1
|
Vélez A, Sandoval SM. Size matters: individual variation in auditory sensitivity may influence sexual selection in Pacific treefrogs (Pseudacris regilla). J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2024; 210:771-784. [PMID: 38367051 DOI: 10.1007/s00359-024-01690-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 12/29/2023] [Accepted: 01/03/2024] [Indexed: 02/19/2024]
Abstract
The matched filter hypothesis proposes a close match between senders and receivers and is supported by several studies on variation in signal properties and sensory-processing mechanisms among species and populations. Importantly, within populations, individual variation in sensory processing may affect how receivers perceive signals. Our main goals were to characterize hearing sensitivity of Pacific treefrogs (Pseudacris regilla), assess patterns of individual variation in hearing sensitivity, and evaluate how among-individual variation in hearing sensitivity and call frequency content affect auditory processing of communication signals. Overall, males and females are most sensitive to frequencies between 2.0 and 2.5 kHz, which matches the dominant frequency of the call, and have a second region of high sensitivity between 400 and 800 Hz that does not match the fundamental frequency of the call. We found high levels of among-individual variation in hearing sensitivity, primarily driven by subject size. Importantly, patterns of among-individual variation in hearing differ between males and females. Cross-correlation analyses reveal that among-individual variation in hearing sensitivity may lead to differences on how receivers, particularly females, perceive male calls. Our results suggest that individual variation in sensory processing may affect signal perception and influence the evolution of sexually selected traits.
Collapse
Affiliation(s)
- Alejandro Vélez
- Department of Psychology, University of Tennessee, Knoxville, TN, USA.
- Department of Biology, San Francisco State University, 1600 Holloway Ave, San Francisco, CA, 94132, USA.
| | - Sam Moreno Sandoval
- Department of Biology, San Francisco State University, 1600 Holloway Ave, San Francisco, CA, 94132, USA
| |
Collapse
|
2
|
Lee N, Vélez A, Bee M. Behind the mask(ing): how frogs cope with noise. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2023; 209:47-66. [PMID: 36310303 DOI: 10.1007/s00359-022-01586-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 09/09/2022] [Accepted: 10/06/2022] [Indexed: 12/12/2022]
Abstract
Albert Feng was a pioneer in the field of auditory neuroethology who used frogs to investigate the neural basis of spectral and temporal processing and directional hearing. Among his many contributions was connecting neural mechanisms for sound pattern recognition and localization to the problems of auditory masking that frogs encounter when communicating in noisy, real-world environments. Feng's neurophysiological studies of auditory processing foreshadowed and inspired subsequent behavioral investigations of auditory masking in frogs. For frogs, vocal communication frequently occurs in breeding choruses, where males form dense aggregations and produce loud species-specific advertisement calls to attract potential mates and repel competitive rivals. In this review, we aim to highlight how Feng's research advanced our understanding of how frogs cope with noise. We structure our narrative around three themes woven throughout Feng's research-spectral, temporal, and directional processing-to illustrate how frogs can mitigate problems of auditory masking by exploiting frequency separation between signals and noise, temporal fluctuations in noise amplitude, and spatial separation between signals and noise. We conclude by proposing future research that would build on Feng's considerable legacy to advance our understanding of hearing and sound communication in frogs and other vertebrates.
Collapse
Affiliation(s)
- Norman Lee
- Department of Biology, St. Olaf College, 1520 St. Olaf Ave, Northfield, MN, 55057, USA.
