1
|
Lu B, Qiu X, Yang W, Yao Z, Ma X, Deng S, Zhang Q, Fu J, Qi Y. Genetic Basis and Evolutionary Forces of Sexually Dimorphic Color Variation in a Toad-Headed Agamid Lizard. Mol Biol Evol 2024; 41:msae054. [PMID: 38466135 PMCID: PMC10963123 DOI: 10.1093/molbev/msae054] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 02/17/2024] [Accepted: 03/04/2024] [Indexed: 03/12/2024] Open
Abstract
In the animal kingdom, sexually dimorphic color variation is a widespread phenomenon that significantly influences survival and reproductive success. However, the genetic underpinnings of this variation remain inadequately understood. Our investigation into sexually dimorphic color variation in the desert-dwelling Guinan population of the toad-headed agamid lizard (Phrynocephalus putjatai) utilized a multidisciplinary approach, encompassing phenotypic, ultrastructural, biochemical, genomic analyses, and behavioral experiments. Our findings unveil the association between distinct skin colorations and varying levels of carotenoid and pteridine pigments. The red coloration in males is determined by a genomic region on chromosome 14, housing four pigmentation genes: BCO2 and three 6-pyruvoyltetrahydropterin synthases. A Guinan population-specific nonsynonymous single nucleotide polymorphism in BCO2 is predicted to alter the electrostatic potential within the binding domain of the BCO2-β-carotene complex, influencing their interaction. Additionally, the gene MAP7 on chromosome 2 emerges as a potential contributor to the blue coloration in subadults and adult females. Sex-specific expression patterns point to steroid hormone-associated genes (SULT2B1 and SRD5A2) as potential upstream regulators influencing sexually dimorphic coloration. Visual modeling and field experiments support the potential selective advantages of vibrant coloration in desert environments. This implies that natural selection, potentially coupled with assortative mating, might have played a role in fixing color alleles, contributing to prevalence in the local desert habitat. This study provides novel insights into the genetic basis of carotenoid and pteridine-based color variation, shedding light on the evolution of sexually dimorphic coloration in animals. Moreover, it advances our understanding of the driving forces behind such intricate coloration patterns.
Collapse
Affiliation(s)
- Bin Lu
- Chengdu Institute of Biology, Chinese Academy of Sciences, 610041 Chengdu, Sichuan, China
| | - Xia Qiu
- Chengdu Institute of Biology, Chinese Academy of Sciences, 610041 Chengdu, Sichuan, China
- College of Life Sciences, China Jiliang University, Hangzhou, China
| | - Weizhao Yang
- Chengdu Institute of Biology, Chinese Academy of Sciences, 610041 Chengdu, Sichuan, China
| | - Zhongyi Yao
- Chengdu Institute of Biology, Chinese Academy of Sciences, 610041 Chengdu, Sichuan, China
| | - Xiaofeng Ma
- Chengdu Institute of Biology, Chinese Academy of Sciences, 610041 Chengdu, Sichuan, China
| | - Shunyan Deng
- Chengdu Institute of Biology, Chinese Academy of Sciences, 610041 Chengdu, Sichuan, China
| | - Qi Zhang
- Chengdu Institute of Biology, Chinese Academy of Sciences, 610041 Chengdu, Sichuan, China
| | - Jinzhong Fu
- Chengdu Institute of Biology, Chinese Academy of Sciences, 610041 Chengdu, Sichuan, China
- Department of Integrative Biology, University of Guelph, Guelph, ON N1G2W1, Canada
| | - Yin Qi
- Chengdu Institute of Biology, Chinese Academy of Sciences, 610041 Chengdu, Sichuan, China
| |
Collapse
|
2
|
Anderson AP, Renn SCP. The Ancestral Modulation Hypothesis: Predicting Mechanistic Control of Sexually Heteromorphic Traits Using Evolutionary History. Am Nat 2023; 202:241-259. [PMID: 37606950 DOI: 10.1086/725438] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/23/2023]
Abstract
AbstractAcross the animal kingdom there are myriad forms within a sex across, and even within, species, rendering concepts of universal sex traits moot. The mechanisms that regulate the development of these trait differences are varied, although in vertebrates, common pathways involve gonadal steroid hormones. Gonadal steroids are often associated with heteromorphic trait development, where the steroid found at higher circulating levels is the one involved in trait development for that sex. Occasionally, there are situations in which a gonadal steroid associated with heteromorphic trait development in one sex is involved in heteromorphic or monomorphic trait development in another sex. We propose a verbal hypothesis, the ancestral modulation hypothesis (AMH), that uses the evolutionary history of the trait-particularly which sex ancestrally possessed higher trait values-to predict the regulatory pathway that governs trait expression. The AMH predicts that the genomic architecture appears first to resolve sexual conflict in an initially monomorphic trait. This architecture takes advantage of existing sex-biased signals, the gonadal steroid pathway, to generate trait heteromorphism. In cases where the other sex experiences evolutionary pressure for the new phenotype, that sex will co-opt the existing architecture by altering its signal to match that of the original high-trait-value sex. We describe the integrated levels needed to produce this pattern and what the expected outcomes will be given the evolutionary history of the trait. We present this framework as a testable hypothesis for the scientific community to investigate and to create further engagement and analysis of both ultimate and proximate approaches to sexual heteromorphism.
