1
|
Groves TKH, Jellies JA. Spectral responses across a dorsal-ventral array of dermal sensilla in the medicinal leech. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2021; 207:715-727. [PMID: 34477962 PMCID: PMC8568864 DOI: 10.1007/s00359-021-01508-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Revised: 08/15/2021] [Accepted: 08/27/2021] [Indexed: 11/05/2022]
Abstract
How do animals use visual systems to extract specific features of a visual scene and respond appropriately? The medicinal leech, Hirudo verbana, is a predatory, quasi-amphibious annelid with a rich sensorium that is an excellent system in which to study how sensory cues are encoded, and how key features of visual images are mapped into the CNS. The leech visual system is broadly distributed over its entire body, consisting of five pairs of cephalic eyecups and seven segmentally iterated pairs of dermal sensilla in each mid-body segment. Leeches have been shown to respond behaviorally to both green and near ultraviolet light (UV, 365–375 nm). Here, we used electrophysiological techniques to show that spectral responses by dermal sensilla are mapped across the dorsal–ventral axis, such that the ventral sensilla respond strongly to UV light, while dorsal sensilla respond strongly to visible light, broadly tuned around green. These results establish how key features of visual information are initially encoded by spatial mapping of photo-response profiles of primary photoreceptors and provide insight into how these streams of information are presented to the CNS to inform behavioral responses.
Collapse
Affiliation(s)
- Thomas K H Groves
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI, 49008, USA
| | - John A Jellies
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI, 49008, USA.
| |
Collapse
|
2
|
Temple SE, How MJ, Powell SB, Gruev V, Marshall NJ, Roberts NW. Thresholds of polarization vision in octopuses. J Exp Biol 2021; 224:238090. [PMID: 33602676 PMCID: PMC8077535 DOI: 10.1242/jeb.240812] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2020] [Accepted: 02/11/2021] [Indexed: 12/16/2022]
Abstract
Polarization vision is widespread in nature, mainly among invertebrates, and is used for a range of tasks including navigation, habitat localization and communication. In marine environments, some species such as those from the Crustacea and Cephalopoda that are principally monochromatic, have evolved to use this adaptation to discriminate objects across the whole visual field, an ability similar to our own use of colour vision. The performance of these polarization vision systems varies, and the few cephalopod species tested so far have notably acute thresholds of discrimination. However, most studies to date have used artificial sources of polarized light that produce levels of polarization much higher than found in nature. In this study, the ability of octopuses to detect polarization contrasts varying in angle of polarization (AoP) was investigated over a range of different degrees of linear polarization (DoLP) to better judge their visual ability in more ecologically relevant conditions. The ‘just-noticeable-differences’ (JND) of AoP contrasts varied consistently with DoLP. These JND thresholds could be largely explained by their ‘polarization distance’, a neurophysical model that effectively calculates the level of activity in opposing horizontally and vertically oriented polarization channels in the cephalopod visual system. Imaging polarimetry from the animals’ natural environment was then used to illustrate the functional advantage that these polarization thresholds may confer in behaviourally relevant contexts. Summary: Octopuses are highly sensitive to small changes in the angle of polarization (<1 deg contrast), even when the degree of polarization is low, which may confer a functional advantage in behaviourally relevant contexts.
Collapse
Affiliation(s)
- Shelby E Temple
- Ecology of Vision Group, School of Biological Sciences, University of Bristol, Bristol BS8 1TQ, UK.,Azul Optics Ltd, Henleaze, Bristol BS9 4QG, UK
| | - Martin J How
- Ecology of Vision Group, School of Biological Sciences, University of Bristol, Bristol BS8 1TQ, UK
| | - Samuel B Powell
- Sensory Neurobiology Group, Queensland Brain Institute, University of Queensland, Brisbane, QLD 4072, Australia
| | - Viktor Gruev
- Biosensors Lab, Electrical and Computer Engineering, University of Illinois, Urbana, IL 61801, USA
| | - N Justin Marshall
- Sensory Neurobiology Group, Queensland Brain Institute, University of Queensland, Brisbane, QLD 4072, Australia
| | - Nicholas W Roberts
- Ecology of Vision Group, School of Biological Sciences, University of Bristol, Bristol BS8 1TQ, UK
| |
Collapse
|
3
|
Drerup C, How MJ. Polarization contrasts and their effect on the gaze stabilization of crustaceans. J Exp Biol 2021; 224:237796. [PMID: 33692078 PMCID: PMC8077661 DOI: 10.1242/jeb.229898] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Accepted: 03/01/2021] [Indexed: 01/20/2023]
Abstract
Many animals go to great lengths to stabilize their eyes relative to the visual scene and do so to enhance the localization of moving objects and to functionally partition the visual system relative to the outside world. An important cue that is used to control these stabilization movements is contrast within the visual surround. Previous studies on insects, spiders and fish have shown that gaze stabilization is achromatic (‘colour blind’), meaning that chromatic contrast alone (in the absence of apparent intensity contrasts) does not contribute to gaze stabilization. Following the assumption that polarization vision is analogous in many ways to colour vision, the present study shows that five different crustacean species do not use the polarization of light alone for gaze stabilization, despite being able to use this modality for detecting predator-like objects. This work therefore suggests that the gaze stabilization in many crustaceans cannot be elicited by the polarization of light alone. Summary: Five different crustacean species do not use the polarization of light alone for gaze stabilization, despite being able to use this modality for detecting predator-like objects.