| | - Alejandro Vélez
- Department of Biology, San Francisco State University, 1600 Holloway Ave, San Francisco, CA, 94132, USA
| | - Mark Bee
- Department of Ecology, Evolution, and Behavior, University of Minnesota, Twin Cities, 1479 Gortner Ave, St. Paul, MN, 55108, USA.,Graduate Program in Neuroscience, University of Minnesota, Twin Cities, 321 Church Street SE, Minneapolis, MN, 55455, USA
| |
Collapse
|
3
|
Female preferences for the spectral content of advertisement calls in Cope's gray treefrog (Hyla chrysoscelis). J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2023; 209:31-45. [PMID: 36305902 DOI: 10.1007/s00359-022-01575-w] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/24/2022] [Accepted: 09/22/2022] [Indexed: 02/07/2023]
Abstract
Amphibians have inner ears with two sensory papillae tuned to different frequency ranges of airborne sounds. In frogs, male advertisement calls possess distinct spectral components that match the tuning of one or both sensory papillae. Female preferences for the spectral content of advertisement calls can depend on signal amplitude and can vary among closely related lineages. In this study of Cope's gray tree frog (Hyla chrysoscelis), we investigated the amplitude dependence of female preferences for the spectral content of male advertisement calls, which have a "bimodal" spectrum with separate low-frequency (1.25 kHz) and high-frequency (2.5 kHz) components. In two-alternative choice tests, females generally preferred synthetic calls with bimodal spectra over "unimodal" calls having only one of the two spectral components. They also preferred unimodal calls with a high-frequency component over one with the low-frequency component. With few exceptions, preferences were largely independent of amplitude across both a 30 dB range of overall signal amplitude and an 11 dB range in the relative amplitudes of the two spectral components. We discuss these results in the context of evolutionary lability in female preferences for the spectral content of advertisement calls in North American tree frogs in the genus Hyla.
Collapse
|
4
|
Simmons AM, Narins PM. The sound of one frog calling: The bullfrog's reactions to acoustic stimuli. THE JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA 2022; 151:R5. [PMID: 35364900 DOI: 10.1121/10.0009652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Accepted: 10/01/2021] [Indexed: 06/14/2023]
Abstract
The Reflections series takes a look back on historical articles from The Journal of the Acoustical Society of America that have had a significant impact on the science and practice of acoustics.
Collapse
Affiliation(s)
- Andrea Megela Simmons
- Department of Cognitive, Linguistic, & Psychological Sciences, Brown University, Providence, Rhode Island 02912, USA
| | - Peter M Narins
- Department of Integrative Biology & Physiology, UCLA, Los Angeles, California 90095, USA
| |
Collapse
|
5
|
Penna M, Solís R, Moreno-Gómez FN. Diverse patterns of responsiveness to fine temporal features of acoustic signals in a temperate austral forest frog, Batrachyla leptopus (Batrachylidae). BIOACOUSTICS 2021. [DOI: 10.1080/09524622.2021.1921618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Affiliation(s)
- Mario Penna
- Programa de Fisiología y Biofísica, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Rigoberto Solís
- Departamento de Ciencias Biológicas Animales, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
| | - Felipe N. Moreno-Gómez
- Departamento de Biología y Química, Facultad de Ciencias Básicas, Universidad Católica del Maule, Talca, Chile
| |
Collapse
|
6
|
Simmons AM. Auditory neuroethology: What the frog's lungs tell the frog's ear. Curr Biol 2021; 31:R350-R351. [PMID: 33848492 DOI: 10.1016/j.cub.2021.02.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Animals that communicate by vocal means must make their own calls salient against a background of environmental noise. A new study of green tree frogs demonstrates that input from the lungs to the middle ear reduces interfering noise and thus enhances call detection.
Collapse
Affiliation(s)
- Andrea Megela Simmons
- Department of Cognitive, Linguistic, and Psychological Sciences, Carney Institute for Brain Science, Brown University, Providence, RI 02912, USA.
| |
Collapse
|
7
|
Christensen-Dalsgaard J, Lee N, Bee MA. Lung-to-ear sound transmission does not improve directional hearing in green treefrogs ( Hyla cinerea). J Exp Biol 2020; 223:jeb232421. [PMID: 32895324 DOI: 10.1242/jeb.232421] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 08/26/2020] [Indexed: 11/20/2022]
Abstract
Amphibians are unique among extant vertebrates in having middle ear cavities that are internally coupled to each other and to the lungs. In frogs, the lung-to-ear sound transmission pathway can influence the tympanum's inherent directionality, but what role such effects might play in directional hearing remains unclear. In this study of the American green treefrog (Hyla cinerea), we tested the hypothesis that the lung-to-ear sound transmission pathway functions to improve directional hearing, particularly in the context of intraspecific sexual communication. Using laser vibrometry, we measured the tympanum's vibration amplitude in females in response to a frequency modulated sweep presented from 12 sound incidence angles in azimuth. Tympanum directionality was determined across three states of lung inflation (inflated, deflated, reinflated) both for a single tympanum in the form of the vibration amplitude difference (VAD) and for binaural comparisons in the form of the interaural vibration amplitude difference (IVAD). The state of lung inflation had negligible effects (typically less than 0.5 dB) on both VADs and IVADs at frequencies emphasized in the advertisement calls produced by conspecific males (834 and 2730 Hz). Directionality at the peak resonance frequency of the lungs (1558 Hz) was improved by ∼3 dB for a single tympanum when the lungs were inflated versus deflated, but IVADs were not impacted by the state of lung inflation. Based on these results, we reject the hypothesis that the lung-to-ear sound transmission pathway functions to improve directional hearing in frogs.
