1
|
Loonen AJM. The putative role of the habenula in animal migration. Physiol Behav 2024; 286:114668. [PMID: 39151652 DOI: 10.1016/j.physbeh.2024.114668] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2024] [Revised: 07/26/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
BACKGROUND When an addicted animal seeks a specific substance, it is based on the perception of internal and external cues that strongly motivate to pursue the acquisition of that compound. In essence, a similar process acts out when an animal leaves its present area to begin its circannual migration. This review article examines the existence of scientific evidence for possible relatedness of migration and addiction by influencing Dorsal Diencephalic Conduction System (DDCS) including the habenula. METHODS For this review especially the databases of Pubmed and Embase were frequently and non-systematically searched. RESULTS The mechanisms of bird migration have been thoroughly investigated. Especially the mechanism of the circannual biorhythm and its associated endocrine regulation has been well elucidated. A typical behavior called "Zugunruhe" marks the moment of leaving in migratory birds. The role of magnetoreception in navigation has also been clarified in recent years. However, how bird migration is regulated at the neuronal level in the forebrain is not well understood. Among mammals, marine mammals are most similar to birds. They use terrestrial magnetic field when navigating and often bridge long distances between breeding and foraging areas. Population migration is further often seen among the large hoofed mammals in different parts of the world. Importantly, learning processes and social interactions with conspecifics play a major role in these ungulates. Considering the evolutionary development of the forebrain in vertebrates, it can be postulated that the DDCS plays a central role in regulating the readiness and intensity of essential (emotional) behaviors. There is manifold evidence that this DDCS plays an important role in relapse to abuse after prolonged periods of abstinence from addictive behavior. It is also possible that the DDCS plays a role in navigation. CONCLUSIONS The role of the DDCS in the neurobiological regulation of bird migration has hardly been investigated. The involvement of this system in relapse to addiction in mammals might suggest to change this. It is recommended that particularly during "Zugunruhe" the role of neuronal regulation via the DDCS will be further investigated.
Collapse
Affiliation(s)
- Anton J M Loonen
- Pharmacotherapy, Epidemiology & Economics, Groningen Research Institute of Pharmacy, University of Groningen, Antonius Deusinglaan 1, 9713AV Groningen, the Netherlands.
| |
Collapse
|
2
|
Gobbens E, Beardsworth CE, Dekinga A, ten Horn J, Toledo S, Nathan R, Bijleveld AI. Environmental factors influencing red knot ( Calidris canutus islandica) departure times of relocation flights within the non-breeding period. Ecol Evol 2024; 14:e10954. [PMID: 38450319 PMCID: PMC10915501 DOI: 10.1002/ece3.10954] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 12/08/2023] [Accepted: 12/16/2023] [Indexed: 03/08/2024] Open
Abstract
Deciding when to depart on long-distance, sometimes global, movements can be especially important for flying species. Adverse weather conditions can affect energetic flight costs and navigational ability. While departure timings and conditions have been well-studied for migratory flights to and from the breeding range, few studies have focussed on flights within the non-breeding season. Yet in some cases, overwintering ranges can be large enough that ecological barriers, and a lack of resting sites en route, may resist movement, especially in unfavorable environmental conditions. Understanding the conditions that will enable or prohibit flights within an overwintering range is particularly relevant in light of climate change, whereby increases in extreme weather events may reduce the connectivity of sites. We tracked 495 (n = 251 in 2019; n = 244 in 2020) overwintering red knots (Calidris canutus islandica) in the Dutch Wadden Sea and investigated how many departed towards the UK (on westward relocation flights), which requires flying over the North Sea. For those that departed, we used a resource selection model to determine the effect of environmental conditions on the timing of relocation flights. Specifically, we investigated the effects of wind, rain, atmospheric pressure, cloud cover, and migratory timing relative to sunset and tidal cycle, which have all been shown to be crucial to migratory departure conditions. Approximately 37% (2019) and 36% (2020) of tagged red knots departed on westward relocation flights, indicating differences between individuals' space use within the overwintering range. Red knots selected for departures between 1 and 2.5 h after sunset, approximately 4 h before high tide, with tailwinds and little cloud cover. However, rainfall and changes in atmospheric pressure appear unimportant. Our study reveals environmental conditions that are important for relocation flights across an ecological barrier, indicating potential consequences of climate change on connectivity.
