Bock DD, Chiappe E, Reiser MB. A comprehensive neuroanatomical survey of the Drosophila Lobula Plate Tangential Neurons with predictions for their optic flow sensitivity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.10.16.562634. [PMID: 37904921 PMCID: PMC10614863 DOI: 10.1101/2023.10.16.562634] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2023]
Abstract
Flying insects exhibit remarkable navigational abilities controlled by their compact nervous systems. Optic flow, the pattern of changes in the visual scene induced by locomotion, is a crucial sensory cue for robust self-motion estimation, especially during rapid flight. Neurons that respond to specific, large-field optic flow patterns have been studied for decades, primarily in large flies, such as houseflies, blowflies, and hover flies. The best-known optic-flow sensitive neurons are the large tangential cells of the dipteran lobula plate, whose visual-motion responses, and to a lesser extent, their morphology, have been explored using single-neuron neurophysiology. Most of these studies have focused on the large, Horizontal and Vertical System neurons, yet the lobula plate houses a much larger set of 'optic-flow' sensitive neurons, many of which have been challenging to unambiguously identify or to reliably target for functional studies. Here we report the comprehensive reconstruction and identification of the Lobula Plate Tangential Neurons in an Electron Microscopy (EM) volume of a whole Drosophila brain. This catalog of 58 LPT neurons (per brain hemisphere) contains many neurons that are described here for the first time and provides a basis for systematic investigation of the circuitry linking self-motion to locomotion control. Leveraging computational anatomy methods, we estimated the visual motion receptive fields of these neurons and compared their tuning to the visual consequence of body rotations and translational movements. We also matched these neurons, in most cases on a one-for-one basis, to stochastically labeled cells in genetic driver lines, to the mirror-symmetric neurons in the same EM brain volume, and to neurons in an additional EM data set. Using cell matches across data sets, we analyzed the integration of optic flow patterns by neurons downstream of the LPTs and find that most central brain neurons establish sharper selectivity for global optic flow patterns than their input neurons. Furthermore, we found that self-motion information extracted from optic flow is processed in distinct regions of the central brain, pointing to diverse foci for the generation of visual behaviors.
Collapse
Affiliation(s)
- Arthur Zhao
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA USA
| | - Aljoscha Nern
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA USA
| | - Sanna Koskela
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA USA
| | - Marisa Dreher
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA USA
| | - Mert Erginkaya
- Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Connor W Laughland
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA USA
| | - Henrique Ludwigh
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA USA
| | - Alex Thomson
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA USA
| | - Judith Hoeller
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA USA
| | - Ruchi Parekh
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA USA
| | - Sandro Romani
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA USA
| | - Davi D Bock
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA USA
- Department of Neurological Sciences, Larner College of Medicine, University of Vermont, USA
| | - Eugenia Chiappe
- Champalimaud Neuroscience Programme, Champalimaud Centre for the Unknown, Lisbon, Portugal
| | - Michael B Reiser
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA USA
| |
Collapse
|
3
|
Fischer PJ, Schnell B. Multiple mechanisms mediate the suppression of motion vision during escape maneuvers in flying Drosophila. iScience 2022; 25:105143. [PMID: 36185378 PMCID: PMC9523382 DOI: 10.1016/j.isci.2022.105143] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2022] [Revised: 08/15/2022] [Accepted: 09/12/2022] [Indexed: 11/17/2022] Open
Affiliation(s)
- Philippe Jules Fischer
- Emmy Noether Group Neurobiology of Flight Control, Max Planck Institute for Neurobiology of Behavior – caesar, 53175 Bonn, Germany
| | - Bettina Schnell
- Emmy Noether Group Neurobiology of Flight Control, Max Planck Institute for Neurobiology of Behavior – caesar, 53175 Bonn, Germany
- Corresponding author
| |
Collapse
|
4
|
Ammer G, Vieira RM, Fendl S, Borst A. Anatomical distribution and functional roles of electrical synapses in Drosophila. Curr Biol 2022; 32:2022-2036.e4. [DOI: 10.1016/j.cub.2022.03.040] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 02/16/2022] [Accepted: 03/14/2022] [Indexed: 10/18/2022]
|
5
|
Maximally efficient prediction in the early fly visual system may support evasive flight maneuvers. PLoS Comput Biol 2021; 17:e1008965. [PMID: 34014926 PMCID: PMC8136689 DOI: 10.1371/journal.pcbi.1008965] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Accepted: 04/13/2021] [Indexed: 11/20/2022] Open
Abstract
The visual system must make predictions to compensate for inherent delays in its processing. Yet little is known, mechanistically, about how prediction aids natural behaviors. Here, we show that despite a 20-30ms intrinsic processing delay, the vertical motion sensitive (VS) network of the blowfly achieves maximally efficient prediction. This prediction enables the fly to fine-tune its complex, yet brief, evasive flight maneuvers according to its initial ego-rotation at the time of detection of the visual threat. Combining a rich database of behavioral recordings with detailed compartmental modeling of the VS network, we further show that the VS network has axonal gap junctions that are critical for optimal prediction. During evasive maneuvers, a VS subpopulation that directly innervates the neck motor center can convey predictive information about the fly’s future ego-rotation, potentially crucial for ongoing flight control. These results suggest a novel sensory-motor pathway that links sensory prediction to behavior. Survival-critical behaviors shape neural circuits to translate sensory information into strikingly fast predictions, e.g. in escaping from a predator faster than the system’s processing delay. We show that the fly visual system implements fast and accurate prediction of its visual experience. This provides crucial information for directing fast evasive maneuvers that unfold over just 40ms. Our work shows how this fast prediction is implemented, mechanistically, and suggests the existence of a novel sensory-motor pathway from the fly visual system to a wing steering motor neuron. Echoing and amplifying previous work in the retina, our work hypothesizes that the efficient encoding of predictive information is a universal design principle supporting fast, natural behaviors.