Collapse
Affiliation(s)
| | - Norman Lee
- Department of Biology, St Olaf College, Northfield, MN 55057, USA
| | - Mark A Bee
- Department of Ecology, Evolution, and Behavior, University of Minnesota - Twin Cities, St Paul, MN 55126, USA
- Graduate Program in Neuroscience, University of Minnesota - Twin Cities, Minneapolis, MN 55455, USA
| |
Collapse
|
8
|
Fouquet A, Tilly T, Pašukonis A, Courtois EA, Gaucher P, Ulloa J, Sueur J. Simulated chorus attracts conspecific and heterospecific Amazonian explosive breeding frogs. Biotropica 2020. [DOI: 10.1111/btp.12845] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Affiliation(s)
- Antoine Fouquet
- Laboratoire Evolution et Diversité Biologique (EDB) UMR5174 Toulouse France
| | | | | | - Elodie A. Courtois
- Laboratoire Ecologie, Evolution, Interactions des Systèmes Amazoniens (LEEISA) Cayenne French Guiana
| | - Philippe Gaucher
- Laboratoire Ecologie, Evolution, Interactions des Systèmes Amazoniens (LEEISA) Cayenne French Guiana
| | - Juan Ulloa
- Institut Systématique Evolution Biodiversité (ISYEB) Muséum National d’Histoire NaturelleCNRSSorbonne UniversitéEPHE Paris France
- Equipe Communications AcoustiquesUMR 9197Neuro‐PSI‐CNRSUniversité Paris‐Sud Orsay France
- Instituto de Investigación de Recursos Biológicos Alexander von Humboldt Bogotá Colombia
| | - Jérôme Sueur
- Institut Systématique Evolution Biodiversité (ISYEB) Muséum National d’Histoire NaturelleCNRSSorbonne UniversitéEPHE Paris France
| |
Collapse
|
9
|
Penna M, Solís R, Corradini P, Moreno-Gómez FN. Diverse patterns of temporal selectivity in the evoked vocal responses of a frog from the temperate austral forest, Batrachyla taeniata (Batrachylidae). BIOACOUSTICS 2020. [DOI: 10.1080/09524622.2019.1616616] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Affiliation(s)
- Mario Penna
- Programa de Fisiología y Biofísica, Instituto de Ciencias Biomédicas, Facultad de Medicina, Universidad de Chile, Santiago, Chile
| | - Rigoberto Solís
- Departamento de Ciencias Biológicas Animales, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
| | - Paulina Corradini
- Departamento de Ciencias Biológicas Animales, Facultad de Ciencias Veterinarias y Pecuarias, Universidad de Chile, Santiago, Chile
| | - Felipe N. Moreno-Gómez
- Departamento de Biología y Química, Facultad de Ciencias Básicas, Universidad Católica del Maule, Talca, Chile
| |
Collapse
|
10
|
A broad filter between call frequency and peripheral auditory sensitivity in northern grasshopper mice (Onychomys leucogaster). J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2019; 205:481-489. [DOI: 10.1007/s00359-019-01338-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2018] [Revised: 03/18/2019] [Accepted: 04/11/2019] [Indexed: 12/19/2022]
|
11
|
Yang Y, Zhu B, Wang J, Brauth SE, Tang Y, Cui J. A test of the matched filter hypothesis in two sympatric frogs, Chiromantis doriae and Feihyla vittata. BIOACOUSTICS 2018. [DOI: 10.1080/09524622.2018.1482786] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Affiliation(s)
- Yue Yang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Bicheng Zhu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Jichao Wang
- Department of Biology, Hainan Normal University, Haikou, Hainan, China
| | - Steven E. Brauth
- Department of Psychology, University of Maryland, College Park, USA
| | - Yezhong Tang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan, China
| | - Jianguo Cui
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan, China
| |
Collapse
|
12
|