Collapse
|
3
|
Amdekar MS, Thaker M. Colours of stress in male Indian rock agamas predict testosterone levels but not performance. Horm Behav 2022; 144:105214. [PMID: 35696781 DOI: 10.1016/j.yhbeh.2022.105214] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 05/26/2022] [Accepted: 05/31/2022] [Indexed: 11/28/2022]
Abstract
Rapid physiological colour change offers dynamic signalling opportunities that can reveal distinct information to receivers in different contexts. Information content in dynamic colours, however, is largely unexplored. In males of the Indian rock agama (Psammophilus dorsalis), stressful events, including male-male agonistic interactions, induce a colour change, wherein the dorsal band turns yellow and the lateral bands turn orange. We aimed to determine whether these pigment-based dynamic colours convey information about individual quality. Using an agamid-specific visual model, we first quantified the chromatic and achromatic contrasts of each colour component displayed by males during handling stress, which induces the maximal response of aggression-typical colours. We then measured baseline testosterone levels, morphology (body mass and size), and performance measures (bite force and sprint speed) of these lizards. Chromatic contrasts of the dorsal yellow and lateral orange bands, individually and relative to each other (internal pair), were negatively correlated with testosterone levels, while the chromatic contrast of the internal pair was positively correlated with body condition. The lack of an association between colour contrasts and both bite force and sprint speed indicate that the conspicuousness of colours expressed during stressful events, such as agonistic interactions, do not reveal male performance ability. Despite our expectations of a positive relationship with testosterone, morphology (body condition), and performance (bite force, sprint speed), we find that for P. dorsalis, the conspicuousness of stress-induced colours provide only some information about individual quality. We speculate that the dynamicity of physiological colours may influence their function as content-containing signals in social interactions.
Collapse
Affiliation(s)
- Madhura S Amdekar
- Centre for Ecological Sciences, Indian Institute of Science, Bengaluru 560012, India
| | - Maria Thaker
- Centre for Ecological Sciences, Indian Institute of Science, Bengaluru 560012, India.
| |
Collapse
|
4
|
Cruz-Cano NB, Sánchez-Rivera UÁ, Álvarez-Rodríguez C, Dávila-Govantes R, Cárdenas-León M, Martínez-Torres M. Sex steroids are correlated with environmental factors and body condition during the reproductive cycle in females of the lizard Sceloporus torquatus. Gen Comp Endocrinol 2021; 314:113921. [PMID: 34606744 DOI: 10.1016/j.ygcen.2021.113921] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 09/25/2021] [Accepted: 09/29/2021] [Indexed: 12/06/2022]
Abstract
Reproduction is regulated by multiple factors that influence physiology and behavior to ensure the continuity of species. However, more work is needed to examine the complex relationships between environmental factors and endocrine transducers that modulate reproductive cycles, particularly in lizards. Here, we aimed to characterize the variation in plasma sex steroid levels in different stages of the reproductive cycle in the lizard Sceloporus torquatus and assess whether sex steroid levels were related to environmental factors (temperature, photoperiod, precipitation, and relative humidity) and body condition. Plasma concentrations of estradiol (E2) and progesterone (P4) from blood samples were quantified by enzyme-linked immunosorbent assay (ELISA) and radioimmunoanalysis (RIA), respectively. Our results indicate that sex steroid concentrations were positively related to follicular development but negatively related to temperature and precipitation. E2 increased as the follicles grew, and its concentrations were highest in the preovulatory phase. P4 showed a similar pattern and persisted during pregnancy. Changes in body condition were non-significant and mainly unrelated to the reproductive stage and plasma sex steroids. Our findings indicate that sex steroids change depending on the season and reproductive stage. We observed high concentrations of E2 and P4 in the late vitellogenic and preovulatory stages, probably because of their role in promoting vitellogenesis and ovulation. Additionally, we observed that follicular development is correlated with temperature and photoperiod. To better understand the mechanisms underlying reproduction, future studies of captive populations where environmental factors can be manipulated are needed.