Collapse
Affiliation(s)
- Evy Gobbens
- Department of Coastal SystemsNIOZ Royal Netherlands Institute for Sea ResearchDen BurgTexelThe Netherlands
| | - Christine E. Beardsworth
- Department of Coastal SystemsNIOZ Royal Netherlands Institute for Sea ResearchDen BurgTexelThe Netherlands
- School of Biological and Environmental SciencesLiverpool John Moores UniversityLiverpoolUK
| | - Anne Dekinga
- Department of Coastal SystemsNIOZ Royal Netherlands Institute for Sea ResearchDen BurgTexelThe Netherlands
| | - Job ten Horn
- Department of Coastal SystemsNIOZ Royal Netherlands Institute for Sea ResearchDen BurgTexelThe Netherlands
| | - Sivan Toledo
- Blavatnik School of Computer ScienceTel‐Aviv UniversityTel AvivIsrael
| | - Ran Nathan
- Movement Ecology Laboratory, The Alexander Silberman Institute of Life SciencesThe Hebrew University of JerusalemJerusalemIsrael
| | - Allert I. Bijleveld
- Department of Coastal SystemsNIOZ Royal Netherlands Institute for Sea ResearchDen BurgTexelThe Netherlands
| |
Collapse
|
3
|
Williams D. Eagle eyed or bird brained? Eye (Lond) 2023; 37:2426-2430. [PMID: 37353509 PMCID: PMC10397276 DOI: 10.1038/s41433-023-02568-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 04/24/2023] [Accepted: 04/25/2023] [Indexed: 06/25/2023] Open
Abstract
The importance of the visual system to birds for behaviours from feeding, mate choice, flying, navigation and determination of seasons, together with the presence of photoreceptors in the retina, the pineal and the brain, render the avian visual system a particularly fruitful model for understanding of eye-brain interactions. In this review we will particularly focus on the pigeon, since here we have a brain stereotactically mapped and a genome fully sequenced, together with a particular bird, the homing pigeon, with remarkable ability to navigate over hundreds of miles and return to exactly the same roosting site with exceptional precision. We might denigrate the avian species by the term bird brained, but here are animals with phenomenal abilities to use their exceptional vision, their eagle eyedness, to best advantage.
Collapse
|
4
|
McLaren JD, Schmaljohann H, Blasius B. Gauge-and-compass migration: inherited magnetic headings and signposts can adapt to changing geomagnetic landscapes. MOVEMENT ECOLOGY 2023; 11:37. [PMID: 37408064 DOI: 10.1186/s40462-023-00406-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2023] [Accepted: 06/27/2023] [Indexed: 07/07/2023]
Abstract
BACKGROUND For many migratory species, inexperienced (naïve) individuals reach remote non-breeding areas independently using one or more inherited compass headings and, potentially, magnetic signposts to gauge where to switch between compass headings. Inherited magnetic-based migration has not yet been assessed as a population-level process, particularly across strong geomagnetic gradients or where long-term geomagnetic shifts (hereafter, secular variation) could create mismatches with magnetic headings. Therefore, it remains unclear whether inherited magnetic headings and signposts could potentially adapt to secular variation under natural selection. METHODS To address these unknowns, we modelled migratory orientation programs using an evolutionary algorithm incorporating global geomagnetic data (1900-2023). Modelled population mixing incorporated both natal dispersal and trans-generational inheritance of magnetic headings and signposts, including intrinsic (stochastic) variability in inheritance. Using the model, we assessed robustness of trans-hemispheric migration of a migratory songbird whose Nearctic breeding grounds have undergone rapid secular variation (mean 34° clockwise drift in declination, 1900-2023), and which travels across strong geomagnetic gradients via Europe to Africa. RESULTS Model-evolved magnetic-signposted migration was overall successful throughout the 124-year period, with 60-90% mean successful arrival across a broad range in plausible precision in compass headings and gauging signposts. Signposted migration reduced trans-Atlantic flight distances and was up to twice as successful compared with non-signposted migration. Magnetic headings shifted plastically in response to the secular variation (mean 16°-17° among orientation programs), whereas signpost latitudes were more constrained (3°-5° mean shifts). This plasticity required intrinsic variability in inheritance (model-evolved σ ≈ 2.6° standard error), preventing clockwise secular drift from causing unsustainable open-ocean flights. CONCLUSIONS Our study supports the potential long-term viability of inherited magnetic migratory headings and signposts, and illustrates more generally how inherited migratory orientation programs can both mediate and constrain evolution of routes, in response to global environmental change.