Nonlinear processing of a multicomponent communication signal by combination-sensitive neurons in the anuran inferior colliculus. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2017; 203:749-772. [DOI: 10.1007/s00359-017-1195-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2017] [Revised: 06/23/2017] [Accepted: 06/24/2017] [Indexed: 11/25/2022]
|
13
|
Schwartz JJ, Hossain R. Is it one call or two? Perception of inter-pulse and inter-call intervals in the grey treefrog, Hyla versicolor. BEHAVIOUR 2017. [DOI: 10.1163/1568539x-00003424] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Female grey treefrogs, Hyla versicolor, treat a call with an anomalously large gap between call pulses as relatively unattractive. However, whether such a ‘call’ is treated (or perhaps perceived) as a single call or two separate calls, an issue relevant to the problem of perceptual segregation of calls of different males, was unclear. We tested whether there could be gaps shorter than a typical inter-call interval that would be sufficient to elicit the latter percept by offering females a choice between a 5-pulse call and 13-pulse call separated by a 1575-ms gap and these pulse strings separated by shorter gaps. Preliminary results suggested that perception of inter-call gaps was categorical, and the distributions of such gaps between males in choruses were compatible with this finding. However, when we also offered females call alternatives designed to specifically test the hypothesis of categorical perception, predictions were only sometimes met.
Collapse
Affiliation(s)
- Joshua J. Schwartz
- Department of Biology and Health Sciences, Pace University, Pleasantville, NY 10570, USA
| | - Ridwan Hossain
- Department of Biology and Health Sciences, Pace University, Pleasantville, NY 10570, USA
| |
Collapse
|
14
|
Zhao L, Wang J, Yang Y, Zhu B, Brauth SE, Tang Y, Cui J. An exception to the matched filter hypothesis: A mismatch of male call frequency and female best hearing frequency in a torrent frog. Ecol Evol 2016; 7:419-428. [PMID: 28070304 PMCID: PMC5216676 DOI: 10.1002/ece3.2621] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2016] [Revised: 10/27/2016] [Accepted: 10/31/2016] [Indexed: 12/01/2022] Open
Abstract
The matched filter hypothesis proposes that the tuning of auditory sensitivity and the spectral character of calls will match in order to maximize auditory processing efficiency during courtship. In this study, we analyzed the acoustic structure of male calls and both male and female hearing sensitivities in the little torrent frog (Amolops torrentis), an anuran species who transmits acoustic signals across streams. The results were in striking contradiction to the matched filter hypothesis. Auditory brainstem response results showed that the best hearing range was 1.6–2 kHz consistent with the best sensitive frequency of most terrestrial lentic taxa, yet completely mismatched with the dominant frequency of conspecific calls (4.3 kHz). Moreover, phonotaxis tests show that females strongly prefer high‐frequency (4.3 kHz) over low‐frequency calls (1.6 kHz) regardless of ambient noise levels, although peripheral auditory sensitivity is highest in the 1.6–2 kHz range. These results are consistent with the idea that A. torrentis evolved from nonstreamside species and that high‐frequency calls evolved under the pressure of stream noise. Our results also suggest that female preferences based on central auditory system characteristics may evolve independently of peripheral auditory system sensitivity in order to maximize communication effectiveness in noisy environments.
