1
|
Moghadam Fard A, Goodarzi P, Mottahedi M, Garousi S, Zadabhari H, Kalantari Shahijan M, Esmaeili S, Nabi-Afjadi M, Yousefi B. Therapeutic applications of melatonin in disorders related to the gastrointestinal tract and control of appetite. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2024; 397:5335-5362. [PMID: 38358468 DOI: 10.1007/s00210-024-02972-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Accepted: 01/19/2024] [Indexed: 02/16/2024]
Abstract
Most animals have large amounts of the special substance melatonin, which is controlled by the light/dark cycle in the suprachiasmatic nucleus. According to what is now understood, the gastrointestinal tract (GIT) and other areas of the body are sites of melatonin production. According to recent studies, the GIT and adjacent organs depend critically on a massive amount of melatonin. Not unexpectedly, melatonin's many biological properties, such as its antioxidant, anti-inflammatory, pro-apoptotic, anti-proliferative, anti-metastasis, and antiangiogenic properties, have drawn the attention of researchers more and more. Because melatonin is an antioxidant, it produces a lot of secretions in the GIT's mucus and saliva, which shields cells from damage and promotes the development of certain GIT-related disorders. Melatonin's ability to alter cellular behavior in the GIT and other associated organs, such as the liver and pancreas, is another way that it functions. This behavior alters the secretory and metabolic activities of these cells. In this review, we attempted to shed fresh light on the many roles that melatonin plays in the various regions of the gastrointestinal tract by focusing on its activities for the first time.
Collapse
Affiliation(s)
| | - Pardis Goodarzi
- School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Mehran Mottahedi
- Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Setareh Garousi
- Faculty of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Hamed Zadabhari
- Physiotherapy and Rehabilitation Faculty, Medipol University Health of Science, Istanbul, Turkey
| | | | - Saeedeh Esmaeili
- Faculty of Pharmacy, Tehran Medical Sciences, Islamic Azad University, Tehran, Iran
| | - Mohsen Nabi-Afjadi
- Department of Biochemistry, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| | - Bahman Yousefi
- Faculty of Medicine, Tabriz University of Medical Sciences, Tabriz, Iran.
- Immunology Research Center, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
2
|
Mousavi S, Qiu H, Andrews MT, Checco JW. Peptidomic Analysis Reveals Seasonal Neuropeptide and Peptide Hormone Changes in the Hypothalamus and Pituitary of a Hibernating Mammal. ACS Chem Neurosci 2023; 14:2569-2581. [PMID: 37395621 PMCID: PMC10529138 DOI: 10.1021/acschemneuro.3c00268] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/04/2023] Open
Abstract
During the winter, hibernating mammals undergo extreme changes in physiology, which allow them to survive several months without access to food. These animals enter a state of torpor, which is characterized by decreased metabolism, near-freezing body temperatures, and a dramatically reduced heart rate. The neurochemical basis of this regulation is largely unknown. Based on prior evidence suggesting that the peptide-rich hypothalamus plays critical roles in hibernation, we hypothesized that changes in specific cell-cell signaling peptides (neuropeptides and peptide hormones) underlie physiological changes during torpor/arousal cycles. To test this hypothesis, we used a mass spectrometry-based peptidomics approach to examine seasonal changes of endogenous peptides that occur in the hypothalamus and pituitary of a model hibernating mammal, the thirteen-lined ground squirrel (Ictidomys tridecemlineatus). In the pituitary, we observed changes in several distinct peptide hormones as animals prepared for torpor in October, exited torpor in March, and progressed from spring (March) to fall (August). In the hypothalamus, we observed an overall increase in neuropeptides in October (pre-torpor), a decrease as the animal entered torpor, and an increase in a subset of neuropeptides during normothermic interbout arousals. Notable changes were observed for feeding regulatory peptides, opioid peptides, and several peptides without well-established functions. Overall, our study provides critical insight into changes in endogenous peptides in the hypothalamus and pituitary during mammalian hibernation that were not available from transcriptomic measurements. Understanding the molecular basis of the hibernation phenotype may pave the way for future efforts to employ hibernation-like strategies for organ preservation, combating obesity, and treatment of stroke.