Collapse
Affiliation(s)
- James D McLaren
- Institute for Chemistry and Biology of the Marine Environment (ICBM), University of Oldenburg, 26129, Oldenburg, Germany.
| | - Heiko Schmaljohann
- Institute for Biology and Environmental Sciences (IBU), Carl Von Ossietzky University of Oldenburg, 26129, Oldenburg, Germany
- Institute of Avian Research, 26386, Wilhelmshaven, Germany
| | - Bernd Blasius
- Institute for Chemistry and Biology of the Marine Environment (ICBM), University of Oldenburg, 26129, Oldenburg, Germany
- Helmholtz Institute for Functional Marine Biodiversity (HIFMB), University of Oldenburg, 26129, Oldenburg, Germany
| |
Collapse
|
5
|
Dufour P, Åkesson S, Hellström M, Hewson C, Lagerveld S, Mitchell L, Chernetsov N, Schmaljohann H, Crochet PA. The Yellow-browed Warbler (Phylloscopus inornatus) as a model to understand vagrancy and its potential for the evolution of new migration routes. MOVEMENT ECOLOGY 2022; 10:59. [PMID: 36517925 PMCID: PMC9753335 DOI: 10.1186/s40462-022-00345-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/24/2022] [Accepted: 10/30/2022] [Indexed: 06/17/2023]
Abstract
Why and how new migration routes emerge remain fundamental questions in ecology, particularly in the context of current global changes. In its early stages, when few individuals are involved, the evolution of new migration routes can be easily confused with vagrancy, i.e. the occurrence of individuals outside their regular breeding, non-breeding or migratory distribution ranges. Yet, vagrancy can in theory generate new migration routes if vagrants survive, return to their breeding grounds and transfer their new migration route to their offspring, thus increasing a new migratory phenotype in the population. Here, we review the conceptual framework and empirical challenges of distinguishing regular migration from vagrancy in small obligate migratory passerines and explain how this can inform our understanding of migration evolution. For this purpose, we use the Yellow-browed Warbler (Phylloscopus inornatus) as a case study. This Siberian species normally winters in southern Asia and its recent increase in occurrence in Western Europe has become a prominent evolutionary puzzle. We first review and discuss available evidence suggesting that the species is still mostly a vagrant in Western Europe but might be establishing a new migration route initiated by vagrants. We then list possible empirical approaches to check if some individuals really undertake regular migratory movements between Western Europe and Siberia, which would make this species an ideal model for studying the links between vagrancy and the emergence of new migratory routes.
Collapse
Affiliation(s)
- Paul Dufour
- LECA, CNRS, Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, Grenoble, France.
- Department of Biological and Environmental Sciences, University of Gothenburg, Gothenburg, Sweden.
- Gothenburg Global Biodiversity Centre, Gothenburg, Sweden.
| | - Susanne Åkesson
- Department of Biology, Center for Animal Movement Research, Lund University, Ecology Building, 22362, Lund, Sweden
| | | | - Chris Hewson
- British Trust for Ornithology, The Nunnery, Thetford, Norfolk, IP27 2PU, UK
| | - Sander Lagerveld
- Wageningen University & Research, Ankerpark 27, 1781 AG, Den Helder, Netherlands
| | - Lucy Mitchell
- Environmental Research Institute, Centre for Energy and Environment (CfEE), The North Highland College UHI, Ormlie Road, Thurso, KW14 7EE, UK
| | - Nikita Chernetsov
- Ornithology Lab, Zoological Institute RAS, 1 Universitetskaya Emb, 199034, St. Petersburg, Russia
- Department of Vertebrate Zoology, St. Petersburg State University, 7-9 Universitetskaya Emb, 199034, St. Petersburg, Russia
| | - Heiko Schmaljohann
- Institute for Biology and Environmental Sciences (IBU), Car Von Ossietzky University of Oldenburg, Carl-Von-Ossietzky-Straße 9-11, 26129, Oldenburg, Germany
- Institute of Avian Research, An Der Vogelwarte 21, 26386, Wilhelmshaven, Germany
| | | |
Collapse
|
6
|
McLaren JD, Schmaljohann H, Blasius B. Predicting performance of naïve migratory animals, from many wrongs to self-correction. Commun Biol 2022; 5:1058. [PMID: 36195660 PMCID: PMC9532420 DOI: 10.1038/s42003-022-03995-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2021] [Accepted: 09/14/2022] [Indexed: 11/23/2022] Open
Abstract
Migratory orientation of many animals is inheritable, enabling inexperienced (naïve) individuals to migrate independently using a geomagnetic or celestial compass. It remains unresolved how naïve migrants reliably reach remote destinations, sometimes correcting for orientation error or displacement. To assess naïve migratory performance (successful arrival), we simulate and assess proposed compass courses for diverse airborne migratory populations, accounting for spherical-geometry effects, compass precision, cue transfers (e.g., sun to star compass), and geomagnetic variability. We formulate how time-compensated sun-compass headings partially self-correct, according to how inner-clocks are updated. For the longest-distance migrations simulated, time-compensated sun-compass courses are most robust to error, and most closely resemble known routes. For shorter-distance nocturnal migrations, geomagnetic or star-compass courses are most robust, due to not requiring nightly cue-transfers. Our predictive study provides a basis for assessment of compass-based naïve migration and mechanisms of self-correction, and supports twilight sun-compass orientation being key to many long-distance inaugural migrations. A model is developed for assessing compass-based naïve animal migration, revealing effects of spherical geometry on migratory performance, and related mechanisms of self-correction.