Collapse
|
6
|
Boergens KM, Kapfer C, Helmstaedter M, Denk W, Borst A. Full reconstruction of large lobula plate tangential cells in Drosophila from a 3D EM dataset. PLoS One 2018; 13:e0207828. [PMID: 30485333 PMCID: PMC6261601 DOI: 10.1371/journal.pone.0207828] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Accepted: 11/04/2018] [Indexed: 01/10/2023] Open
Abstract
With the advent of neurogenetic methods, the neural basis of behavior is presently being analyzed in more and more detail. This is particularly true for visually driven behavior of Drosophila melanogaster where cell-specific driver lines exist that, depending on the combination with appropriate effector genes, allow for targeted recording, silencing and optogenetic stimulation of individual cell-types. Together with detailed connectomic data of large parts of the fly optic lobe, this has recently led to much progress in our understanding of the neural circuits underlying local motion detection. However, how such local information is combined by optic flow sensitive large-field neurons is still incompletely understood. Here, we aim to fill this gap by a dense reconstruction of lobula plate tangential cells of the fly lobula plate. These neurons collect input from many hundreds of local motion-sensing T4/T5 neurons and connect them to descending neurons or central brain areas. We confirm all basic features of HS and VS cells as published previously from light microscopy. In addition, we identified the dorsal and the ventral centrifugal horizontal, dCH and vCH cell, as well as three VSlike cells, including their distinct dendritic and axonal projection area.
Collapse
Affiliation(s)
- Kevin M. Boergens
- Max-Planck-Institute for Brain Research, Frankfurt, Germany
- * E-mail: (KMB); (AB)
| | | | | | - Winfried Denk
- Max-Planck-Institute of Neurobiology, Martinsried, Germany
| | - Alexander Borst
- Max-Planck-Institute of Neurobiology, Martinsried, Germany
- * E-mail: (KMB); (AB)
| |
Collapse
|
7
|
An Array of Descending Visual Interneurons Encoding Self-Motion in Drosophila. J Neurosci 2017; 36:11768-11780. [PMID: 27852783 DOI: 10.1523/jneurosci.2277-16.2016] [Citation(s) in RCA: 70] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Revised: 09/22/2016] [Accepted: 09/24/2016] [Indexed: 11/21/2022] Open
Abstract
The means by which brains transform sensory information into coherent motor actions is poorly understood. In flies, a relatively small set of descending interneurons are responsible for conveying sensory information and higher-order commands from the brain to motor circuits in the ventral nerve cord. Here, we describe three pairs of genetically identified descending interneurons that integrate information from wide-field visual interneurons and project directly to motor centers controlling flight behavior. We measured the physiological responses of these three cells during flight and found that they respond maximally to visual movement corresponding to rotation around three distinct body axes. After characterizing the tuning properties of an array of nine putative upstream visual interneurons, we show that simple linear combinations of their outputs can predict the responses of the three descending cells. Last, we developed a machine vision-tracking system that allows us to monitor multiple motor systems simultaneously and found that each visual descending interneuron class is correlated with a discrete set of motor programs. SIGNIFICANCE STATEMENT Most animals possess specialized sensory systems for encoding body rotation, which they use for stabilizing posture and regulating motor actions. In flies and other insects, the visual system contains an array of specialized neurons that integrate local optic flow to estimate body rotation during locomotion. However, the manner in which the output of these cells is transformed by the downstream neurons that innervate motor centers is poorly understood. We have identified a set of three visual descending neurons that integrate the output of nine large-field visual interneurons and project directly to flight motor centers. Our results provide new insight into how the sensory information that encodes body motion is transformed into a code that is appropriate for motor actions.
Collapse
|
8
|
Solari P, Corda V, Sollai G, Kreissl S, Galizia CG, Crnjar R. Morphological characterization of the antennal lobes in the Mediterranean fruit fly Ceratitis capitata. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2015; 202:131-46. [PMID: 26660070 DOI: 10.1007/s00359-015-1059-7] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2015] [Revised: 11/26/2015] [Accepted: 11/27/2015] [Indexed: 12/30/2022]
Abstract
The medfly Ceratitis capitata is one of the most important pests for horticulture worldwide. The knowledge about anatomy and function of the medfly olfactory system is still limited. The first brain structure to process olfactory information in insects is the antennal lobe (AL), which is composed of its functional and morphological units, the olfactory glomeruli. Here, we present a morphological three-dimensional reconstruction of AL glomeruli in adult brains. We used unilateral antennal backfills of olfactory receptor neurons (ORNs) with neural tracers, revealing the AL structure. We recorded confocal stacks acquired from whole-mount specimens, and analyzed them with the software AMIRA. The ALs in C. capitata are organized in glomeruli which are more tightly packed in the anterior part than the posterior one. Axons of ORNs bilaterally connect the ALs through a commissure between the two ALs. This commissure is formed by several distinct fascicles. Contralateral dye transfer suggests the presence of gap junctions connecting ORNs from both antennae. There was no statistical difference between the average volumes of female ALs (204,166 ± 12,554 μm(3)) and of male ALs (190,287 ± 11,823 μm(3)). In most specimens, we counted 53 glomeruli in each AL, seven of which were sexually dimorphic in size.