Collapse
Affiliation(s)
- Longhui Zhao
- Chengdu Institute of Biology Chinese Academy of Sciences Chengdu Sichuan China
| | - Jichao Wang
- Ministry of Education Key Laboratory for Tropical Plant and Animal Ecology College of Life Sciences Hainan Normal University Haikou Hainan China
| | - Yue Yang
- Chengdu Institute of Biology Chinese Academy of Sciences Chengdu Sichuan China
| | - Bicheng Zhu
- Chengdu Institute of Biology Chinese Academy of Sciences Chengdu Sichuan China
| | - Steven E Brauth
- Department of Psychology University of Maryland College Park MD USA
| | - Yezhong Tang
- Chengdu Institute of Biology Chinese Academy of Sciences Chengdu Sichuan China
| | - Jianguo Cui
- Chengdu Institute of Biology Chinese Academy of Sciences Chengdu Sichuan China
| |
Collapse
|
15
|
|
16
|
Hall IC, Woolley SMN, Kwong-Brown U, Kelley DB. Sex differences and endocrine regulation of auditory-evoked, neural responses in African clawed frogs (Xenopus). J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2016; 202:17-34. [PMID: 26572136 PMCID: PMC4699871 DOI: 10.1007/s00359-015-1049-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2015] [Revised: 10/03/2015] [Accepted: 10/05/2015] [Indexed: 12/01/2022]
Abstract
Mating depends on the accurate detection of signals that convey species identity and reproductive state. In African clawed frogs, Xenopus, this information is conveyed by vocal signals that differ in temporal patterns and spectral features between sexes and across species. We characterized spectral sensitivity using auditory-evoked potentials (AEPs), commonly known as the auditory brainstem response, in males and females of four Xenopus species. In female X. amieti, X. petersii, and X. laevis, peripheral auditory sensitivity to their species own dyad-two, species-specific dominant frequencies in the male advertisement call-is enhanced relative to males. Males were most sensitive to lower frequencies including those in the male-directed release calls. Frequency sensitivity was influenced by endocrine state; ovariectomized females had male-like auditory tuning while dihydrotestosterone-treated, ovariectomized females maintained female-like tuning. Thus, adult, female Xenopus demonstrate an endocrine-dependent sensitivity to the spectral features of conspecific male advertisement calls that could facilitate mating. Xenopus AEPs resemble those of other species in stimulus and level dependence, and in sensitivity to anesthetic (MS222). AEPs were correlated with body size and sex within some species. A frequency following response, probably encoded by the amphibian papilla, might facilitate dyad source localization via interaural time differences.
Collapse
Affiliation(s)
- Ian C Hall
- Department of Biological Sciences, Columbia University, Fairchild Building, MC 2432, New York, NY, 10027, USA.
- Department of Biology, St. Mary's College of Maryland, Schaeffer Hall 258, St. Mary's City, MD, 20686, USA.
| | - Sarah M N Woolley
- Department of Psychology, Columbia University, Schermerhorn Hall, MC 5501, New York, NY, 10027, USA
| | - Ursula Kwong-Brown
- Department of Biological Sciences, Columbia University, Fairchild Building, MC 2432, New York, NY, 10027, USA
- Center for New Music and Audio Technologies, University of California, Berkeley, CA, 94720, USA
| | - Darcy B Kelley
- Department of Biological Sciences, Columbia University, Fairchild Building, MC 2432, New York, NY, 10027, USA
| |
Collapse
|
17
|
Bee M, Reichert M, Tumulty J. Assessment and Recognition of Rivals in Anuran Contests. ADVANCES IN THE STUDY OF BEHAVIOR 2016. [DOI: 10.1016/bs.asb.2016.01.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
18
|
Schrode KM, Bee MA. Evolutionary adaptations for the temporal processing of natural sounds by the anuran peripheral auditory system. ACTA ACUST UNITED AC 2015; 218:837-48. [PMID: 25617467 DOI: 10.1242/jeb.115014] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023]
Abstract
Sensory systems function most efficiently when processing natural stimuli, such as vocalizations, and it is thought that this reflects evolutionary adaptation. Among the best-described examples of evolutionary adaptation in the auditory system are the frequent matches between spectral tuning in both the peripheral and central auditory systems of anurans (frogs and toads) and the frequency spectra of conspecific calls. Tuning to the temporal properties of conspecific calls is less well established, and in anurans has so far been documented only in the central auditory system. Using auditory-evoked potentials, we asked whether there are species-specific or sex-specific adaptations of the auditory systems of gray treefrogs (Hyla chrysoscelis) and green treefrogs (H. cinerea) to the temporal modulations present in conspecific calls. Modulation rate transfer functions (MRTFs) constructed from auditory steady-state responses revealed that each species was more sensitive than the other to the modulation rates typical of conspecific advertisement calls. In addition, auditory brainstem responses (ABRs) to paired clicks indicated relatively better temporal resolution in green treefrogs, which could represent an adaptation to the faster modulation rates present in the calls of this species. MRTFs and recovery of ABRs to paired clicks were generally similar between the sexes, and we found no evidence that males were more sensitive than females to the temporal modulation patterns characteristic of the aggressive calls used in male-male competition. Together, our results suggest that efficient processing of the temporal properties of behaviorally relevant sounds begins at potentially very early stages of the anuran auditory system that include the periphery.