Collapse
Affiliation(s)
- James D McLaren
- Institute for Chemistry and Biology of the Marine Environment (ICBM), University of Oldenburg, 26129, Oldenburg, Germany.
| | - Heiko Schmaljohann
- Institute for Biology and Environmental Sciences (IBU), Carl von Ossietzky University of Oldenburg, 26129, Oldenburg, Germany.,Institute of Avian Research, 26386, Wilhelmshaven, Germany
| | - Bernd Blasius
- Institute for Chemistry and Biology of the Marine Environment (ICBM), University of Oldenburg, 26129, Oldenburg, Germany.,Helmholtz Institute for Functional Marine Biodiversity (HIFMB), University of Oldenburg, 26129, Oldenburg, Germany
| |
Collapse
|
7
|
Spatial-temporal interpolation of satellite geomagnetic data to study long-distance animal migration. ECOL INFORM 2022. [DOI: 10.1016/j.ecoinf.2022.101888] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
8
|
Bianco G, Köhler RC, Ilieva M, Åkesson S. The importance of time of day for magnetic body alignment in songbirds. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2022; 208:135-144. [PMID: 34997291 PMCID: PMC8918448 DOI: 10.1007/s00359-021-01536-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2021] [Revised: 12/16/2021] [Accepted: 12/18/2021] [Indexed: 10/25/2022]
Abstract
Spontaneous magnetic alignment is the simplest known directional response to the geomagnetic field that animals perform. Magnetic alignment is not a goal directed response and its relevance in the context of orientation and navigation has received little attention. Migratory songbirds, long-standing model organisms for studying magnetosensation, have recently been reported to align their body with the geomagnetic field. To explore whether the magnetic alignment behaviour in songbirds is involved in the underlying mechanism for compass calibration, which have been suggested to occur near to sunset, we studied juvenile Eurasian reed warblers (Acrocephalus scirpaceus) captured at stopover during their first autumn migration. We kept one group of birds in local daylight conditions and an experimental group under a 2 h delayed sunset. We used an ad hoc machine learning algorithm to track the birds' body alignment over a 2-week period. Our results show that magnetic body alignment occurs prior to sunset, but shifts to a more northeast-southwest alignment afterwards. Our findings support the hypothesis that body alignment could be associated with how directional celestial and magnetic cues are integrated in the compass of migratory birds.
Collapse
Affiliation(s)
- Giuseppe Bianco
- Centre for Animal Movement Research, Department of Biology, Lund University, Ecology Building, 223 62, Lund, Sweden.
| | - Robin Clemens Köhler
- Centre for Animal Movement Research, Department of Biology, Lund University, Ecology Building, 223 62, Lund, Sweden
- Max Planck Institute for Terrestrial Microbiology, 35043, Marburg, Germany
| | - Mihaela Ilieva
- Centre for Animal Movement Research, Department of Biology, Lund University, Ecology Building, 223 62, Lund, Sweden
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, 2 Gagarin Str., 1113, Sofia, Bulgaria
| | - Susanne Åkesson
- Centre for Animal Movement Research, Department of Biology, Lund University, Ecology Building, 223 62, Lund, Sweden.