Collapse
Affiliation(s)
- Paolo Solari
- Department of Biomedical Sciences, Section of Physiology, University of Cagliari, University Campus, S.P. 8, 09042, Monserrato, CA, Italy
| | - Valentina Corda
- Department of Biomedical Sciences, Section of Physiology, University of Cagliari, University Campus, S.P. 8, 09042, Monserrato, CA, Italy
| | - Giorgia Sollai
- Department of Biomedical Sciences, Section of Physiology, University of Cagliari, University Campus, S.P. 8, 09042, Monserrato, CA, Italy
| | - Sabine Kreissl
- Department of Neurobiology, University of Konstanz, 78457, Constance, Germany
| | - C Giovanni Galizia
- Department of Neurobiology, University of Konstanz, 78457, Constance, Germany
| | - Roberto Crnjar
- Department of Biomedical Sciences, Section of Physiology, University of Cagliari, University Campus, S.P. 8, 09042, Monserrato, CA, Italy.
| |
Collapse
|
9
|
Excitatory connections of nonspiking interneurones in the terminal abdominal ganglion of the crayfish. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2015; 201:773-81. [DOI: 10.1007/s00359-015-1017-4] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2015] [Revised: 05/14/2015] [Accepted: 05/20/2015] [Indexed: 10/23/2022]
|
10
|
Integration of binocular optic flow in cervical neck motor neurons of the fly. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2012; 198:655-68. [PMID: 22674287 DOI: 10.1007/s00359-012-0737-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Revised: 04/27/2012] [Accepted: 05/16/2012] [Indexed: 10/27/2022]
Abstract
Global visual motion elicits an optomotor response of the eye that stabilizes the visual input on the retina. Here, we analyzed the neck motor system of the blowfly to understand binocular integration of visual motion information underlying a head optomotor response. We identified and characterized two cervical nerve motor neurons (called CNMN6 and CNMN7) tuned precisely to an optic flow corresponding to pitch movements of the head. By means of double recordings and dye coupling, we determined that these neurons are connected ipsilaterally to two vertical system cells (VS2 and VS3), and contralaterally to one horizontal system cell (HSS). In addition, CNMN7 turned out to be connected to the ipsilateral CNMN6 and to its contralateral counterpart. To analyze a potential function of this circuit, we performed behavioral experiments and found that the optomotor pitch response of the fly head was only observable when both eyes were intact. Thus, this neural circuit performs two visuomotor transformations: first, by integrating binocular visual information it enhances the tuning to the optic flow resulting from pitch movements of the head, and second it could assure an even head declination by coordinating the activity of the CNMN7 neurons on both sides.
Collapse
|
11
|
Plett J, Bahl A, Buss M, Kühnlenz K, Borst A. Bio-inspired visual ego-rotation sensor for MAVs. BIOLOGICAL CYBERNETICS 2012; 106:51-63. [PMID: 22350507 DOI: 10.1007/s00422-012-0478-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2011] [Accepted: 01/31/2012] [Indexed: 05/31/2023]
Abstract
Flies are capable of extraordinary flight maneuvers at very high speeds largely due to their highly elaborate visual system. In this work we present a fly-inspired FPGA based sensor system able to visually sense rotations around different body axes, for use on board micro aerial vehicles (MAVs). Rotation sensing is performed analogously to the fly's VS cell network using zero-crossing detection. An additional key feature of our system is the ease of adding new functionalities akin to the different tasks attributed to the fly's lobula plate tangential cell network, such as object avoidance or collision detection. Our implementation consists of a modified eneo SC-MVC01 SmartCam module and a custom built circuit board, weighing less than 200 g and consuming less than 4 W while featuring 57,600 individual two-dimensional elementary motion detectors, a 185° field of view and a frame rate of 350 frames per second. This makes our sensor system compact in terms of size, weight and power requirements for easy incorporation into MAV platforms, while autonomously performing all sensing and processing on-board and in real time.
Collapse
Affiliation(s)
- Johannes Plett
- Department of Systems and Computational Neurobiology, Max Planck Institute of Neurobiology, 82152 Martinsried, Germany.
| | | | | | | | | |
Collapse
|
12
|
Horseman BG, Macauley MWS, Barnes WJP. Neuronal processing of translational optic flow in the visual system of the shore crab Carcinus maenas. ACTA ACUST UNITED AC 2011; 214:1586-98. [PMID: 21490266 DOI: 10.1242/jeb.050955] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
This paper describes a search for neurones sensitive to optic flow in the visual system of the shore crab Carcinus maenas using a procedure developed from that of Krapp and Hengstenberg. This involved determining local motion sensitivity and its directional selectivity at many points within the neurone's receptive field and plotting the results on a map. Our results showed that local preferred directions of motion are independent of velocity, stimulus shape and type of motion (circular or linear). Global response maps thus clearly represent real properties of the neurones' receptive fields. Using this method, we have discovered two families of interneurones sensitive to translational optic flow. The first family has its terminal arborisations in the lobula of the optic lobe, the second family in the medulla. The response maps of the lobula neurones (which appear to be monostratified lobular giant neurones) show a clear focus of expansion centred on or just above the horizon, but at significantly different azimuth angles. Response maps such as these, consisting of patterns of movement vectors radiating from a pole, would be expected of neurones responding to self-motion in a particular direction. They would be stimulated when the crab moves towards the pole of the neurone's receptive field. The response maps of the medulla neurones show a focus of contraction, approximately centred on the horizon, but at significantly different azimuth angles. Such neurones would be stimulated when the crab walked away from the pole of the neurone's receptive field. We hypothesise that both the lobula and the medulla interneurones are representatives of arrays of cells, each of which would be optimally activated by self-motion in a different direction. The lobula neurones would be stimulated by the approaching scene and the medulla neurones by the receding scene. Neurones tuned to translational optic flow provide information on the three-dimensional layout of the environment and are thought to play a role in the judgment of heading.
