1
|
Fábelová L, Loffredo CA, Klánová J, Hilscherová K, Horvat M, Tihányi J, Richterová D, Palkovičová Murínová Ľ, Wimmerová S, Sisto R, Moleti A, Trnovec T. Environmental ototoxicants, a potential new class of chemical stressors. ENVIRONMENTAL RESEARCH 2019; 171:378-394. [PMID: 30716515 DOI: 10.1016/j.envres.2019.01.042] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2018] [Revised: 01/24/2019] [Accepted: 01/25/2019] [Indexed: 05/28/2023]
Abstract
Hearing loss is an injury that can develop over time, and people may not even be aware of it until it becomes a severe disability. Ototoxicants are substances that may damage the inner ear by either affecting the structures in the ear itself or by affecting the nervous system. We have examined the possibility that ototoxicants may present a health hazard in association with environmental exposures, adding to existing knowledge of their proven hazards under medical therapeutic conditions or occupational activities. In addition to the already described human environmental ototoxicants, mainly organochlorines such as polychlorinated biphenyls (PCBs), polychlorinated dibenzo-p-dioxins (PCDDs), dibenzofurans (PCDFs), dichlorodiphenyltrichloroethane (DDT), dichlorodiphenyldichloroethylene (DDE), hexachlorocyclohexane (HCH) and hexachlorobenzene (HCB), we have examined the ubiquitous chemical stressors phthalates, bisphenol A/S/F/, PFCs, flame retardants (FRs) and cadmium for potential ototoxic properties, both as single substances or as chemical mixtures. Our literature review confirmed that these chemicals may disturb thyroid hormones homeostasis, activate aryl hydrocarbon receptor (AhR), and induce oxidative stress, which in turn may initiate a chain of events resulting in impairment of cochlea and hearing loss. With regard to auditory plasticity, diagnostics of a mixture of effects of ototoxicants, potential interactions of chemical and physical agents with effects on hearing, parallel deterioration of hearing due to chemical exposures and ageing, metabolic diseases or obesity, even using specific methods as brainstem auditory evoked potentials (BAEP) or otoacoustic emissions (OAEs) registration, may be difficult, and establishment of concentration-response relationships problematic. This paper suggests the establishment of a class of environmental oxotoxicants next to the established classes of occupational and drug ototoxicants. This will help to properly manage risks associated with human exposure to chemical stressors with ototoxic properties and adequate regulatory measures.
Collapse
Affiliation(s)
- Lucia Fábelová
- Slovak Medical University, Faculty of Public Health, Department of Environmental Medicine, Limbova 12, 83303 Bratislava, Slovakia
| | - Christopher A Loffredo
- Lombardi Comprehensive Cancer Center, Georgetown University, Washington, D.C. 20057, USA
| | - Jana Klánová
- Masaryk University, Research Centre for Toxic Compounds in the Environment, RECETOX, Brno, Czech Republic
| | - Klára Hilscherová
- Masaryk University, Research Centre for Toxic Compounds in the Environment, RECETOX, Brno, Czech Republic
| | - Milena Horvat
- Jožef Stefan Institute, Department of Environmental Sciences, Ljubljana, Slovenia
| | - Juraj Tihányi
- Slovak Medical University, Faculty of Public Health, Department of Environmental Medicine, Limbova 12, 83303 Bratislava, Slovakia
| | - Denisa Richterová
- Slovak Medical University, Faculty of Public Health, Department of Environmental Medicine, Limbova 12, 83303 Bratislava, Slovakia
| | - Ľubica Palkovičová Murínová
- Slovak Medical University, Faculty of Public Health, Department of Environmental Medicine, Limbova 12, 83303 Bratislava, Slovakia
| | - Soňa Wimmerová
- Slovak Medical University, Faculty of Public Health, Department of Environmental Medicine, Limbova 12, 83303 Bratislava, Slovakia
| | - Renata Sisto
- INAIL, Research Department of Occupational and Environmental Medicine, Epidemiology and Hygiene, Monte Porzio Catone, Italy
| | - Arturo Moleti
- University of Roma, Tor Vergata, Department of Physics, Roma, Italy
| | - Tomáš Trnovec
- Slovak Medical University, Faculty of Public Health, Department of Environmental Medicine, Limbova 12, 83303 Bratislava, Slovakia.