Collapse
Affiliation(s)
- Norma Berenice Cruz-Cano
- Posgrado en Ciencias Biológicas, Universidad Nacional Autónoma de México, Edificio D, 1° Piso, Circuito de Posgrados, Ciudad Universitaria, Coyoacán, Ciudad de México, México; Laboratorio de Biología de la Reproducción, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Avenida de los Barrios s/n, Los Reyes Iztacala, Tlalnepantla, Estado de México, C.P. 54110, México.
| | - Uriel Ángel Sánchez-Rivera
- Laboratorio de Biología de la Reproducción, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Avenida de los Barrios s/n, Los Reyes Iztacala, Tlalnepantla, Estado de México, C.P. 54110, México
| | - Carmen Álvarez-Rodríguez
- Laboratorio de Biología de la Reproducción, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Avenida de los Barrios s/n, Los Reyes Iztacala, Tlalnepantla, Estado de México, C.P. 54110, México
| | - Rodrigo Dávila-Govantes
- Laboratorio de Biología de la Reproducción, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Avenida de los Barrios s/n, Los Reyes Iztacala, Tlalnepantla, Estado de México, C.P. 54110, México
| | - Mario Cárdenas-León
- Laboratorio de Biología de la Reproducción, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Avenida de los Barrios s/n, Los Reyes Iztacala, Tlalnepantla, Estado de México, C.P. 54110, México; Laboratorio de Hormonas Proteicas, Departamento de Biología de la Reproducción, Instituto Nacional de Ciencias Médicas y Nutrición Salvador Zubirán, Avenida Vasco de Quiroga No. 15, Colonia Belisario Domínguez Sección XVI, Delegación Tlalpan, C.P. 14080, Ciudad de México, México
| | - Martín Martínez-Torres
- Laboratorio de Biología de la Reproducción, Facultad de Estudios Superiores Iztacala, Universidad Nacional Autónoma de México, Avenida de los Barrios s/n, Los Reyes Iztacala, Tlalnepantla, Estado de México, C.P. 54110, México.
| |
Collapse
|
5
|
Dickerson AL, Rankin KJ, Cadena V, Endler JA, Stuart-Fox D. Rapid beard darkening predicts contest outcome, not copulation success, in bearded dragon lizards. Anim Behav 2020. [DOI: 10.1016/j.anbehav.2020.10.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
6
|
Fresnillo B, Belliure J, Gil D, Cuervo JJ. Hormonal control of seasonal color change in female spiny-footed lizards: an observational and experimental approach. Curr Zool 2019; 65:633-642. [PMID: 31857810 PMCID: PMC6911850 DOI: 10.1093/cz/zoz012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2018] [Accepted: 03/25/2019] [Indexed: 11/12/2022] Open
Abstract
Breeding coloration of females often signals aspects of their reproductive status, suggesting a link between color and sex steroid hormones. In this study, we examined the relationships between 2 sex steroid hormones (progesterone and β-estradiol) and reproductive coloration in female spiny-footed lizards Acanthodactylus erythrurus. We first explored natural variation in female plasma hormone levels and coloration during their reproductive cycle. β-estradiol was negatively related to brightness and positively related to red saturation, whereas progesterone was not significantly related to coloration. After identifying key relationships, plasma hormone concentrations were manipulated by creating 3 experimental female groups (β-estradiol-treated, progesterone-treated, and control), and the effects on coloration were monitored. β-estradiol-treated females, in which there was a rise in both β-estradiol and progesterone levels, lost their red coloration earlier than females in the other 2 experimental groups, whereas progesterone treatment had no significant effect on female coloration. Our results suggest that high levels of either β-estradiol alone or β-estradiol together with progesterone trigger the loss of red coloration in female spiny-footed lizards, and that progesterone alone does not affect coloration. We hypothesize that changes in female breeding color might be regulated by β-estradiol in species in which conspicuous coloration is displayed before ovulation, and by progesterone in species in which this color is displayed during gravidity.