Collapse
Affiliation(s)
- B Geoff Horseman
- Institute of Molecular, Cell and Systems Biology, University of Glasgow, Glasgow G12 8QQ, UK
| | | | | |
Collapse
|
13
|
Borst A, Weber F. Neural action fields for optic flow based navigation: a simulation study of the fly lobula plate network. PLoS One 2011; 6:e16303. [PMID: 21305019 PMCID: PMC3031557 DOI: 10.1371/journal.pone.0016303] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2010] [Accepted: 12/21/2010] [Indexed: 12/02/2022] Open
Abstract
Optic flow based navigation is a fundamental way of visual course control described in many different species including man. In the fly, an essential part of optic flow analysis is performed in the lobula plate, a retinotopic map of motion in the environment. There, the so-called lobula plate tangential cells possess large receptive fields with different preferred directions in different parts of the visual field. Previous studies demonstrated an extensive connectivity between different tangential cells, providing, in principle, the structural basis for their large and complex receptive fields. We present a network simulation of the tangential cells, comprising most of the neurons studied so far (22 on each hemisphere) with all the known connectivity between them. On their dendrite, model neurons receive input from a retinotopic array of Reichardt-type motion detectors. Model neurons exhibit receptive fields much like their natural counterparts, demonstrating that the connectivity between the lobula plate tangential cells indeed can account for their complex receptive field structure. We describe the tuning of a model neuron to particular types of ego-motion (rotation as well as translation around/along a given body axis) by its ‘action field’. As we show for model neurons of the vertical system (VS-cells), each of them displays a different type of action field, i.e., responds maximally when the fly is rotating around a particular body axis. However, the tuning width of the rotational action fields is relatively broad, comparable to the one with dendritic input only. The additional intra-lobula-plate connectivity mainly reduces their translational action field amplitude, i.e., their sensitivity to translational movements along any body axis of the fly.
Collapse
Affiliation(s)
- Alexander Borst
- Department of Systems and Computational Neurobiology, Max-Planck-Institute of Neurobiology, Martinsried, Germany.
| | | |
Collapse
|
14
|
ON and OFF pathways in Drosophila motion vision. Nature 2010; 468:300-4. [PMID: 21068841 DOI: 10.1038/nature09545] [Citation(s) in RCA: 214] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2010] [Accepted: 10/01/2010] [Indexed: 01/17/2023]
|
15
|
Abstract
We study the integration of multisensory and central input at the level of an identified fly motoneuron, the ventral cervical nerve motoneuron (VCNM) cell, which controls head movements of the animal. We show that this neuron receives input from a central neuron signaling flight activity, from two identified wide-field motion-sensitive neurons, from the wind-sensitive Johnston organ on the antennae, and from the campaniform sensillae of the halteres. We find that visual motion alone leads to only subthreshold responses. Only when it is combined with flight activity or wind stimuli does the VCNM respond to visual motion by modulating its spike activity in a directionally selective way. This nonlinear enhancement of visual responsiveness in the VCNM by central activity is reflected at the behavioral level, when compensatory head movements are measured in response to visual motion. While head movements of flies have only a small amplitude when flies are at rest, the response amplitude is increased by a factor of 30-40 during flight.
Collapse
|
16
|
Affiliation(s)
- Alexander Borst
- Department of Systems and Computational Neurobiology, Max-Planck-Institute of Neurobiology, Martinsried, Germany;
| | - Juergen Haag
- Department of Systems and Computational Neurobiology, Max-Planck-Institute of Neurobiology, Martinsried, Germany;
| | - Dierk F. Reiff
- Department of Systems and Computational Neurobiology, Max-Planck-Institute of Neurobiology, Martinsried, Germany;
| |
Collapse
|
17
|
Rosner R, Egelhaaf M, Warzecha AK. Behavioural state affects motion-sensitive neurones in the fly visual system. ACTA ACUST UNITED AC 2010; 213:331-8. [PMID: 20038668 DOI: 10.1242/jeb.035386] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The strength of stimulus-induced responses at the neuronal and the behavioural level often depends on the internal state of an animal. Within pathways processing sensory information and eventually controlling behavioural responses, such gain changes can originate at several sites. Using motion-sensitive lobula plate tangential cells (LPTCs) of blowflies, we address whether and in which way information processing changes for two different states of motor activity. We distinguish between the two states on the basis of haltere movements. Halteres are the evolutionarily transformed hindwings of flies. They oscillate when the animals walk or fly. LPTCs mediate, amongst other behaviours, head optomotor responses. These are either of large or small amplitude depending on the state of motor activity. Here we find that LPTC responses also depend on the motor activity of flies. In particular, LPTC responses are enhanced when halteres oscillate. Nevertheless, the response changes of LPTCs do not account for the corresponding large gain changes of head movements. Moreover, haltere activity itself does not change the activity of LPTCs. Instead, we propose that a central signal associated with motor activity changes the gain of head optomotor responses and the response properties of LPTCs.