| |
Collapse
|
9
|
Benitez-Paez F, Brum-Bastos VDS, Beggan CD, Long JA, Demšar U. Fusion of wildlife tracking and satellite geomagnetic data for the study of animal migration. MOVEMENT ECOLOGY 2021; 9:31. [PMID: 34116722 PMCID: PMC8196450 DOI: 10.1186/s40462-021-00268-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 05/30/2021] [Indexed: 06/12/2023]
Abstract
BACKGROUND Migratory animals use information from the Earth's magnetic field on their journeys. Geomagnetic navigation has been observed across many taxa, but how animals use geomagnetic information to find their way is still relatively unknown. Most migration studies use a static representation of geomagnetic field and do not consider its temporal variation. However, short-term temporal perturbations may affect how animals respond - to understand this phenomenon, we need to obtain fine resolution accurate geomagnetic measurements at the location and time of the animal. Satellite geomagnetic measurements provide a potential to create such accurate measurements, yet have not been used yet for exploration of animal migration. METHODS We develop a new tool for data fusion of satellite geomagnetic data (from the European Space Agency's Swarm constellation) with animal tracking data using a spatio-temporal interpolation approach. We assess accuracy of the fusion through a comparison with calibrated terrestrial measurements from the International Real-time Magnetic Observatory Network (INTERMAGNET). We fit a generalized linear model (GLM) to assess how the absolute error of annotated geomagnetic intensity varies with interpolation parameters and with the local geomagnetic disturbance. RESULTS We find that the average absolute error of intensity is - 21.6 nT (95% CI [- 22.26555, - 20.96664]), which is at the lower range of the intensity that animals can sense. The main predictor of error is the level of geomagnetic disturbance, given by the Kp index (indicating the presence of a geomagnetic storm). Since storm level disturbances are rare, this means that our tool is suitable for studies of animal geomagnetic navigation. Caution should be taken with data obtained during geomagnetically disturbed days due to rapid and localised changes of the field which may not be adequately captured. CONCLUSIONS By using our new tool, ecologists will be able to, for the first time, access accurate real-time satellite geomagnetic data at the location and time of each tracked animal, without having to start new tracking studies with specialised magnetic sensors. This opens a new and exciting possibility for large multi-species studies that will search for general migratory responses to geomagnetic cues. The tool therefore has a potential to uncover new knowledge about geomagnetic navigation and help resolve long-standing debates.
Collapse
Affiliation(s)
- Fernando Benitez-Paez
- School of Geography and Sustainable Development, Irvine Building, University of St Andrews, North Street, St Andrews, KY16 9AL, Scotland, UK
- The Alan Turing Institute British Library, England, London, UK
| | - Vanessa da Silva Brum-Bastos
- School of Geography and Sustainable Development, Irvine Building, University of St Andrews, North Street, St Andrews, KY16 9AL, Scotland, UK
| | - Ciarán D Beggan
- British Geological Survey, Research Ave South, Riccarton, Edinburgh, Scotland, UK
| | - Jed A Long
- School of Geography and Sustainable Development, Irvine Building, University of St Andrews, North Street, St Andrews, KY16 9AL, Scotland, UK
- Department of Geography and Environment, Western University, London, Ontario, Canada
| | - Urška Demšar
- School of Geography and Sustainable Development, Irvine Building, University of St Andrews, North Street, St Andrews, KY16 9AL, Scotland, UK.
| |
Collapse
|
10
|
Åkesson S, Grönroos J, Bianco G. Autumn migratory orientation and route choice in early and late dunlins Calidris alpina captured at a stopover site in Alaska. Biol Open 2021; 10:260593. [PMID: 33913474 PMCID: PMC8096618 DOI: 10.1242/bio.058655] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2021] [Accepted: 03/23/2021] [Indexed: 11/28/2022] Open
Abstract
We investigated the migratory orientation of early and late captured dunlins, Calidris alpina, by recording their migratory activity in circular orientation cages during autumn at a staging site in southwest Alaska and performed route simulations to the wintering areas. Two races of dunlins breeding in Alaska have different wintering grounds in North America (Pacific Northwest), and East Asia. Dunlins caught early in autumn (presumably Calidris alpinapacifica) oriented towards their wintering areas (east-southeast; ESE) supporting the idea that they migrate nonstop over the Gulf of Alaska to the Pacific Northwest. We found no difference in orientation between adult and juveniles, nor between fat and lean birds or under clear and overcast skies demonstrating that age, energetic status and cloud cover did not affect the dunlins’ migratory orientation. Later in autumn, we recorded orientation responses towards south-southwest suggesting arrival of the northern subspecies Calidris alpinaarcticola at our site. Route simulations revealed multiple compass mechanisms were compatible with the initial direction of early dunlins wintering in the Pacific Northwest, and for late dunlins migrating to East Asia. Future high-resolution tracking would reveal routes, stopover use including local movements and possible course shifts during migration from Alaska to wintering sites on both sides of the north Pacific Ocean. Summary: Orientation experiments with dunlins captured in Alaska during autumn migration confirm orientation to distant wintering areas. Route simulations revealed multiple compass mechanisms were compatible with the initial direction of early dunlins wintering in the Pacific Northwest, and for dunlins migrating to East Asia.