Collapse
Affiliation(s)
- Somayeh Mousavi
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, United States
| | - Haowen Qiu
- Center for Biotechnology, University of Nebraska-Lincoln, Lincoln, NE 68588, United States
- The Nebraska Center for Integrated Biomolecular Communication (NCIBC), University of Nebraska-Lincoln, Lincoln, NE 68588, United States
| | - Matthew T. Andrews
- School of Natural Resources, University of Nebraska-Lincoln, Lincoln, NE 68583, United States
| | - James W. Checco
- Department of Chemistry, University of Nebraska-Lincoln, Lincoln, NE 68588, United States
- The Nebraska Center for Integrated Biomolecular Communication (NCIBC), University of Nebraska-Lincoln, Lincoln, NE 68588, United States
| |
Collapse
|
3
|
Raitiere MN. Does photoperiodism involve a seasonal and non-pathological Warburg effect? Med Hypotheses 2020; 135:109447. [DOI: 10.1016/j.mehy.2019.109447] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Accepted: 10/20/2019] [Indexed: 12/15/2022]
|
4
|
Affiliation(s)
- Thomas E Tomasi
- Department of Biology, Missouri State University, Springfield, MO, USA
| | - Briana N Anderson
- Department of Biology, Missouri State University, Springfield, MO, USA
| | - Theodore Garland
- Department of Evolution, Ecology, and Organismal Biology, University of California – Riverside, Riverside, CA, USA
| |
Collapse
|
5
|
White Adipose Tissue Response of Obese Mice to Ambient Oxygen Restriction at Thermoneutrality: Response Markers Identified, but no WAT Inflammation. Genes (Basel) 2019; 10:genes10050359. [PMID: 31083422 PMCID: PMC6562665 DOI: 10.3390/genes10050359] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 05/03/2019] [Accepted: 05/06/2019] [Indexed: 11/16/2022] Open
Abstract
Obesity is associated with white adipose tissue (WAT) hypoxia and inflammation. We aimed to test whether mild environmental oxygen restriction (OxR, 13% O2), imposing tissue hypoxia, triggers WAT inflammation in obese mice. Thirteen weeks diet-induced obese male adult C57BL/6JOlaHsd mice housed at thermoneutrality were exposed for five days to OxR versus normoxia. WAT and blood were isolated and used for analysis of metabolites and adipokines, WAT histology and macrophage staining, and WAT transcriptomics. OxR increased circulating levels of haemoglobin and haematocrit as well as hypoxia responsive transcripts in WAT and decreased blood glucose, indicating systemic and tissue hypoxia. WAT aconitase activity was inhibited. Macrophage infiltration as marker for WAT inflammation tended to be decreased, which was supported by down regulation of inflammatory genes S100a8, Ccl8, Clec9a, Saa3, Mgst2, and Saa1. Other down regulated processes include cytoskeleton remodelling and metabolism, while response to hypoxia appeared most prominently up regulated. The adipokines coiled-coil domain containing 3 (CCDC3) and adiponectin, as well as the putative WAT hormone cholecystokinin (CCK), were reduced by OxR on transcript (Cck, Ccdc3) and/or serum protein level (adiponectin, CCDC3). Conclusively, our data demonstrate that also in obese mice OxR does not trigger WAT inflammation. However, OxR does evoke a metabolic response in WAT, with CCDC3 and adiponectin as potential markers for systemic or WAT hypoxia.
Collapse
|
6
|
Lima-Cabello E, Díaz-Casado ME, Guerrero JA, Otalora BB, Escames G, López LC, Reiter RJ, Acuña-Castroviejo D. A review of the melatonin functions in zebrafish physiology. J Pineal Res 2014; 57:1-9. [PMID: 24920150 DOI: 10.1111/jpi.12149] [Citation(s) in RCA: 47] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/01/2014] [Accepted: 06/06/2014] [Indexed: 12/29/2022]
Abstract
Melatonin is part of the evolutionary conserved highly functional network in vertebrates. It plays a central role in the adaptative behavior of the animal to the environment, including entrainment of daily and annual physiological rhythms, reproductive behavior, food intake, locomotor activity, growth, and breeding performance. In zebrafish, apart from its synchronizing capabilities, melatonin seems to have a major role in multiple physiological processes. Extensive knowledge of its genome and the identification of a series of genes with the same functions as those in humans, the relative ease of obtaining mutants, and the similarities between zebrafish and human pathologies make it an excellent experimental model organism of human diseases. Moreover, it is a common experimental species because of easy handling, breeding, and developmental control. Among other pathophysiologies, zebrafish are now used in studies of neurodegeneration and neurological diseases, endocrine diseases, behavior, muscular dystrophies, developmental alterations, circadian rhythms, and drugs screening. The purpose of this review was to update the current knowledge on the synthesis and biological functions of melatonin in zebrafish, keeping in mind its relevance not only in the physiology of the animal, but also in pathophysiological conditions.