Collapse
Affiliation(s)
- R Rosner
- Lehrstuhl für Neurobiologie, Universität Bielefeld, Bielefeld, Germany.
| | | | | |
Collapse
|
18
|
Schnell B, Joesch M, Forstner F, Raghu SV, Otsuna H, Ito K, Borst A, Reiff DF. Processing of horizontal optic flow in three visual interneurons of the Drosophila brain. J Neurophysiol 2010; 103:1646-57. [PMID: 20089816 DOI: 10.1152/jn.00950.2009] [Citation(s) in RCA: 117] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Motion vision is essential for navigating through the environment. Due to its genetic amenability, the fruit fly Drosophila has been serving for a lengthy period as a model organism for studying optomotor behavior as elicited by large-field horizontal motion. However, the neurons underlying the control of this behavior have not been studied in Drosophila so far. Here we report the first whole cell recordings from three cells of the horizontal system (HSN, HSE, and HSS) in the lobula plate of Drosophila. All three HS cells are tuned to large-field horizontal motion in a direction-selective way; they become excited by front-to-back motion and inhibited by back-to-front motion in the ipsilateral field of view. The response properties of HS cells such as contrast and velocity dependence are in accordance with the correlation-type model of motion detection. Neurobiotin injection suggests extensive coupling among ipsilateral HS cells and additional coupling to tangential cells that have their dendrites in the contralateral hemisphere of the brain. This connectivity scheme accounts for the complex layout of their receptive fields and explains their sensitivity both to ipsilateral and to contralateral motion. Thus the main response properties of Drosophila HS cells are strikingly similar to the responses of their counterparts in the blowfly Calliphora, although we found substantial differences with respect to their dendritic structure and connectivity. This long-awaited functional characterization of HS cells in Drosophila provides the basis for the future dissection of optomotor behavior and the underlying neural circuitry by combining genetics, physiology, and behavior.
Collapse
Affiliation(s)
- B Schnell
- Max Planck Institute of Neurobiology, Department of Systems and Computational Neurobiology, Am Klopferspitz 18, 82152 Martinsried, Germany
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Wertz A, Haag J, Borst A. Local and global motion preferences in descending neurons of the fly. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2009; 195:1107-20. [PMID: 19830435 PMCID: PMC2780676 DOI: 10.1007/s00359-009-0481-0] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2009] [Revised: 09/08/2009] [Accepted: 09/20/2009] [Indexed: 11/25/2022]
Abstract
For a moving animal, optic flow is an important source of information about its ego-motion. In flies, the processing of optic flow is performed by motion sensitive tangential cells in the lobula plate. Amongst them, cells of the vertical system (VS cells) have receptive fields with similarities to optic flows generated during rotations around different body axes. Their output signals are further processed by pre-motor descending neurons. Here, we investigate the local motion preferences of two descending neurons called descending neurons of the ocellar and vertical system (DNOVS1 and DNOVS2). Using an LED arena subtending 240° × 95° of visual space, we mapped the receptive fields of DNOVS1 and DNOVS2 as well as those of their presynaptic elements, i.e. VS cells 1–10 and V2. The receptive field of DNOVS1 can be predicted in detail from the receptive fields of those VS cells that are most strongly coupled to the cell. The receptive field of DNOVS2 is a combination of V2 and VS cells receptive fields. Predicting the global motion preferences from the receptive field revealed a linear spatial integration in DNOVS1 and a superlinear spatial integration in DNOVS2. In addition, the superlinear integration of V2 output is necessary for DNOVS2 to differentiate between a roll rotation and a lift translation of the fly.
Collapse
Affiliation(s)
- Adrian Wertz
- Department of Systems and Computational Neurobiology, Max-Planck-Institute of Neurobiology, 82152 Martinsried, Germany.
| | | | | |
Collapse
|
20
|
Raghu SV, Joesch M, Sigrist SJ, Borst A, Reiff DF. Synaptic Organization of Lobula Plate Tangential Cells inDrosophila:Dα7 Cholinergic Receptors. J Neurogenet 2009; 23:200-9. [DOI: 10.1080/01677060802471684] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
21
|
Joesch M, Plett J, Borst A, Reiff DF. Response properties of motion-sensitive visual interneurons in the lobula plate of Drosophila melanogaster. Curr Biol 2008; 18:368-74. [PMID: 18328703 DOI: 10.1016/j.cub.2008.02.022] [Citation(s) in RCA: 127] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2007] [Revised: 02/01/2008] [Accepted: 02/01/2008] [Indexed: 10/22/2022]
Abstract
The crystalline-like structure of the optic lobes of the fruit fly Drosophila melanogaster has made them a model system for the study of neuronal cell-fate determination, axonal path finding, and target selection. For functional studies, however, the small size of the constituting visual interneurons has so far presented a formidable barrier. We have overcome this problem by establishing in vivo whole-cell recordings from genetically targeted visual interneurons of Drosophila. Here, we describe the response properties of six motion-sensitive large-field neurons in the lobula plate that form a network consisting of individually identifiable, directionally selective cells most sensitive to vertical image motion (VS cells). Individual VS cell responses to visual motion stimuli exhibit all the characteristics that are indicative of presynaptic input from elementary motion detectors of the correlation type. Different VS cells possess distinct receptive fields that are arranged sequentially along the eye's azimuth, corresponding to their characteristic cellular morphology and position within the retinotopically organized lobula plate. In addition, lateral connections between individual VS cells cause strongly overlapping receptive fields that are wider than expected from their dendritic input. Our results suggest that motion vision in different dipteran fly species is accomplished in similar circuitries and according to common algorithmic rules. The underlying neural mechanisms of population coding within the VS cell network and of elementary motion detection, respectively, can now be analyzed by the combination of electrophysiology and genetic intervention in Drosophila.