Collapse
Affiliation(s)
- Susanne Åkesson
- Department of Biology, Centre for Animal Movement Research, Lund University, Ecology Building, 22362 Lund, Sweden
| | - Johanna Grönroos
- Department of Environmental Science and Bioscience, Kristianstad University, 29188 Kristianstad, Sweden
| | - Giuseppe Bianco
- Department of Biology, Centre for Animal Movement Research, Lund University, Ecology Building, 22362 Lund, Sweden
| |
Collapse
|
11
|
|
12
|
Taylor OR, Lovett JP, Gibo DL, Weiser EL, Thogmartin WE, Semmens DJ, Diffendorfer JE, Pleasants JM, Pecoraro SD, Grundel R. Is the Timing, Pace, and Success of the Monarch Migration Associated With Sun Angle? Front Ecol Evol 2019. [DOI: 10.3389/fevo.2019.00442] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|
13
|
Norevik G, Åkesson S, Artois T, Beenaerts N, Conway G, Cresswell B, Evens R, Henderson I, Jiguet F, Hedenström A. Wind-associated detours promote seasonal migratory connectivity in a flapping flying long-distance avian migrant. J Anim Ecol 2019; 89:635-646. [PMID: 31581321 DOI: 10.1111/1365-2656.13112] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 08/12/2019] [Indexed: 11/29/2022]
Abstract
It is essential to gain knowledge about the causes and extent of migratory connectivity between stationary periods of migrants to further the understanding of processes affecting populations, and to allow efficient implementation of conservation efforts throughout the annual cycle. Avian migrants likely use optimal routes with respect to mode of locomotion, orientation and migration strategy, influenced by external factors such as wind and topography. In self-powered flapping flying birds, any increases in fuel loads are associated with added flight costs. Energy-minimizing migrants are therefore predicted to trade-off extended detours against reduced travel across ecological barriers with no or limited foraging opportunities. Here, we quantify the extent of detours taken by different populations of European nightjars Caprimulgus europaeus, to test our predictions that they used routes beneficial according to energetic principles and evaluate the effect of route shape on seasonal migratory connectivity. We combined data on birds tracked from breeding sites along a longitudinal gradient from England to Sweden. We analysed the migratory connectivity between breeding and main non-breeding sites, and en route stopover sites just south of the Sahara desert. We quantified each track's route extension relative to the direct route between breeding and wintering sites, respectively, and contrasted it to the potential detour derived from the barrier reduction along the track while accounting for potential wind effects. Nightjars extended their tracks from the direct route between breeding and main non-breeding sites as they crossed the Mediterranean Sea-Sahara desert, the major ecological barrier in the Palaearctic-African migration system. These clockwise detours were small for birds from eastern sites but increased from east to west breeding longitude. Routes of the tracked birds were associated with partial reduction in the barrier crossing resulting in a trade-off between route extension and barrier reduction, as expected in an energy-minimizing migrant. This study demonstrates how the costs of barrier crossings in prevailing winds can disrupt migratory routes towards slightly different goals, and thereby promote migratory connectivity. This is an important link between individual migration strategies in association with an ecological barrier, and both spatially and demographic population patterns.
Collapse
Affiliation(s)
- Gabriel Norevik
- Department of Biology, Centre for Animal Movement Research, Lund University, Lund, Sweden
| | - Susanne Åkesson
- Department of Biology, Centre for Animal Movement Research, Lund University, Lund, Sweden
| | - Tom Artois
- Centre for Environmental Sciences, Research Group: Zoology, Biodiversity and Toxicology, Hasselt University, Diepenbeek, Belgium
| | - Natalie Beenaerts
- Centre for Environmental Sciences, Research Group: Zoology, Biodiversity and Toxicology, Hasselt University, Diepenbeek, Belgium
| | | | | | - Ruben Evens
- Centre for Environmental Sciences, Research Group: Zoology, Biodiversity and Toxicology, Hasselt University, Diepenbeek, Belgium.,Swiss Ornithological Institute, Sempach, Switzerland
| | | | - Frédéric Jiguet
- UMR7204 MNHN-CNRS-SU, Centre d'Ecologie et de Sciences de la Conservation, Paris, France
| | - Anders Hedenström
- Department of Biology, Centre for Animal Movement Research, Lund University, Lund, Sweden
| |
Collapse
|
14
|
Cerritelli G, Bianco G, Santini G, Broderick AC, Godley BJ, Hays GC, Luschi P, Åkesson S. Assessing reliance on vector navigation in the long-distance oceanic migrations of green sea turtles. Behav Ecol 2018. [DOI: 10.1093/beheco/ary166] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Affiliation(s)
| | | | - Giacomo Santini