Collapse
Affiliation(s)
- Belén Fresnillo
- Department of Life Sciences, Ecology Section, University of Alcalá, Madrid, Spain
- Department of Functional and Evolutionary Ecology, Estación Experimental de Zonas Áridas (CSIC), Carretera de Sacramento s/n, Almería, Spain
| | - Josabel Belliure
- Department of Life Sciences, Ecology Section, University of Alcalá, Madrid, Spain
| | - Diego Gil
- Department of Evolutionary Ecology, Museo Nacional de Ciencias Naturales (CSIC), Madrid, Spain
| | - José J Cuervo
- Department of Evolutionary Ecology, Museo Nacional de Ciencias Naturales (CSIC), Madrid, Spain
- Address correspondence to José J. Cuervo. E-mail:
| |
Collapse
|
7
|
McLean CA, Lutz A, Rankin KJ, Elliott A, Moussalli A, Stuart-Fox D. Red carotenoids and associated gene expression explain colour variation in frillneck lizards. Proc Biol Sci 2019; 286:20191172. [PMID: 31311479 DOI: 10.1098/rspb.2019.1172] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
A long-standing hypothesis in evolutionary ecology is that red-orange ornamental colours reliably signal individual quality owing to limited dietary availability of carotenoids and metabolic costs associated with their production, such as the bioconversion of dietary yellow carotenoids to red ketocarotenoids. However, in ectothermic vertebrates, these colours can also be produced by self-synthesized pteridine pigments. As a consequence, the relative ratio of pigment types and their biochemical and genetic basis have implications for the costs and information content of colour signals; yet they remain poorly known in most taxonomic groups. We tested whether red- and yellow-frilled populations of the frillneck lizard, Chlamydosaurus kingii, differ in the ratio of different biochemical classes of carotenoid and pteridine pigments, and examined associated differences in gene expression. We found that, unlike other squamate reptiles, red hues derive from a higher proportion of ketocarotenoids relative to both dietary yellow carotenoids and to pteridines. Whereas red frill skin showed higher expression of several genes associated with carotenoid metabolism, yellow frill skin showed higher expression of genes associated with steroid hormones. Based on the different mechanisms underlying red and yellow signals, we hypothesize that frill colour conveys different information in the two populations. More generally, the data expand our knowledge of the genetic and biochemical basis of colour signals in vertebrates.
Collapse
Affiliation(s)
- Claire A McLean
- School of BioSciences, The University of Melbourne, Parkville, Victoria 3010, Australia.,Sciences Department, Museums Victoria, Carlton Gardens, Victoria 3053, Australia
| | - Adrian Lutz
- School of BioSciences, The University of Melbourne, Parkville, Victoria 3010, Australia.,Metabolomics Australia, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Katrina J Rankin
- School of BioSciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Adam Elliott
- School of BioSciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Adnan Moussalli
- Sciences Department, Museums Victoria, Carlton Gardens, Victoria 3053, Australia
| | - Devi Stuart-Fox
- School of BioSciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| |
Collapse
|
8
|
The redder the better? Information content of red skin coloration in female Japanese macaques. Behav Ecol Sociobiol 2019. [DOI: 10.1007/s00265-019-2712-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
9
|
Robinson CD, Gifford ME. Intraseasonal Changes of Patch Color in Prairie Lizards (Sceloporus Consobrinus). HERPETOLOGICA 2019. [DOI: 10.1655/d-18-00029.1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
| | - Matthew E. Gifford
- Department of Biology, University of Central Arkansas, Conway, AR 72035, USA
| |
Collapse
|
10
|
Yewers MSC, Stuart‐Fox D, McLean CA. Space use and genetic structure do not maintain color polymorphism in a species with alternative behavioral strategies. Ecol Evol 2019; 9:295-306. [PMID: 30680114 PMCID: PMC6342114 DOI: 10.1002/ece3.4729] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Revised: 10/28/2018] [Accepted: 10/31/2018] [Indexed: 01/09/2023] Open
Abstract
Space use including territoriality and spatial arrangement within a population can reveal important information on the nature, dynamics, and evolutionary maintenance of alternative strategies in color polymorphic species. Despite the prevalence of color polymorphic species as model systems in evolutionary biology, the interaction between space use and genetic structuring of morphs within populations has rarely been examined. Here, we assess the spatial and genetic structure of male throat color morphs within a population of the tawny dragon lizard, Ctenophorus decresii. Male color morphs do not differ in morphology but differ in aggressive and antipredator behaviors as well as androgen levels. Despite these behavioral and endocrine differences, we find that color morphs do not differ in territory size, with their spatial arrangement being essentially random with respect to each other. There were no differences in genetic diversity or relatedness between morphs; however, there was significant, albeit weak, genetic differentiation between morphs, which was unrelated to geographic distance between individuals. Our results indicate potential weak barriers to gene flow between some morphs, potentially due to nonrandom pre- or postcopulatory mate choice or postzygotic genetic incompatibilities. However, space use, spatial structure, and nonrandom mating do not appear to be primary mechanisms maintaining color polymorphism in this system, highlighting the complexity and variation in alternative strategies associated with color polymorphism.