Collapse
Affiliation(s)
- Elena Lima-Cabello
- Instituto de Biotecnología, Centro de Investigación Biomédica, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, Granada, Spain; Departamento de Fisiología, Facultad de Medicina, Universidad de Granada, Granada, Spain
| | | | | | | | | | | | | | | |
Collapse
|
7
|
Ho JM, Smith NS, Adams SA, Bradshaw HB, Demas GE. Photoperiodic changes in endocannabinoid levels and energetic responses to altered signalling at CB1 receptors in Siberian hamsters. J Neuroendocrinol 2012; 24:1030-9. [PMID: 22420341 PMCID: PMC4060156 DOI: 10.1111/j.1365-2826.2012.02312.x] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Siberian hamsters (Phodopus sungorus) adapt to seasonal environmental conditions with marked changes in body mass, primarily in the form of adiposity. Winter-like conditions (e.g. short days) are sufficient to decrease body mass by approximately 30% in part via reductions in food intake. The neuroendocrine mechanisms responsible for these changes are not well understood, and homeostatic orexigenic/anorexigenic systems of the hypothalamus provide little explanation. We investigated the potential role of endocannabinoids, which are known modulators of appetite and metabolism, in mediating seasonal changes in energy balance. Specifically, we housed hamsters in long or short days for 0, 3, or 9 weeks and measured endocannabinoid levels in the hypothalamus, brainstem, liver and retroperitoneal white adipose tissue (RWAT). An additional group of males housed in short days for 25 weeks were also compared with long-day controls. Following 9 weeks in short days, levels of the endocannabinoid 2-arachidonoylglycerol (2-AG) were significantly elevated in RWAT and reduced in brainstem, although they returned to long-day levels by week 25 in short-day males that had cycled back to summer-like energy balance. Endocannabinoid levels in these tissues correlated significantly with adiposity and change in body mass. No photoperiodic changes were observed in the hypothalamus or liver; however, sex differences in 2-AG levels were found in the liver (males > females). We further tested the effects of CB(1) receptor signalling on ingestive behaviour. Five daily injections of CB(1) antagonist SR141716 significantly reduced food intake and body mass but not food hoarding. Although the CB(1) agonist arachidonyl-2-chloroethylamide did not appreciably affect either ingestive behaviour, body mass was significantly elevated following 2 days of injections. Taken altogether, these findings demonstrate that endocannabinoid levels vary with sex and photoperiod in a site-specific manner, and that altered signalling at CB(1) receptors affects energy balance in Siberian hamsters.
Collapse
Affiliation(s)
- J M Ho
- Department of Biology, Indiana University, Bloomington, IN, USA.
| | | | | | | | | |
Collapse
|
8
|
Kanda LL, Louon L, Straley K. Stability in Activity and Boldness Across Time and Context in Captive Siberian Dwarf Hamsters. Ethology 2012. [DOI: 10.1111/j.1439-0310.2012.02038.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
9
|
Walton JC, Weil ZM, Nelson RJ. Influence of photoperiod on hormones, behavior, and immune function. Front Neuroendocrinol 2011; 32:303-19. [PMID: 21156187 PMCID: PMC3139743 DOI: 10.1016/j.yfrne.2010.12.003] [Citation(s) in RCA: 135] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/18/2010] [Revised: 11/30/2010] [Accepted: 12/03/2010] [Indexed: 01/26/2023]
Abstract
Photoperiodism is the ability of plants and animals to measure environmental day length to ascertain time of year. Central to the evolution of photoperiodism in animals is the adaptive distribution of energetically challenging activities across the year to optimize reproductive fitness while balancing the energetic tradeoffs necessary for seasonally-appropriate survival strategies. The ability to accurately predict future events requires endogenous mechanisms to permit physiological anticipation of annual conditions. Day length provides a virtually noise free environmental signal to monitor and accurately predict time of the year. In mammals, melatonin provides the hormonal signal transducing day length. Duration of pineal melatonin is inversely related to day length and its secretion drives enduring changes in many physiological systems, including the HPA, HPG, and brain-gut axes, the autonomic nervous system, and the immune system. Thus, melatonin is the fulcrum mediating redistribution of energetic investment among physiological processes to maximize fitness and survival.