Collapse
Affiliation(s)
- Maximilian Joesch
- Max Planck Institute for Neurobiology, Department of Systems and Computational Neurobiology, Am Klopferspitz 18, 81371 Martinsried, Germany
| | | | | | | |
Collapse
|
22
|
Wertz A, Borst A, Haag J. Nonlinear integration of binocular optic flow by DNOVS2, a descending neuron of the fly. J Neurosci 2008; 28:3131-40. [PMID: 18354016 PMCID: PMC6670693 DOI: 10.1523/jneurosci.5460-07.2008] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2007] [Revised: 01/31/2008] [Accepted: 02/07/2008] [Indexed: 11/21/2022] Open
Abstract
For visual orientation and course stabilization, flies rely heavily on the optic flow perceived by the animal during flight. The processing of optic flow is performed in motion-sensitive tangential cells of the lobula plate, which are well described with respect to their visual response properties and the connectivity among them. However, little is known about the postsynaptic descending neurons, which convey motion information to the motor circuits in the thoracic ganglion. Here we investigate the physiology and connectivity of an identified premotor descending neuron, called DNOVS2 (for descending neuron of the ocellar and vertical system). We find that DNOVS2 is tuned in a supralinear way to rotation around the longitudinal body axis. Experiments involving stimulation of the ipsilateral and the contralateral eye indicate that ipsilateral computation of motion information is modified nonlinearly by motion information from the contralateral eye. Performing double recordings of DNOVS2 and lobula plate tangential cells, we find that DNOVS2 is connected ipsilaterally to a subset of vertical-sensitive cells. From the contralateral eye, DNOVS2 receives input most likely from V2, a heterolateral spiking neuron. This specific neural circuit is sufficient for the tuning of DNOVS2, making it probably an important element in optomotor roll movements of the head and body around the fly's longitudinal axis.
Collapse
Affiliation(s)
- Adrian Wertz
- Department of Systems and Computational Neurobiology, Max-Planck-Institute of Neurobiology, D-82152 Martinsried, Germany.
| | | | | |
Collapse
|
23
|
Haag J, Borst A. Reciprocal inhibitory connections within a neural network for rotational optic-flow processing. Front Neurosci 2007; 1:111-21. [PMID: 18982122 PMCID: PMC2518051 DOI: 10.3389/neuro.01.1.1.008.2007] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2007] [Accepted: 09/01/2007] [Indexed: 12/05/2022] Open
Abstract
Neurons in the visual system of the blowfly have large receptive fields that are selective for specific optic flow fields. Here, we studied the neural mechanisms underlying flow–field selectivity in proximal Vertical System (VS)-cells, a particular subset of tangential cells in the fly. These cells have local preferred directions that are distributed such as to match the flow field occurring during a rotation of the fly. However, the neural circuitry leading to this selectivity is not fully understood. Through dual intracellular recordings from proximal VS cells and other tangential cells, we characterized the specific wiring between VS cells themselves and between proximal VS cells and horizontal sensitive tangential cells. We discovered a spiking neuron (Vi) involved in this circuitry that has not been described before. This neuron turned out to be connected to proximal VS cells via gap junctions and, in addition, it was found to be inhibitory onto VS1.
Collapse
Affiliation(s)
- Juergen Haag
- Max-Planck-Institute of Neurobiology, Department of Systems and Computational Neurobiology, Martinsried Germany
| | | |
Collapse
|
24
|
Cuntz H, Haag J, Forstner F, Segev I, Borst A. Robust coding of flow-field parameters by axo-axonal gap junctions between fly visual interneurons. Proc Natl Acad Sci U S A 2007; 104:10229-33. [PMID: 17551009 PMCID: PMC1886000 DOI: 10.1073/pnas.0703697104] [Citation(s) in RCA: 33] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Complex flight maneuvers require a sophisticated system to exploit the optic flow resulting from moving images of the environment projected onto the retina. In the fly's visual course control center, the lobula plate, 10 so-called vertical system (VS) cells are thought to match, with their complex receptive fields, the optic flow resulting from rotation around different body axes. However, signals of single VS cells are unreliable indicators of such optic flow parameters in the context of their noisy, texture-dependent input from local motion measurements. Here we propose an alternative encoding scheme based on network simulations of biophysically realistic compartmental models of VS cells. The simulations incorporate recent data about the highly selective connectivity between VS cells consisting of an electrical axo-axonal coupling between adjacent cells and a reciprocal inhibition between the most distant cells. We find that this particular wiring performs a linear interpolation between the output signals of VS cells, leading to a robust representation of the axis of rotation even in the presence of textureless patches of the visual surround.