Collapse
Affiliation(s)
| | - Devi Stuart‐Fox
- School of BioSciencesThe University of MelbourneMelbourneVictoriaAustralia
| | - Claire Alice McLean
- School of BioSciencesThe University of MelbourneMelbourneVictoriaAustralia
- Sciences Department, Museum VictoriaCarlton GardensVictoriaAustralia
| |
Collapse
|
11
|
San-Jose LM, Roulin A. Toward Understanding the Repeated Occurrence of Associations between Melanin-Based Coloration and Multiple Phenotypes. Am Nat 2018; 192:111-130. [PMID: 30016163 DOI: 10.1086/698010] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Melanin is the most widespread pigment in organisms. Melanin-based coloration has been repeatedly observed to be associated with the same traits and in the same direction in different vertebrate and insect species. However, whether any factors that are common to different taxa account for the repeated evolution of melanin-phenotype associations remains unclear. We propose to approach this question from the perspective of convergent and parallel evolution to clarify to what extent different species have evolved the same associations owing to a shared genetic basis and being subjected to similar selective pressures. Our current understanding of the genetic basis of melanin-phenotype associations allows for both convergent and parallel evolution, but this understanding is still limited. Further research is needed to clarify the generality and interdependencies of the different proposed mechanisms (supergenes, pleiotropy based on hormones, or neural crest cells). The general ecological scenarios whereby melanin-based coloration is under selection-protection from ultraviolet radiation, thermoregulation in cold environments, or as a signal of social status-offer a good opportunity to study how melanin-phenotype associations evolve. Reviewing these scenarios shows that some traits associated with melanin-based coloration might be selected together with coloration by also favoring adaptation but that other associated traits might impede adaptation, which may be indicative of genetic constraints. We therefore encourage further research on the relative roles that selection and genetic constraints play in shaping multiple melanin-phenotype associations. Placed into a phylogenetic context, this will help clarify to what extent these associations result from convergent or parallel evolutionary processes and why melanin-phenotype associations are so common across the tree of life.
Collapse
|
12
|
Harvey MB, Shaney K, Sidik I, Kurniawan N, Smith EN. Endemic Dragons of Sumatra's Volcanoes: New Species ofDendragama(Squamata: Agamidae) and Status ofSalea rosaceumThominot. HERPETOLOGICAL MONOGRAPHS 2017. [DOI: 10.1655/herpmonographs-d-16-00012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
- Michael B. Harvey
- Department of Biological Sciences, Broward College, 3501 SW Davie Road, Davie, FL 33314, USA
| | - Kyle Shaney
- The Amphibian and Reptile Diversity Research Center and Department of Biology, University of Texas at Arlington, 501 S Nedderman Drive, Arlington, TX 76010, USA
| | - Irvan Sidik
- Laboratory of Herpetology, Museum Zoologicum Bogoriense, Research Center for Biology, Indonesian Institute of Sciences–LIPI, Jl Raya Jakarta Bogor km 46, Cibinong, West Java, 16911, Indonesia
| | - Nia Kurniawan
- Department of Biology, Universitas Brawijaya, Jl Veteran, Malang, East Java 65145, Indonesia
| | - Eric N. Smith
- The Amphibian and Reptile Diversity Research Center and Department of Biology, University of Texas at Arlington, 501 S Nedderman Drive, Arlington, TX 76010, USA
| |
Collapse
|
13
|
Yewers MSC, Jessop TS, Stuart-Fox D. Endocrine differences among colour morphs in a lizard with alternative behavioural strategies. Horm Behav 2017; 93:118-127. [PMID: 28478216 DOI: 10.1016/j.yhbeh.2017.05.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2016] [Revised: 03/18/2017] [Accepted: 05/02/2017] [Indexed: 11/16/2022]
Abstract
Alternative behavioural strategies of colour morphs are expected to associate with endocrine differences and to correspond to differences in physical performance (e.g. movement speed, bite force in lizards); yet the nature of correlated physiological and performance traits in colour polymorphic species varies widely. Colour morphs of male tawny dragon lizards Ctenophorus decresii have previously been found to differ in aggressive and anti-predator behaviours. We tested whether known behavioural differences correspond to differences in circulating baseline and post-capture stress levels of androgen and corticosterone, as well as bite force (an indicator of aggressive performance) and field body temperature. Immediately after capture, the aggressive orange morph had higher circulating androgen than the grey morph or the yellow morph. Furthermore, the orange morph maintained high androgen following acute stress (30min of capture); whereas androgen increased in the grey and yellow morphs. This may reflect the previously defined behavioural differences among morphs as the aggressive response of the yellow morph is conditional on the colour of the competitor and the grey morph shows consistently low aggression. In contrast, all morphs showed an increase in corticosterone concentration after capture stress and morphs did not differ in levels of corticosterone stress magnitude (CSM). Morphs did not differ in size- and temperature-corrected bite force but did in body temperature at capture. Differences in circulating androgen and body temperature are consistent with morph-specific behavioural strategies in C. decresii but our results indicate a complex relationship between hormones, behaviour, temperature and bite force within and between colour morphs.