Collapse
Affiliation(s)
- James C Walton
- Department of Neuroscience, The Ohio State University Medical Center, Columbus, OH 43210, USA.
| | | | | |
Collapse
|
10
|
Piccinetti CC, Migliarini B, Olivotto I, Coletti G, Amici A, Carnevali O. Appetite regulation: the central role of melatonin in Danio rerio. Horm Behav 2010; 58:780-5. [PMID: 20692259 DOI: 10.1016/j.yhbeh.2010.07.013] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/15/2010] [Revised: 07/27/2010] [Accepted: 07/28/2010] [Indexed: 10/19/2022]
Abstract
Melatonin is the hormonal mediator of photoperiodic information to the central nervous system in vertebrates and allows the regulation of energy homeostasis through the establishment of a proper balance between energy intake and energy expenditure. The aim of this study was to evaluate the role of melatonin in appetite central control analyzing the involvement of this hormone in the regulation of feeding behavior in the zebrafish Danio rerio. For this purpose, the effect of two different melatonin doses (100nM and 1μM) administered for 10 days, via water, to zebrafish adults was evaluated at both physiological and molecular level and the effect of melatonin was considered in relation to the most prominent systems involved in appetite regulation. For the first time, in fact, melatonin control of food intake by the modulation of leptin, MC4R, ghrelin, NPY and CB1 gene expression was evaluated. The results obtained indicate that melatonin significantly reduces food intake and the reduction is in agreement with the changes observed at molecular level. A significant increase in genes codifying for molecules involved in feeding inhibition, such as leptin and MC4R, and a significant reduction in the major orexigenic signals including ghrelin, NPY and CB1 are showed here. Taken together these results support the idea that melatonin falls fully into the complex network of signals that regulate food intake thus playing a key role in central appetite regulation.
Collapse
MESH Headings
- Animals
- Appetite Regulation/drug effects
- Appetite Regulation/genetics
- Appetite Regulation/physiology
- Brain/drug effects
- Brain/metabolism
- Dose-Response Relationship, Drug
- Eating/drug effects
- Eating/physiology
- Gene Expression Regulation/drug effects
- Ghrelin/genetics
- Ghrelin/metabolism
- Leptin/genetics
- Leptin/metabolism
- Melatonin/metabolism
- Melatonin/pharmacology
- Melatonin/physiology
- Neuropeptide Y/genetics
- Neuropeptide Y/metabolism
- RNA, Messenger/metabolism
- Receptor, Cannabinoid, CB1/genetics
- Receptor, Cannabinoid, CB1/metabolism
- Receptor, Melanocortin, Type 4/genetics
- Receptor, Melanocortin, Type 4/metabolism
- Zebrafish/genetics
- Zebrafish/metabolism
- Zebrafish/physiology
- Zebrafish Proteins/genetics
- Zebrafish Proteins/metabolism
Collapse
Affiliation(s)
- Chiara Carla Piccinetti
- Dipartimento di Scienze del Mare, Università Politecnica delle Marche, Via Brecce Bianche 60131, Ancona, Italy
| | | | | | | | | | | |
Collapse
|
11
|
Endocrine mechanisms of seasonal adaptation in small mammals: from early results to present understanding. J Comp Physiol B 2010; 180:935-52. [PMID: 20640428 DOI: 10.1007/s00360-010-0498-2] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2010] [Revised: 07/01/2010] [Accepted: 07/03/2010] [Indexed: 12/16/2022]
Abstract
Seasonal adaptation is widespread among mammals of temperate and polar latitudes. The changes in physiology, morphology and behaviour are controlled by the photoneuroendocrine system that, as a first step, translates day lengths into a hormonal signal (melatonin). Decoding of the humoral melatonin signal, i.e. responses on the cellular level to slight alterations in signal duration, represents the prerequisite for appropriate timing of winter acclimatization in photoperiodic animals. Corresponding to the diversity of affected traits, several hormone systems are involved in the regulation downstream of the neural integration of photoperiodic time measurement. Results from recent studies provide new insights into seasonal control of reproduction and energy balance. Most intriguingly, the availability of thyroid hormone within hypothalamic key regions, which is a crucial determinant of seasonal transitions, appears to be regulated by hormone secretion from the pars tuberalis of the pituitary gland. This proposed neuroendocrine pathway contradicts the common view of the pituitary as a gland that acts downstream of the hypothalamus. In the present overview of (neuro)endocrine mechanisms underlying seasonal acclimatization, we are focusing on the dwarf hamster Phodopus sungorus (long-day breeder) that is known for large amplitudes in seasonal changes. However, important findings in other mammalian species such as Syrian hamsters and sheep (short-day breeder) are considered as well.