| |
Collapse
|
2
|
Zhao L, Wang J, Yang Y, Zhu B, Brauth SE, Tang Y, Cui J. An exception to the matched filter hypothesis: A mismatch of male call frequency and female best hearing frequency in a torrent frog. Ecol Evol 2016; 7:419-428. [PMID: 28070304 PMCID: PMC5216676 DOI: 10.1002/ece3.2621] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Revised: 10/27/2016] [Accepted: 10/31/2016] [Indexed: 12/01/2022] Open
Abstract
The matched filter hypothesis proposes that the tuning of auditory sensitivity and the spectral character of calls will match in order to maximize auditory processing efficiency during courtship. In this study, we analyzed the acoustic structure of male calls and both male and female hearing sensitivities in the little torrent frog (Amolops torrentis), an anuran species who transmits acoustic signals across streams. The results were in striking contradiction to the matched filter hypothesis. Auditory brainstem response results showed that the best hearing range was 1.6–2 kHz consistent with the best sensitive frequency of most terrestrial lentic taxa, yet completely mismatched with the dominant frequency of conspecific calls (4.3 kHz). Moreover, phonotaxis tests show that females strongly prefer high‐frequency (4.3 kHz) over low‐frequency calls (1.6 kHz) regardless of ambient noise levels, although peripheral auditory sensitivity is highest in the 1.6–2 kHz range. These results are consistent with the idea that A. torrentis evolved from nonstreamside species and that high‐frequency calls evolved under the pressure of stream noise. Our results also suggest that female preferences based on central auditory system characteristics may evolve independently of peripheral auditory system sensitivity in order to maximize communication effectiveness in noisy environments.
Collapse
Affiliation(s)
- Longhui Zhao
- Chengdu Institute of Biology Chinese Academy of Sciences Chengdu Sichuan China
| | - Jichao Wang
- Ministry of Education Key Laboratory for Tropical Plant and Animal Ecology College of Life Sciences Hainan Normal University Haikou Hainan China
| | - Yue Yang
- Chengdu Institute of Biology Chinese Academy of Sciences Chengdu Sichuan China
| | - Bicheng Zhu
- Chengdu Institute of Biology Chinese Academy of Sciences Chengdu Sichuan China
| | - Steven E Brauth
- Department of Psychology University of Maryland College Park MD USA
| | - Yezhong Tang
- Chengdu Institute of Biology Chinese Academy of Sciences Chengdu Sichuan China
| | - Jianguo Cui
- Chengdu Institute of Biology Chinese Academy of Sciences Chengdu Sichuan China
| |
Collapse
|
3
|
Hall IC, Woolley SMN, Kwong-Brown U, Kelley DB. Sex differences and endocrine regulation of auditory-evoked, neural responses in African clawed frogs (Xenopus). J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2016; 202:17-34. [PMID: 26572136 PMCID: PMC4699871 DOI: 10.1007/s00359-015-1049-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 10/03/2015] [Accepted: 10/05/2015] [Indexed: 12/01/2022]
Abstract
Mating depends on the accurate detection of signals that convey species identity and reproductive state. In African clawed frogs, Xenopus, this information is conveyed by vocal signals that differ in temporal patterns and spectral features between sexes and across species. We characterized spectral sensitivity using auditory-evoked potentials (AEPs), commonly known as the auditory brainstem response, in males and females of four Xenopus species. In female X. amieti, X. petersii, and X. laevis, peripheral auditory sensitivity to their species own dyad-two, species-specific dominant frequencies in the male advertisement call-is enhanced relative to males. Males were most sensitive to lower frequencies including those in the male-directed release calls. Frequency sensitivity was influenced by endocrine state; ovariectomized females had male-like auditory tuning while dihydrotestosterone-treated, ovariectomized females maintained female-like tuning. Thus, adult, female Xenopus demonstrate an endocrine-dependent sensitivity to the spectral features of conspecific male advertisement calls that could facilitate mating. Xenopus AEPs resemble those of other species in stimulus and level dependence, and in sensitivity to anesthetic (MS222). AEPs were correlated with body size and sex within some species. A frequency following response, probably encoded by the amphibian papilla, might facilitate dyad source localization via interaural time differences.
Collapse
Affiliation(s)
- Ian C Hall
- Department of Biological Sciences, Columbia University, Fairchild Building, MC 2432, New York, NY, 10027, USA.