Collapse
Affiliation(s)
- Hermann Cuntz
- Wolfson Institute for Biomedical Research, Department of Physiology, University College London, Gower Street, London, United Kingdom.
| | | | | | | | | |
Collapse
|
25
|
Raghu SV, Joesch M, Borst A, Reiff DF. Synaptic organization of lobula plate tangential cells inDrosophila: γ-Aminobutyric acid receptors and chemical release sites. J Comp Neurol 2007; 502:598-610. [PMID: 17394161 DOI: 10.1002/cne.21319] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
In flies, the large tangential cells of the lobula plate represent an important processing center for visual navigation based on optic flow. Although the visual response properties of these cells have been well studied in blowflies, information on their synaptic organization is mostly lacking. Here we study the distribution of presynaptic release and postsynaptic inhibitory sites in the same set of cells in Drosophila melanogaster. By making use of transgenic tools and immunohistochemistry, our results suggest that HS and VS cells of Drosophila express gamma-aminobutyric acid (GABA) receptors in their dendritic region within the lobula plate, thus being postsynaptic to inhibitory input there. At their axon terminals in the protocerebrum, both cell types express synaptobrevin, suggesting the presence of presynaptic specializations there. HS- and VS-cell terminals additionally show evidence for postsynaptic GABAergic input, superimposed on this synaptic polarity. Our findings are in line with the general circuit for visual motion detection and receptive field properties as postulated from electrophysiological and optical recordings in blowflies, suggesting a similar functional organization of lobula plate tangential cells in the two species.
Collapse
Affiliation(s)
- Shamprasad Varija Raghu
- Department of Systems and Computational Neurobiology, Max-Planck-Institute of Neurobiology, D-82152 Martinsried, Germany.
| | | | | | | |
Collapse
|
26
|
Haag J, Wertz A, Borst A. Integration of lobula plate output signals by DNOVS1, an identified premotor descending neuron. J Neurosci 2007; 27:1992-2000. [PMID: 17314295 PMCID: PMC6673546 DOI: 10.1523/jneurosci.4393-06.2007] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Many motion-sensitive tangential cells of the lobula plate in blowflies are well described with respect to their visual response properties and the connectivity among them. They have large and complex receptive fields with different preferred directions in different parts of their receptive fields matching the optic flow that occurs during various flight maneuvers. However, much less is known about how tangential cells connect to postsynaptic neurons descending to the motor circuits in the thoracic ganglion and how optic flow is represented in these downstream neurons. Here we describe the physiology and the connectivity of a prominent descending neuron called DNOVS1 (for descending neurons of the ocellar and vertical system). We find that DNOVS1 is electrically coupled to a subset of vertical system cells. The specific wiring leads to a preference of DNOVS1 for rotational flow fields around a particular body axis. In addition, DNOVS1 receives input from interneurons connected to the ocelli.
Collapse
Affiliation(s)
- Juergen Haag
- Department of Systems and Computational Neurobiology, Max-Planck-Institute of Neurobiology, D-82152 Martinsried, Germany.
| | | | | |
Collapse
|
27
|
Schlurmann M, Hausen K. Motoneurons of the flight power muscles of the blowflyCalliphora erythrocephala: Structures and mutual dye coupling. J Comp Neurol 2007; 500:448-64. [PMID: 17120285 DOI: 10.1002/cne.21182] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
The morphologies of the motoneurons of the dorsolongitudinal and the three dorsoventral flight power muscles (DLM, DVM 1-3) of Calliphora were investigated by means of cobalt backfills and intracellular biocytin stainings. The DLM is innervated by four prothoracic motoneurons supplying the four ventral muscle fibers and one mesothoracic motoneuron supplying the two dorsal fibers. The three fibers of the DVM 1 and the two fibers of the DVM 2 are innervated by five mesothoracic motoneurons, whereas the two fibers of the DVM 3 are innervated by two prothoracic motoneurons. In general, the motoneurons of each muscle have a common ventral soma cluster located in a characteristic position on the ipsilateral side of the thoracic ganglion, show similar dendritic arborizations in the mesothoracic wing neuropil, and have the same axon pathway. Only the soma of the common motoneuron of two dorsal fibers of the DLM is situated dorsally in the contralateral hemiganglion. The motoneurons of each muscle were found to be strongly dye coupled with each other, indicating that they are connected by gap junctions. In addition, the motoneurons of each muscle establish characteristic coupling patterns with the motoneurons of the other flight power muscles on both sides of the thorax and with two bilateral groups of local mesothoracic interneurons. The revealed coupling patterns are assumed to be of major relevance for the generation the characteristic, rhythmic flight activity of the motoneurons described in previous studies.
Collapse
Affiliation(s)
- M Schlurmann
- Zoologisches Institut, Universität Köln, 50923 Köln, Germany.
| | | |
Collapse
|
28
|
Beckers U, Egelhaaf M, Kurtz R. Synapses in the fly motion-vision pathway: evidence for a broad range of signal amplitudes and dynamics. J Neurophysiol 2007; 97:2032-41. [PMID: 17215505 DOI: 10.1152/jn.01116.2006] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Synapses are generally considered to operate efficiently only when their signaling range matches the spectrum of prevailing presynaptic signals in terms of both amplitudes and dynamics. However, the prerequisites for optimally matching the signaling ranges may differ between spike-mediated and graded synaptic transmission. This poses a problem for synapses that convey both graded and spike signals at the same time. We addressed this issue by tracing transmission systematically in vivo in the blowfly's visual-motion pathway by recording from single neurons that receive mixed potential signals consisting of rather slow graded fluctuations superimposed with highly variable spikes from a small number of presynaptic elements. Both pre- and postsynaptic neurons were previously shown to represent preferred-direction motion velocity reliably and linearly at low fluctuation frequencies. To selectively assess the performance of individual synapses and to precisely control presynaptic signals, we voltage clamped one of the presynaptic neurons. Results showed that synapses can effectively convey signals over a much larger amplitude and frequency range than is normally used during graded transmission of visual signals. An explanation for this unexpected finding might lie in the transmission of the spike component that reaches larger amplitudes and contains higher frequencies than graded signals.