Collapse
Affiliation(s)
| | - Tim S Jessop
- Centre for Integrative Ecology, School of Life and Environmental Sciences, Deakin University, Waurn Ponds, Australia
| | - Devi Stuart-Fox
- School of BioSciences, The University of Melbourne, Australia
| |
Collapse
|
14
|
McLean CA, Lutz A, Rankin KJ, Stuart-Fox D, Moussalli A. Revealing the Biochemical and Genetic Basis of Color Variation in a Polymorphic Lizard. Mol Biol Evol 2017; 34:1924-1935. [DOI: 10.1093/molbev/msx136] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
|
15
|
Jones SM. Variations upon a theme: Australian lizards provide insights into the endocrine control of vertebrate reproductive cycles. Gen Comp Endocrinol 2017; 244:60-69. [PMID: 26342969 DOI: 10.1016/j.ygcen.2015.09.004] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/18/2015] [Revised: 08/13/2015] [Accepted: 09/01/2015] [Indexed: 11/28/2022]
Abstract
Australian lizards exhibit a broad array of different reproductive strategies and provide an extraordinary diversity and range of models with which to address fundamental problems in reproductive biology. Studies on lizards have frequently led to new insights into hormonal regulatory pathways or mechanisms of control, but we have detailed knowledge of the reproductive cycle in only a small percentage of known species. This review provides an overview and synthesis of current knowledge of the hormonal control of reproductive cycles in Australian lizards. Agamid lizards have provided useful models with which to test hypotheses about the hormonal regulation of the expression of reproductive behaviors, while research on viviparous skinks is providing insights into the evolution of the endocrine control of gestation. However, in order to better understand the potential risks that environmental factors such as climate change and endocrine disrupting chemicals pose to our fauna, better knowledge is required of the fundamental characteristics of the reproductive cycle in a broader range of lizard species.
Collapse
Affiliation(s)
- Susan M Jones
- School of Biological Sciences, University of Tasmania, Private Bag 55, Hobart, TAS 7001, Australia.
| |
Collapse
|
16
|
Rankin K, Stuart-Fox D. Testosterone-Induced Expression of Male Colour Morphs in Females of the Polymorphic Tawny Dragon Lizard, Ctenophorus decresii. PLoS One 2015; 10:e0140458. [PMID: 26485705 PMCID: PMC4615632 DOI: 10.1371/journal.pone.0140458] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 09/28/2015] [Indexed: 01/02/2023] Open
Abstract
Many colour polymorphisms are present only in one sex, usually males, but proximate mechanisms controlling the expression of sex-limited colour polymorphisms have received little attention. Here, we test the hypothesis that artificial elevation of testosterone in females of the colour polymorphic tawny dragon lizard, Ctenophorus decresii, can induce them to express the same colour morphs, in similar frequencies, to those found in males. Male C. decresii, express four discrete throat colour morphs (orange, yellow, grey and an orange central patch surrounded by yellow). We used silastic implants to experimentally elevate testosterone levels in mature females to induce colour expression. Testosterone elevation resulted in a substantial increase in the proportion and intensity of orange but not yellow colouration, which was present in a subset of females prior to treatment. Consequently, females exhibited the same set of colour morphs as males, and we confirmed that these morphs are objectively classifiable, by using digital image analyses and spectral reflectance measurements, and occur in similar frequencies as in males. These results indicate that the influence of testosterone differs for different colours, suggesting that their expression may be governed by different proximate hormonal mechanisms. Thus, caution must be exercised when using artificial testosterone manipulation to induce female expression of sex-limited colour polymorphisms. Nevertheless, the ability to express sex-limited colours (in this case orange) to reveal the same, objectively classifiable morphs in similar frequencies to males suggests autosomal rather than sex-linked inheritance, and can facilitate further research on the genetic basis of colour polymorphism, including estimating heritability and selection on colour morphs from pedigree data.