Collapse
Affiliation(s)
- Katrina M Schrode
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA
| | - Mark A Bee
- Graduate Program in Neuroscience, University of Minnesota, Minneapolis, MN 55455, USA Department of Ecology, Evolution and Behavior, University of Minnesota, St Paul, MN 55108, USA
| |
Collapse
|
19
|
Ecology of acoustic signalling and the problem of masking interference in insects. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2014; 201:133-42. [DOI: 10.1007/s00359-014-0955-6] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 10/01/2014] [Accepted: 10/11/2014] [Indexed: 10/24/2022]
|
20
|
Ponnath A, Farris HE. Sound-by-sound thalamic stimulation modulates midbrain auditory excitability and relative binaural sensitivity in frogs. Front Neural Circuits 2014; 8:85. [PMID: 25120437 PMCID: PMC4111082 DOI: 10.3389/fncir.2014.00085] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2013] [Accepted: 07/04/2014] [Indexed: 11/13/2022] Open
Abstract
Descending circuitry can modulate auditory processing, biasing sensitivity to particular stimulus parameters and locations. Using awake in vivo single unit recordings, this study tested whether electrical stimulation of the thalamus modulates auditory excitability and relative binaural sensitivity in neurons of the amphibian midbrain. In addition, by using electrical stimuli that were either longer than the acoustic stimuli (i.e., seconds) or presented on a sound-by-sound basis (ms), experiments addressed whether the form of modulation depended on the temporal structure of the electrical stimulus. Following long duration electrical stimulation (3-10 s of 20 Hz square pulses), excitability (spikes/acoustic stimulus) to free-field noise stimuli decreased by 32%, but returned over 600 s. In contrast, sound-by-sound electrical stimulation using a single 2 ms duration electrical pulse 25 ms before each noise stimulus caused faster and varied forms of modulation: modulation lasted <2 s and, in different cells, excitability either decreased, increased or shifted in latency. Within cells, the modulatory effect of sound-by-sound electrical stimulation varied between different acoustic stimuli, including for different male calls, suggesting modulation is specific to certain stimulus attributes. For binaural units, modulation depended on the ear of input, as sound-by-sound electrical stimulation preceding dichotic acoustic stimulation caused asymmetric modulatory effects: sensitivity shifted for sounds at only one ear, or by different relative amounts for both ears. This caused a change in the relative difference in binaural sensitivity. Thus, sound-by-sound electrical stimulation revealed fast and ear-specific (i.e., lateralized) auditory modulation that is potentially suited to shifts in auditory attention during sound segregation in the auditory scene.
Collapse
Affiliation(s)
- Abhilash Ponnath
- Neuroscience Center, Louisiana State University Health Sciences Center New Orleans, LA, USA ; Department of Otolaryngology and Biocommunication, Louisiana State University Health Sciences Center New Orleans, LA, USA
| | - Hamilton E Farris
- Neuroscience Center, Louisiana State University Health Sciences Center New Orleans, LA, USA ; Department of Otolaryngology and Biocommunication, Louisiana State University Health Sciences Center New Orleans, LA, USA ; Department of Cell Biology and Anatomy, Louisiana State University Health Sciences Center New Orleans, LA, USA
| |
Collapse
|
21
|
Starnberger I, Preininger D, Hödl W. From uni- to multimodality: towards an integrative view on anuran communication. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2014; 200:777-87. [PMID: 24973893 PMCID: PMC4138437 DOI: 10.1007/s00359-014-0923-1] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2014] [Revised: 06/06/2014] [Accepted: 06/08/2014] [Indexed: 11/27/2022]
Abstract
Undeniably, acoustic signals are the predominant mode of communication in frogs and toads. Acoustically active species are found throughout the vast diversity of anuran families. However, additional or alternative signal modalities have gained increasing attention. In several anurans, seismic, visual and chemical communications have convergently evolved due to ecological constraints such as noisy environments. The production of a visual cue, like the inevitably moving vocal sac of acoustically advertising males, is emphasized by conspicuously coloured throats. Limb movements accompanied by dynamic displays of bright colours are additional examples of striking visual signals independent of vocalizations. In some multimodal anuran communication systems, the acoustic component acts as an alert signal, which alters the receiver attention to the following visual display. Recent findings of colourful glands on vocal sacs, producing volatile species-specific scent bouquets suggest the possibility of integration of acoustic, visual and chemical cues in species recognition and mate choice. The combination of signal components facilitates a broadened display repertoire in challenging environmental conditions. Thus, the complexity of the communication systems of frogs and toads may have been underestimated.