- Department of Biology, University of Florence, Sesto Fiorentino, Italy
| | | | - Brendan J Godley
- Centre for Ecology and Conservation, University of Exeter, Cornwall, UK
| | | | - Paolo Luschi
- Department of Biology, University of Pisa, Pisa, Italy
| | | |
Collapse
|
15
|
Sokolovskis K, Bianco G, Willemoes M, Solovyeva D, Bensch S, Åkesson S. Ten grams and 13,000 km on the wing - route choice in willow warblers Phylloscopus trochilus yakutensis migrating from Far East Russia to East Africa. MOVEMENT ECOLOGY 2018; 6:20. [PMID: 30349724 PMCID: PMC6191995 DOI: 10.1186/s40462-018-0138-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/27/2018] [Accepted: 08/26/2018] [Indexed: 06/08/2023]
Abstract
BACKGROUND High-latitude bird migration has evolved after the last glaciation, in less than 10,000-15,000 years. Migrating songbirds rely on an endogenous migratory program, encoding timing, fueling, and routes, but it is still unknown which compass mechanism they use on migration. We used geolocators to track the migration of willow warblers (Phylloscopus trochilus yakutensis) from their eastern part of the range in Russia to wintering areas in sub-Saharan Africa. Our aim was to investigate if the autumn migration route can be explained by a simple compass mechanism, based on celestial or geomagnetic information, or whether migration is undertaken as a sequence of differential migratory paths possibly involving a map sense. We compared the recorded migratory routes for our tracked birds with simulated routes obtained from different compass mechanisms. RESULTS The three tracked males were very similar in the routes they took to their final wintering sites in southern Tanzania or northern Mozambique, in their use of stopover sites and in the overall timing of migration. None of the tested compass mechanisms could explain the birds' routes to the first stopover area in southwest Asia or to the destination in Southeast Africa without modifications. Our compass mechanism simulations suggest that the simplest scenarios congruent with the observed routes are based on either an inclination or a sun compass, assuming two sequential steps. CONCLUSIONS The birds may follow a magnetoclinic route coinciding closely with the tracks by first moving west, i.e. closer to the goal, and thereafter follow a constant apparent angle of inclination to the stopover site. An alternative would be to use the sun compass, but with time-adjustments along the initial part of the migration to the first stopover, and thereafter depart along a new course to the winter destination. A combination of the two mechanisms cannot be ruled out, but needs to be confirmed in future studies.
Collapse
Affiliation(s)
- Kristaps Sokolovskis
- Department of Biology, Center for Animal Movement Research, Lund University, Ecology Building, 223 62 Lund, SE Sweden
- Department of Biology, Molecular Ecology and Evolution Laboratory, Lund University, Ecology Building, 223 62 Lund, SE Sweden
| | - Giuseppe Bianco
- Department of Biology, Center for Animal Movement Research, Lund University, Ecology Building, 223 62 Lund, SE Sweden
| | - Mikkel Willemoes
- Department of Biology, Center for Animal Movement Research, Lund University, Ecology Building, 223 62 Lund, SE Sweden
- Department of Biology, Molecular Ecology and Evolution Laboratory, Lund University, Ecology Building, 223 62 Lund, SE Sweden
| | - Diana Solovyeva
- Institute of Biological Problems in the North, Magadan, Russia
| | - Staffan Bensch
- Department of Biology, Center for Animal Movement Research, Lund University, Ecology Building, 223 62 Lund, SE Sweden
- Department of Biology, Molecular Ecology and Evolution Laboratory, Lund University, Ecology Building, 223 62 Lund, SE Sweden
| | - Susanne Åkesson
- Department of Biology, Center for Animal Movement Research, Lund University, Ecology Building, 223 62 Lund, SE Sweden
- Department of Biology, Evolutionary Ecology Unit, Lund University, Ecology Building, 223 62 Lund, SE Sweden
| |
Collapse
|
16
|
Long-distance navigation and magnetoreception in migratory animals. Nature 2018; 558:50-59. [PMID: 29875486 DOI: 10.1038/s41586-018-0176-1] [Citation(s) in RCA: 231] [Impact Index Per Article: 38.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2017] [Accepted: 04/13/2018] [Indexed: 11/08/2022]
Abstract
For centuries, humans have been fascinated by how migratory animals find their way over thousands of kilometres. Here, I review the mechanisms used in animal orientation and navigation with a particular focus on long-distance migrants and magnetoreception. I contend that any long-distance navigational task consists of three phases and that no single cue or mechanism will enable animals to navigate with pinpoint accuracy over thousands of kilometres. Multiscale and multisensory cue integration in the brain is needed. I conclude by raising twenty important mechanistic questions related to long-distance animal navigation that should be solved over the next twenty years.