Collapse
Affiliation(s)
- Katrina Rankin
- School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
- * E-mail:
| | - Devi Stuart-Fox
- School of BioSciences, The University of Melbourne, Parkville, Victoria, Australia
| |
Collapse
|
17
|
Walker S, Stuart-Fox D, Kearney MR. Has contemporary climate change played a role in population declines of the lizard Ctenophorus decresii from semi-arid Australia? J Therm Biol 2014; 54:66-77. [PMID: 26615728 DOI: 10.1016/j.jtherbio.2014.12.001] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2014] [Revised: 12/02/2014] [Accepted: 12/03/2014] [Indexed: 10/24/2022]
Abstract
Whilst contemporary climatic changes are small in magnitude compared to those predicted for the coming decades, they have already been linked to species range shifts and local extinctions. Elucidating the drivers behind species' responses to contemporary climate change will better inform management strategies for vulnerable and pest species alike. A recent proposal to explain worldwide local extinctions in lizards is that increasing maximum temperatures have constrained lizard activity time in the breeding season beyond extinction thresholds. Here we document a significant population decline and potential local extinction at the warm (northern) range margin of the tawny dragon, Ctenophorus decresii, a rock-dwelling lizard from the Flinders Ranges in semi-arid Australia. We developed and tested a biophysical model of tawny dragon thermoregulatory behaviour and drove the model with daily weather data for the period 1990-2009 across the Flinders Ranges. Our results indicate that potential annual activity time has likely increased over this period throughout the historic range, with within-season declines only in the summer months at the northern range limit. However, populations that have declined since 2000 have also likely experienced higher active body temperatures and more stringent retreat-site requirements (deeper crevices) than have regions where the species remains common, during a period of declining rainfall. Our laboratory estimates of thermal preference in this species were insensitive to altered nutritional and hydric state. Thus it is possible that recent population declines are linked to desiccation stress driven by higher body temperatures and declining rainfall. Our study illustrates that simple indices of the impact of climate warming on animals, such as activity restriction, may in fact reflect a variety of potential mechanisms whose ultimate outcome will be contingent on other factors such as water and shelter availability.
Collapse
Affiliation(s)
- Samantha Walker
- Department of Zoology, The University of Melbourne, Parkville, Vic. 3010, Australia
| | - Devi Stuart-Fox
- Department of Zoology, The University of Melbourne, Parkville, Vic. 3010, Australia
| | - Michael R Kearney
- Department of Zoology, The University of Melbourne, Parkville, Vic. 3010, Australia.
| |
Collapse
|
18
|
Pimm RH, Dutton C, O'Handley S, Mastromonaco GF. Assessment of the reproductive status of female veiled chameleons (Chamaeleo calyptratus) using hormonal, behavioural and physical traits. Zoo Biol 2014; 34:20-32. [DOI: 10.1002/zoo.21185] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Revised: 09/27/2014] [Accepted: 10/09/2014] [Indexed: 11/10/2022]
Affiliation(s)
- Robyn H. Pimm
- Toronto Zoo; Scarborough; Ontario Canada
- University of Guelph; Guelph; Ontario Canada
| | | | | | | |
Collapse
|
19
|
Tang ZJ, Lue SI, Tsai MJ, Yu TL, Thiyagarajan V, Lee CH, Huang WT, Weng CF. The Hormonal Regulation of Color Changes in the Sexually Dichromatic FrogBuergeria robusta. Physiol Biochem Zool 2014; 87:397-410. [DOI: 10.1086/675678] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
20
|
Hamilton DG, Whiting MJ, Pryke SR. Fiery frills: carotenoid-based coloration predicts contest success in frillneck lizards. Behav Ecol 2013. [DOI: 10.1093/beheco/art041] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
21
|
Olsson M, Stuart-Fox D, Ballen C. Genetics and evolution of colour patterns in reptiles. Semin Cell Dev Biol 2013; 24:529-41. [PMID: 23578866 DOI: 10.1016/j.semcdb.2013.04.001] [Citation(s) in RCA: 118] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Accepted: 04/02/2013] [Indexed: 10/27/2022]
Abstract