Collapse
Affiliation(s)
- Christian Drerup
- CCMAR (Centro de Ciências do Mar), Universidade do Algarve, Campus de Gambelas, 8005-139 Faro, Portugal.,Marine Behavioural Ecology Group, Department of Zoology, University of Cambridge, Downing St, Cambridge CB2 3EJ, UK
| | - Martin J How
- School of Biological Sciences, University of Bristol, 24 Tyndall Avenue, Bristol BS8 1TQ, UK
| |
Collapse
|
4
|
Smithers SP, Roberts NW, How MJ. Parallel processing of polarization and intensity information in fiddler crab vision. SCIENCE ADVANCES 2019; 5:eaax3572. [PMID: 31457103 PMCID: PMC6703871 DOI: 10.1126/sciadv.aax3572] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/16/2019] [Accepted: 07/15/2019] [Indexed: 06/10/2023]
Abstract
Many crustaceans are sensitive to the polarization of light and use this information for object-based visually guided behaviors. For these tasks, it is unknown whether polarization and intensity information are integrated into a single-contrast channel, whereby polarization directly contributes to perceived intensity, or whether they are processed separately and in parallel. Using a novel type of visual display that allowed polarization and intensity properties of visual stimuli to be adjusted independently and simultaneously, we conducted behavioral experiments with fiddler crabs to test which of these two models of visual processing occurs. We found that, for a loom detection task, fiddler crabs process polarization and intensity information independently and in parallel. The crab's response depended on whichever contrast was the most salient. By contributing independent measures of visual contrast, polarization and intensity provide a greater range of detectable contrast information for the receiver, increasing the chance of detecting a potential threat.
Collapse
|
5
|
Misson GP, Anderson SJ. The spectral, spatial and contrast sensitivity of human polarization pattern perception. Sci Rep 2017; 7:16571. [PMID: 29185499 PMCID: PMC5707437 DOI: 10.1038/s41598-017-16873-6] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2017] [Accepted: 11/15/2017] [Indexed: 11/09/2022] Open
Abstract
It is generally believed that humans perceive linear polarized light following its conversion into a luminance signal by diattenuating macular structures. Measures of polarization sensitivity may therefore allow a targeted assessment of macular function. Our aim here was to quantify psychophysical characteristics of human polarization perception using grating and optotype stimuli defined solely by their state of linear polarization. We show: (i) sensitivity to polarization patterns follows the spectral sensitivity of macular pigment; (ii) the change in sensitivity across the central field follows macular pigment density; (iii) polarization patterns are identifiable across a range of contrasts and scales, and can be resolved with an acuity of 15.4 cycles/degree (0.29 logMAR); and (iv) the human eye can discriminate between areas of linear polarization differing in electric field vector orientation by as little as 4.4°. These findings, which support the macular diattenuator model of polarization sensitivity, are unique for vertebrates and approach those of some invertebrates with a well-developed polarization sense. We conclude that this sensory modality extends beyond Haidinger's brushes to the recognition of quantifiable spatial polarization-modulated patterns. Furthermore, the macular origin and sensitivity of human polarization pattern perception makes it potentially suitable for the detection and quantification of macular dysfunction.