- Department of Biology, St. Mary's College of Maryland, Schaeffer Hall 258, St. Mary's City, MD, 20686, USA.
| | - Sarah M N Woolley
- Department of Psychology, Columbia University, Schermerhorn Hall, MC 5501, New York, NY, 10027, USA
| | - Ursula Kwong-Brown
- Department of Biological Sciences, Columbia University, Fairchild Building, MC 2432, New York, NY, 10027, USA
- Center for New Music and Audio Technologies, University of California, Berkeley, CA, 94720, USA
| | - Darcy B Kelley
- Department of Biological Sciences, Columbia University, Fairchild Building, MC 2432, New York, NY, 10027, USA
| |
Collapse
|
4
|
Buerkle NP, Schrode KM, Bee MA. Assessing stimulus and subject influences on auditory evoked potentials and their relation to peripheral physiology in green treefrogs (Hyla cinerea). Comp Biochem Physiol A Mol Integr Physiol 2014; 178:68-81. [PMID: 25151643 PMCID: PMC4174320 DOI: 10.1016/j.cbpa.2014.08.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2014] [Revised: 05/31/2014] [Accepted: 08/13/2014] [Indexed: 10/24/2022]
Abstract
Anurans (frogs and toads) are important models for comparative studies of communication, auditory physiology, and neuroethology, but to date, most of our knowledge comes from in-depth studies of a relatively small number of model species. Using the well-studied green treefrog (Hyla cinerea), this study sought to develop and evaluate the use of auditory evoked potentials (AEPs) as a minimally invasive tool for investigating auditory sensitivity in a larger diversity of anuran species. The goals of the study were to assess the effects of frequency, signal level, sex, and body size on auditory brainstem response (ABR) amplitudes and latencies, characterize gross ABR morphology, and generate an audiogram that could be compared to several previously published audiograms for green treefrogs. Increasing signal level resulted in larger ABR amplitudes and shorter latencies, and these effects were frequency dependent. There was little evidence for an effect of sex or size on ABRs. Analyses consistently distinguished between responses to stimuli in the frequency ranges of the three previously-described populations of afferents that innervate the two auditory end organs in anurans. The overall shape of the audiogram shared prominent features with previously published audiograms. This study highlights the utility of AEPs as a valuable tool for the study of anuran auditory sensitivity.
Collapse
Affiliation(s)
- Nathan P Buerkle
- College of Biological Sciences, University of Minnesota-Twin Cities, Saint Paul, MN 55108, USA
| | - Katrina M Schrode
- Graduate Program in Neuroscience, University of Minnesota-Twin Cities, Minneapolis, MN 55455, USA.
| | - Mark A Bee
- Department of Ecology, Evolution and Behavior, University of Minnesota-Twin Cities, Saint Paul, MN 55108, USA
| |
Collapse
|
5
|
Auditory brainstem responses in Cope's gray treefrog (Hyla chrysoscelis): effects of frequency, level, sex and size. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2014; 200:221-38. [PMID: 24442647 DOI: 10.1007/s00359-014-0880-8] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2013] [Revised: 12/24/2013] [Accepted: 01/04/2014] [Indexed: 12/25/2022]
Abstract
Our knowledge of the hearing abilities of frogs and toads is largely defined by work with a few well-studied species. One way to further advance comparative work on anuran hearing would be greater use of minimally invasive electrophysiological measures, such as the auditory brainstem response (ABR). This study used the ABR evoked by tones and clicks to investigate hearing in Cope's gray treefrog (Hyla chrysoscelis). The objectives were to characterize the effects of sound frequency, sound pressure level, and subject sex and body size on ABRs. The ABR in gray treefrogs bore striking resemblance to ABRs measured in other animals. As stimulus level increased, ABR amplitude increased and latency decreased, and for responses to tones, these effects depended on stimulus frequency. Frequency-dependent differences in ABRs were correlated with expected differences in the tuning of two sensory end organs in the anuran inner ear (the amphibian and basilar papillae). The ABR audiogram indicated two frequency regions of increased sensitivity corresponding to the expected tuning of the two papillae. Overall, there was no effect of subject size and only small effects related to subject sex. Together, these results indicate the ABR is an effective method to study audition in anurans.
Collapse
|
6
|
Abstract
Amphibians have long been utilized in scientific research and in education. Historically, investigators have accumulated a wealth of information on the natural history and biology of amphibians, and this body of information is continually expanding as researchers describe new species and study the behaviors of these animals. Amphibians evolved as models for a variety of developmental and physiological processes, largely due to their unique ability to undergo metamorphosis. Scientists have used amphibian embryos to evaluate the effects of toxins, mutagens, and teratogens. Likewise, the animals are invaluable in research due to the ability of some species to regenerate limbs. Certain species of amphibians have short generation times and genetic constructs that make them desirable for transgenic and knockout technology, and there is a current national focus on developing these species for genetic and genomic research. This group of vertebrates is also critically important in the investigation of the inter-relationship of humans and the environment based on their sensitivity to climatic and habitat changes and environmental contamination.
Collapse
Affiliation(s)
- Dorcas P O'Rourke
- Department of Comparative Medicine, 208 Ed Warren Life Science Bldg., East Carolina University - The Brody School of Medicine, 600 Moye Blvd., Greenville, NC 27834, USA.
| |
Collapse
|