The study of coloration in the polyphyletic reptilians has flourished in the last two decades, in particular with respect to the underlying genetics of colour traits, the function of colours in social interactions, and ongoing selection on these traits in the wild. The taxonomic bias, however, is profound: at this level of resolution almost all available information is for diurnal lizards. Therefore, we focus on case studies, for which there are as complete causal sequences of colour evolution as possible, from phenotypic expression of variation in colour, to ongoing selection in the wild. For work prior to 1992 and for a broader coverage of reptilian coloration we refer the readers to Cooper and Greenburg's (Biology of the Reptilia, 1992) review. There are seven major conclusions we would like to emphasise: (a) visual systems in diurnal lizards are broadly conserved but among the wider range of reptiles in general, there is functionally important variation in the number and type of photoreceptors, spectral tuning of photopigments and optical properties of the eye; (b) coloration in reptiles is a function of complex interactions between structural and pigmentary components, with implications for both proximate control and condition dependence of colour expression; (c) studies of colour-variable species have enabled estimates of heritability of colour and colour patterns, which often show a simple Mendelian pattern of inheritance; (d) colour-polymorphic lizard species sometimes, but not always, show striking differences in genetically encoded reproductive tactics and provide useful models for studying the evolution and maintenance of polymorphism; (e) both male and female colours are sometimes, but not always, a significant component of socio-sexual signalling, often based on multiple traits; (f) evidence for effects of hormones and condition on colour expression, and trade-offs with immunocompetence and parasite load, is variable; (g) lizards show fading of colours in response to physiological stress and ageing and are hence likely to be appropriate models for work on the interactions between handicaps, indicator traits, parasitology and immunoecology.
Collapse
Affiliation(s)
- Mats Olsson
- School of Biological Sciences, University of Sydney, Sydney, NSW 2006, Australia.
| | | | | |
Collapse
|
22
|
Weiss SL, Mulligan EE, Wilson DS, Kabelik D. Effect of stress on female-specific ornamentation. ACTA ACUST UNITED AC 2013; 216:2641-7. [PMID: 23531828 DOI: 10.1242/jeb.080937] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Signal honesty is theorized to be maintained by condition-dependent trait expression. However, the mechanisms mediating the condition dependence of sexually selected traits are often unknown. New work suggests that elevated glucocorticoid levels during physiological stress may play a role in maintaining signal honesty. Here, we experimentally examine the effect of both chronic and acute stress on the expression of the condition-dependent ornamentation of female striped plateau lizards, Sceloporus virgatus. Females were stressed either chronically via corticosterone implants or relatively acutely via autotomy, were sham manipulated or were left unmanipulated. Both stressors resulted in elevations in corticosterone within physiologically relevant levels, though the implants resulted in significantly higher levels than did autotomy. Corticosterone-implanted females were less likely to produce a clutch of eggs, but those individuals that did reproduce had reproductive output similar to that of females from other treatment groups. Compared with females in other groups, the corticosterone-implanted females tended to develop smaller ornaments that had less UV and orange-to-red wavelength reflectance relative to medium wavelength reflectance. The sex steroid hormones testosterone and estradiol were correlated to corticosterone levels, but did not appear to underlie the effect on ornament expression; of the steroids measured, only corticosterone levels were negatively related to ornament size and coloration. Thus, the condition-dependent ornamentation of female lizards is sensitive to chronic elevations in stress hormones, supporting their importance in the maintenance of signal honesty.
Collapse
Affiliation(s)
- Stacey L Weiss
- University of Puget Sound, 1500 N Warner Street, Tacoma, WA 98416-1088, USA
| | | | | | | |
Collapse
|
23
|
A review of the evolution of viviparity in squamate reptiles: the past, present and future role of molecular biology and genomics. J Comp Physiol B 2011; 181:575-94. [DOI: 10.1007/s00360-011-0584-0] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2011] [Revised: 04/19/2011] [Accepted: 04/20/2011] [Indexed: 12/06/2022]
|
24
|
|
25
|
Chan R, Stuart-Fox D, Jessop TS. Why are females ornamented? A test of the courtship stimulation and courtship rejection hypotheses. Behav Ecol 2009. [DOI: 10.1093/beheco/arp136] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|