Collapse
Affiliation(s)
- Gary P Misson
- Department of Ophthalmology, South Warwickshire NHS Foundation Trust, Warwick Hospital, Lakin Road, Warwick, CV34 5BW, UK. .,School of Life and Health Sciences, Aston University, Birmingham, B4 7ET, UK.
| | - Stephen J Anderson
- School of Life and Health Sciences, Aston University, Birmingham, B4 7ET, UK
| |
Collapse
|
6
|
Temple SE, McGregor JE, Miles C, Graham L, Miller J, Buck J, Scott-Samuel NE, Roberts NW. Perceiving polarization with the naked eye: characterization of human polarization sensitivity. Proc Biol Sci 2016; 282:rspb.2015.0338. [PMID: 26136441 PMCID: PMC4528539 DOI: 10.1098/rspb.2015.0338] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Like many animals, humans are sensitive to the polarization of light. We can detect the angle of polarization using an entoptic phenomenon called Haidinger's brushes, which is mediated by dichroic carotenoids in the macula lutea. While previous studies have characterized the spectral sensitivity of Haidinger's brushes, other aspects remain unexplored. We developed a novel methodology for presenting gratings in polarization-only contrast at varying degrees of polarization in order to measure the lower limits of human polarized light detection. Participants were, on average, able to perform the task down to a threshold of 56%, with some able to go as low as 23%. This makes humans the most sensitive vertebrate tested to date. Additionally, we quantified a nonlinear relationship between presented and perceived polarization angle when an observer is presented with a rotatable polarized light field. This result confirms a previous theoretical prediction of how uniaxial corneal birefringence impacts the perception of Haidinger's brushes. The rotational dynamics of Haidinger's brushes were then used to calculate corneal retardance.We suggest that psychophysical experiments, based upon the perception of polarized light, are amenable to the production of affordable technologies for self-assessment and longitudinal monitoring of visual dysfunctions such as age-related macular degeneration.
Collapse
Affiliation(s)
- Shelby E. Temple
- School of Biological Sciences, University of Bristol, Bristol BS8 1TQ, UK
- e-mail:
| | | | - Camilla Miles
- School of Biological Sciences, University of Bristol, Bristol BS8 1TQ, UK
| | - Laura Graham
- School of Biological Sciences, University of Bristol, Bristol BS8 1TQ, UK
| | - Josie Miller
- School of Biological Sciences, University of Bristol, Bristol BS8 1TQ, UK
| | - Jordan Buck
- School of Biological Sciences, University of Bristol, Bristol BS8 1TQ, UK
| | | | | |
Collapse
|
7
|
How M, Christy J, Temple S, Hemmi J, Marshall N, Roberts N. Target Detection Is Enhanced by Polarization Vision in a Fiddler Crab. Curr Biol 2015; 25:3069-73. [DOI: 10.1016/j.cub.2015.09.073] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2015] [Revised: 09/17/2015] [Accepted: 09/30/2015] [Indexed: 11/29/2022]
|
8
|
Jellies J. Which way is up? Asymmetric spectral input along the dorsal-ventral axis influences postural responses in an amphibious annelid. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2014; 200:923-38. [PMID: 25152938 DOI: 10.1007/s00359-014-0935-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2014] [Accepted: 08/14/2014] [Indexed: 11/24/2022]
Abstract
Medicinal leeches are predatory annelids that exhibit countershading and reside in aquatic environments where light levels might be variable. They also leave the water and must contend with terrestrial environments. Yet, leeches generally maintain a dorsal upward position despite lacking statocysts. Leeches respond visually to both green and near-ultraviolet (UV) light. I used LEDs to test the hypothesis that ventral, but not dorsal UV would evoke compensatory movements to orient the body. Untethered leeches were tested using LEDs emitting at red (632 nm), green (513 nm), blue (455 nm) and UV (372 nm). UV light evoked responses in 100 % of trials and the leeches often rotated the ventral surface away from it. Visible light evoked no or modest responses (12-15 % of trials) and no body rotation. Electrophysiological recordings showed that ventral sensilla responded best to UV, dorsal sensilla to green. Additionally, a higher order interneuron that is engaged in a variety of parallel networks responded vigorously to UV presented ventrally, and both the visible and UV responses exhibited pronounced light adaptation. These results strongly support the suggestion that a dorsal light reflex in the leech uses spectral comparisons across the dorsal-ventral axis rather than, or in addition to, luminance.