Collapse
Affiliation(s)
- Ulrich Beckers
- Department of Neurobiology, University Bielefeld, Postfach 10 01 31, 33501 Bielefeld, Germany.
| | | | | |
Collapse
|
29
|
Farrow K, Haag J, Borst A. Nonlinear, binocular interactions underlying flow field selectivity of a motion-sensitive neuron. Nat Neurosci 2006; 9:1312-20. [PMID: 16964250 DOI: 10.1038/nn1769] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2006] [Accepted: 08/17/2006] [Indexed: 11/08/2022]
Abstract
Neurons in many species have large receptive fields that are selective for specific optic flow fields. Here, we studied the neural mechanisms underlying flow field selectivity in lobula plate tangential cells (LPTCs) of the blowfly. Among these cells, the H2 cell responds preferentially to visual stimuli approximating rotational optic flow. Through double recordings from H2 and many other LPTCs, we characterized a bidirectional commissural pathway that allows visual information to be shared between the hemispheres. This pathway is mediated by axo-axonal electrical coupling of H2 and the horizontal system equatorial (HSE) cell located in the opposite hemisphere. Using single-cell ablations, we found that this pathway is sufficient to allow H2 to amplify and attenuate dendritic input during binocular visual stimuli. This is accomplished through a modulation of H2's membrane potential by input from the contralateral HSE cell, which scales the firing rate of H2 during visual stimulation but is not sufficient to induce action potentials.
Collapse
Affiliation(s)
- Karl Farrow
- Max-Planck-Institute of Neurobiology, Department of Systems and Computational Neurobiology, Am Klopferspitz 18, 82152 Martinsried, Germany.
| | | | | |
Collapse
|
30
|
Kalb J, Egelhaaf M, Kurtz R. Robust integration of motion information in the fly visual system revealed by single cell photoablation. J Neurosci 2006; 26:7898-906. [PMID: 16870735 PMCID: PMC6674221 DOI: 10.1523/jneurosci.1327-06.2006] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
In the brain, sensory information needs often to be read out from the ensemble activity of presynaptic neurons. In the most basic case, this may be accomplished by an individual postsynaptic neuron. In the visual system of the blowfly, an identified motion-sensitive spiking neuron is known to be postsynaptic to an ensemble of graded-potential presynaptic input elements. Both the presynaptic and postsynaptic neurons were shown previously to be capable of representing the velocity of preferred-direction motion reliably and linearly over a large frequency range of velocity fluctuations. Accordingly, the synaptic transfer properties of the connecting excitatory synapses between individual input elements and the postsynaptic neuron were shown to be linear over a similar range of presynaptic membrane potential fluctuations. It was not known, however, how the postsynaptic neuron integrates and reads out the presynaptic ensemble activity. We were able to compare the response properties of the integrating cell before and after eliminating individual presynaptic elements by a laser ablation technique. For most of the input elements, we found that their elimination strongly affected the activity of the postsynaptic neuron but did not degrade its performance to encode motion with constant and time-varying velocity. Our results suggest that the integration of individual synaptic inputs within the neural circuit operates with some redundancy. This feature might help the postsynaptic neuron to encode in a highly robust way the direction and the velocity of self-motion of the animal.
Collapse
Affiliation(s)
- Julia Kalb
- Department of Neurobiology, University of Bielefeld, D-33501 Bielefeld, Germany.
| | | | | |
Collapse
|
31
|
Fan RJ, Marin-Burgin A, French KA, Otto Friesen W. A dye mixture (Neurobiotin and Alexa 488) reveals extensive dye-coupling among neurons in leeches; physiology confirms the connections. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2005; 191:1157-71. [PMID: 16133497 DOI: 10.1007/s00359-005-0047-8] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2005] [Revised: 06/30/2005] [Accepted: 07/02/2005] [Indexed: 05/04/2023]
Abstract
Although the neuronal circuits that generate leech movements have been studied for over 30 years, the list of interneurons (INs) in these circuits remains incomplete. Previous studies showed that some motor neurons (MNs) are electrically coupled to swim-related INs, e.g., rectifying junctions connect IN 28 to MN DI-1 (dorsal inhibitor), so we searched for additional neurons in these behavioral circuits by co-injecting Neurobiotin and Alexa Fluor 488 into segmental MNs DI-1, VI-2, DE-3 and VE-4. The high molecular weight Alexa dye is confined to the injected cell, whereas the smaller Neurobiotin molecules diffuse through gap junctions to reveal electrical coupling. We found that MNs were each dye-coupled to approximately 25 neurons, about half of which are likely to be INs. We also found that (1) dye-coupling was reliably correlated with physiologically confirmed electrical connections, (2) dye-coupling is unidirectional between MNs that are linked by rectifying connections, and (3) there are novel electrical connections between excitatory and inhibitory MNs, e.g. between excitatory MN VE-4 and inhibitory MN DI-1. The INs found in this study provide a pool of novel candidate neurons for future studies of behavioral circuits, including those underlying swimming, crawling, shortening, and bending movements.
Collapse
Affiliation(s)
- Ruey-Jane Fan
- Department of Biology, University of Virginia, Charlottesville, VA 22904-4328, USA
| | | | | | | |
Collapse
|