Collapse
Affiliation(s)
- Iris Starnberger
- Department of Integrative Zoology, University of Vienna, Althanstraße 14, 1090, Vienna, Austria,
| | | | | |
Collapse
|
22
|
Bee MA. Treefrogs as animal models for research on auditory scene analysis and the cocktail party problem. Int J Psychophysiol 2014; 95:216-37. [PMID: 24424243 DOI: 10.1016/j.ijpsycho.2014.01.004] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2013] [Revised: 11/10/2013] [Accepted: 01/01/2014] [Indexed: 01/18/2023]
Abstract
The perceptual analysis of acoustic scenes involves binding together sounds from the same source and separating them from other sounds in the environment. In large social groups, listeners experience increased difficulty performing these tasks due to high noise levels and interference from the concurrent signals of multiple individuals. While a substantial body of literature on these issues pertains to human hearing and speech communication, few studies have investigated how nonhuman animals may be evolutionarily adapted to solve biologically analogous communication problems. Here, I review recent and ongoing work aimed at testing hypotheses about perceptual mechanisms that enable treefrogs in the genus Hyla to communicate vocally in noisy, multi-source social environments. After briefly introducing the genus and the methods used to study hearing in frogs, I outline several functional constraints on communication posed by the acoustic environment of breeding "choruses". Then, I review studies of sound source perception aimed at uncovering how treefrog listeners may be adapted to cope with these constraints. Specifically, this review covers research on the acoustic cues used in sequential and simultaneous auditory grouping, spatial release from masking, and dip listening. Throughout the paper, I attempt to illustrate how broad-scale, comparative studies of carefully considered animal models may ultimately reveal an evolutionary diversity of underlying mechanisms for solving cocktail-party-like problems in communication.
Collapse
Affiliation(s)
- Mark A Bee
- Department of Ecology, Evolution and Behavior, University of Minnesota, 100 Ecology, 1987 Upper Buford Circle, St. Paul, MN 55108, USA.
| |
Collapse
|
23
|
Moreno-Gómez FN, Sueur J, Soto-Gamboa M, Penna M. Female frog auditory sensitivity, male calls, and background noise: potential influences on the evolution of a peculiar matched filter. Biol J Linn Soc Lond 2013. [DOI: 10.1111/bij.12156] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Felipe N. Moreno-Gómez
- Instituto de Ciencias Ambientales y Evolutivas; Facultad de Ciencias; Universidad Austral de Chile; Avenida Rector Eduardo Morales Miranda, Edificio Pugín, Casilla(Box) 567 Valdivia Chile
| | - Jérôme Sueur
- Département Systématique et Evolution; Muséum National d'Histoire naturelle; UMR CNRS 7205 OSEB, 45 rue Buffon F-75005 Paris France
| | - Mauricio Soto-Gamboa
- Instituto de Ciencias Ambientales y Evolutivas; Facultad de Ciencias; Universidad Austral de Chile; Avenida Rector Eduardo Morales Miranda, Edificio Pugín, Casilla(Box) 567 Valdivia Chile
| | - Mario Penna
- Programa de Fisiología y Biofísica; Instituto de Ciencias Biomédicas; Facultad de Medicina; Universidad de Chile; Casilla 70005, Correo 7 Santiago Chile
| |
Collapse
|
24
|
|