Collapse
|
12
|
Vrang N, Larsen PJ. Preproglucagon derived peptides GLP-1, GLP-2 and oxyntomodulin in the CNS: role of peripherally secreted and centrally produced peptides. Prog Neurobiol 2010; 92:442-62. [PMID: 20638440 DOI: 10.1016/j.pneurobio.2010.07.003] [Citation(s) in RCA: 107] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2010] [Revised: 07/01/2010] [Accepted: 07/10/2010] [Indexed: 12/16/2022]
Abstract
The scientific understanding of preproglucagon derived peptides has provided people with type 2 diabetes with two novel classes of glucose lowering agents, the dipeptidyl peptidase IV (DPP-IV) inhibitors and GLP-1 receptor agonists. For the scientists, the novel GLP-1 agonists, and DPP-IV inhibitors have evolved as useful tools to understand the role of the preproglucagon derived peptides in normal physiology and disease. However, the overwhelming interest attracted by GLP-1 analogues as potent incretins has somewhat clouded the efforts to understand the importance of preproglucagon derived peptides in other physiological contexts. In particular, our neurobiological understanding of the preproglucagon expressing neuronal pathways in the central nervous system as well as the degree to which central GLP-1 receptors are targeted by peripherally administered GLP-1 receptor agonists is still fairly limited. The role of GLP-1 as an anorectic neurotransmitter is well recognized, but clarification of the neuronal targets and physiological basis of this response is further warranted, as is the mapping of GLP-1 sensitive neurons involved in a variety of neuroendocrine and behavioral responses. Further recent evidence points to GLP-1 as a central neuropeptide with neuroprotective capabilities potentially mitigating a wide array of neurodegenerative conditions. It is the aim of the present review to summarize our current understanding of preproglucagon derived peptides as neurotransmitters in the central nervous system.
Collapse
Affiliation(s)
- Niels Vrang
- Gubra ApS, Ridebanevej 12, 1870 Frederiksberg, Denmark.
| | | |
Collapse
|
13
|
Mountjoy KG. Distribution and function of melanocortin receptors within the brain. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2010; 681:29-48. [PMID: 21222258 DOI: 10.1007/978-1-4419-6354-3_3] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
Biological responses to pro-opiomelanocortin (POMC)-derived peptides administered in the brain were documented in the 1950s but their molecular mechanisms of action only began to be resolved with the mapping of melanocortin receptor subtypes to specific brain regions in the 1990s. Out of the five melanocortin receptor subtypes, MC3R and MC4R are widely recognised as 'neural' melanocortin receptors. In situ hybridization anatomical mapping of these receptor subtypes to distinct hypothalamic nuclei first indicated their roles in energy homeostasis, roles that were later confirmed with the obese phenotypes exhibited by Mc3R and Mc4R knockout mice. It is perhaps less well known however, that all five melanocortin receptor subtypes have been detected in developing and/or adult brains of various species. This chapter provides a comprehensive summary of the detection and mapping of each melanocortin receptor subtype in mammalian, chicken and fish brains and relates the sites of expression to functions that are either known or proposed for each receptor subtype.
Collapse
Affiliation(s)
- Kathleen G Mountjoy
- Departments of Physiology and Molecular Medicine and Pathology, School of Medical Sciences, Faculty of Medical and Health Sciences, University of Auckland, Private Bag 92019, Auckland, 1023, New Zealand.
| |
Collapse
|