Collapse
Affiliation(s)
- John Jellies
- Department of Biological Sciences, Western Michigan University, Kalamazoo, MI, 49008, USA,
| |
Collapse
|
9
|
How MJ, Christy J, Roberts NW, Marshall NJ. Null point of discrimination in crustacean polarisation vision. J Exp Biol 2014; 217:2462-7. [DOI: 10.1242/jeb.103457] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
The polarisation of light is used by many species of cephalopods and crustaceans to discriminate objects or to communicate. Most visual systems with this ability, such as that of the fiddler crab, include receptors with photopigments that are oriented horizontally and vertically relative to the outside world. Photoreceptors in such an orthogonal array are maximally sensitive to polarised light with the same fixed e-vector orientation. Using opponent neural connections, this two-channel system may produce a single value of polarisation contrast and, consequently, it may suffer from null points of discrimination. Stomatopod crustaceans use a different system for polarisation vision, comprising at least four types of polarisation-sensitive photoreceptor arranged at 0°, 45°, 90° and 135° relative to each other, in conjunction with extensive rotational eye movements. This anatomical arrangement should not suffer from equivalent null points of discrimination. To test whether these two systems were vulnerable to null points, we presented the fiddler crab Uca heteropleura and the stomatopod Haptosquilla trispinosa with polarised looming stimuli on a modified LCD monitor. The fiddler crab was less sensitive to differences in the degree of polarised light when the e-vector was at -45°, than when the e-vector was horizontal. In comparison, stomatopods showed no difference in sensitivity between the two stimulus types. The results suggest that fiddler crabs suffer from a null point of sensitivity, while stomatopods do not.
Collapse
Affiliation(s)
| | - John Christy
- Smithsonian Tropical Research Institute, Republic of Panama
| | | | | |
Collapse
|
10
|
Glantz RM. Polarization vision in crayfish motion detectors. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2008; 194:565-75. [PMID: 18386016 DOI: 10.1007/s00359-008-0331-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2008] [Revised: 03/13/2008] [Accepted: 03/16/2008] [Indexed: 10/22/2022]
Abstract
Motion detector interneurons were examined to determine their responsiveness to the motion of polarized light images (i.e. images segmented by spatial variations in e-vector angle). Computer generated images were displayed as intensity contrasts or polarization contrasts on a modified LCD projection panel. The stimuli included the motion of a single stripe (45 degrees -55 degrees /s) and the global motion of a square wave grating (3.3 degrees /s). Neurons were impaled in the medulla interna. Of the neurons which exhibited a directional response to the motion of intensity contrast stimuli, about 2/3 were also directional in the response to polarized light images. Transient (nondirectional) stimuli included looming and jittery motions. The responses to the transient motions of the polarized light images were roughly comparable to those elicited by intensity contrast. The results imply that behavioral responses to polarized light images (i.e. optokinetic and defense reflexes) may have a basis in the polarization sensitivity and synaptic organization of the medulla interna.
Collapse
Affiliation(s)
- Raymon M Glantz
- Department of Biochemistry, Rice University, Houston, TX, USA.
| |
Collapse
|
11
|
Glantz RM. The distribution of polarization sensitivity in the crayfish retinula. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2007; 193:893-901. [PMID: 17598114 DOI: 10.1007/s00359-007-0242-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2007] [Revised: 04/30/2007] [Accepted: 05/12/2007] [Indexed: 10/23/2022]
Abstract
In many arthropod eyes the ommatidia contain two classes of retinular cells with orthogonally oriented microvilli. These receptors provide the basis for two-channel polarization vision. In several contexts such as navigation or the detection of polarization contrast, two channels may be insufficient. While solutions to this problem are known (e.g. in insects and stomatopod crustaceans) none have been found in the majority of decapods. To examine this issue further, the polarization sensitivity and the E-vector angle eliciting a maximum response (theta (max)) were measured at over 300 loci on the crayfish retinula. The polarization response ratio (which is proportional to polarization sensitivity) was similar at all locations on the retinula. Around the central pole of the eye, theta (max) was distributed about the vertical and horizontal axes. Along the dorsal rim, the distribution of theta (max) exhibits modes at 0 degrees , 45 degrees and 90 degrees and a small mode at 135 degrees relative to the dorso-ventral axis of the eyestalk (0 degrees ). Smaller numbers of cells (20 to 25%) with theta (max )near the diagonal were also found in anterior and posterior retinula areas. Thus crayfish visual interneurons, which integrate signals from multiple ommatidia may have access to a multi-channel polarization analyzer.
Collapse
Affiliation(s)
- Raymon M Glantz
- Friday Harbor Laboratory, 620 University Rd., Friday Harbor, WA 98250, USA.
| |
Collapse
|