Collapse
|
17
|
Muheim R, Schmaljohann H, Alerstam T. Feasibility of sun and magnetic compass mechanisms in avian long-distance migration. MOVEMENT ECOLOGY 2018; 6:8. [PMID: 29992024 PMCID: PMC5989362 DOI: 10.1186/s40462-018-0126-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Accepted: 05/14/2018] [Indexed: 06/08/2023]
Abstract
Birds use different compass mechanisms based on celestial (stars, sun, skylight polarization pattern) and geomagnetic cues for orientation. Yet, much remains to be understood how birds actually use these compass mechanisms on their long-distance migratory journeys. Here, we assess in more detail the consequences of using different sun and magnetic compass mechanisms for the resulting bird migration routes during both autumn and spring migration. First, we calculated predicted flight routes to determine which of the compasses mechanisms lead to realistic and feasible migration routes starting at different latitudes during autumn and spring migration. We then compared the adaptive values of the different compass mechanisms by calculating distance ratios in relation to the shortest possible trajectory for three populations of nocturnal passerine migrants: northern wheatear Oenanthe oenanthe, pied flycatcher Ficedula hypoleuca, and willow warbler Phylloscopus trochilus. Finally, we compared the predicted trajectories for different compass strategies with observed routes based on recent light-level geolocation tracking results for five individuals of northern wheatears migrating between Alaska and tropical Africa. We conclude that the feasibility of different compass routes varies greatly with latitude, migratory direction, migration season, and geographic location. Routes following a single compass course throughout the migratory journey are feasible for many bird populations, but the underlying compass mechanisms likely differ between populations. In many cases, however, the birds likely have to reorient once to a few times along the migration route and/or use map information to successfully reach their migratory destination.
Collapse
Affiliation(s)
- Rachel Muheim
- Department of Biology, Lund University, Biology Building B, 223 62 Lund, Sweden
| | - Heiko Schmaljohann
- Institute for Biology und Environmental Sciences (IBU), Carl von Ossietzky University of Oldenburg, Carl-von-Ossietzky-Straße 9-11, D-26129 Oldenburg, Germany
- Institute of Avian Research, Vogelwarte Helgoland, An der Vogelwarte 21, 26386 Wilhelmshaven, Germany
| | - Thomas Alerstam
- Department of Biology, Lund University, Ecology Building, 223 62 Lund, Sweden
| |
Collapse
|
18
|
Åkesson S, Ilieva M, Karagicheva J, Rakhimberdiev E, Tomotani B, Helm B. Timing avian long-distance migration: from internal clock mechanisms to global flights. Philos Trans R Soc Lond B Biol Sci 2017; 372:20160252. [PMID: 28993496 PMCID: PMC5647279 DOI: 10.1098/rstb.2016.0252] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/29/2017] [Indexed: 11/12/2022] Open
Abstract
Migratory birds regularly perform impressive long-distance flights, which are timed relative to the anticipated environmental resources at destination areas that can be several thousand kilometres away. Timely migration requires diverse strategies and adaptations that involve an intricate interplay between internal clock mechanisms and environmental conditions across the annual cycle. Here we review what challenges birds face during long migrations to keep track of time as they exploit geographically distant resources that may vary in availability and predictability, and summarize the clock mechanisms that enable them to succeed. We examine the following challenges: departing in time for spring and autumn migration, in anticipation of future environmental conditions; using clocks on the move, for example for orientation, navigation and stopover; strategies of adhering to, or adjusting, the time programme while fitting their activities into an annual cycle; and keeping pace with a world of rapidly changing environments. We then elaborate these themes by case studies representing long-distance migrating birds with different annual movement patterns and associated adaptations of their circannual programmes. We discuss the current knowledge on how endogenous migration programmes interact with external information across the annual cycle, how components of annual cycle programmes encode topography and range expansions, and how fitness may be affected when mismatches between timing and environmental conditions occur. Lastly, we outline open questions and propose future research directions.This article is part of the themed issue 'Wild clocks: integrating chronobiology and ecology to understand timekeeping in free-living animals'.
Collapse
Affiliation(s)
- Susanne Åkesson
- Centre for Animal Movement Research, Department of Biology, Lund University, 223 62 Lund, Sweden
| | - Mihaela Ilieva
- Centre for Animal Movement Research, Department of Biology, Lund University, 223 62 Lund, Sweden
- Institute of Biodiversity and Ecosystem Research, Bulgarian Academy of Sciences, Sofia 1113, Bulgaria
| | - Julia Karagicheva
- Department of Coastal Systems, NIOZ Royal Netherlands Institute for Sea Research and Utrecht University, 1790 AB Den Burg, Texel, The Netherlands
| | - Eldar Rakhimberdiev
- Department of Coastal Systems, NIOZ Royal Netherlands Institute for Sea Research and Utrecht University, 1790 AB Den Burg, Texel, The Netherlands
- Department of Vertebrate Zoology, Lomonosov Moscow State University, 119991 Moscow, Russia
| | - Barbara Tomotani
- Netherlands Institute of Ecology, 6700 AB Wageningen, The Netherlands
| | - Barbara Helm
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow G128QQ, UK
| |
Collapse
|