1
|
Yutsyschyna MA, Shaftoe JB, Gillis TE. Mitochondria from the systemic heart of Pacific hagfish (Eptatretus stoutii) are insensitive to one hour of anoxia followed by reoxygenation. Comp Biochem Physiol B Biochem Mol Biol 2024; 275:111022. [PMID: 39151663 DOI: 10.1016/j.cbpb.2024.111022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 08/13/2024] [Accepted: 08/13/2024] [Indexed: 08/19/2024]
Abstract
Pacific hagfish (Eptatretus stoutii) are an ancient agnathan vertebrate known to be anoxia tolerant. To study their metabolic organization and the role of the mitochondria in anoxia tolerance we developed a novel protocol to measure mitochondrial function in permeabilized cardiomyocytes and how this is affected by one hour of anoxia followed by reoxygenation. When measured at 10 °C the mitochondria had a respiration rate of 2.1 ± 0.1pmol/s/mg WW during OXPHOS with saturating concentrations of glutamate, malate, and succinate. This is comparatively low compared to other ectothermic species. The functional characteristics of the mitochondria were quantified with mitochondrial control ratios. These demonstrated that proton leak contributed to just under 50% of the oxygen flux, with the remainder going towards ATP phosphorylation. Finally, when the preparations were exposed to an anoxia-reoxygenation protocol there was no difference in respiration compared to that of a heart sample from the same animal maintained under normoxia for the same time. When Complex I alone or Complex I and II were stimulated following one hour of anoxia there was no decline in oxygen flux observed. However, if Complex II was activated alone there was a significant decline in respiration. This decrease was however also observed in the mitochondria maintained in normoxia for one hour. In conclusion, Pacific hagfish cardiac mitochondria demonstrated a low rate of oxygen consumption, a loosely coupled electron transfer system, and a resistance to one hour of anoxia.
Collapse
Affiliation(s)
| | - Jared B Shaftoe
- Department of Integrative Biology, University of Guelph, Ontario, Canada
| | - Todd E Gillis
- Department of Integrative Biology, University of Guelph, Ontario, Canada.
| |
Collapse
|
2
|
Yamaguchi Y, Ikeba K, Yoshida MA, Takagi W. Molecular basis of the unique osmoregulatory strategy in the inshore hagfish, Eptatretus burgeri. Am J Physiol Regul Integr Comp Physiol 2024; 327:R208-R233. [PMID: 38105762 DOI: 10.1152/ajpregu.00166.2023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 12/05/2023] [Accepted: 12/11/2023] [Indexed: 12/19/2023]
Abstract
Hagfishes are characterized by omo- and iono-conforming nature similar to marine invertebrates. Conventionally, hagfishes had been recognized as the most primitive living vertebrate that retains plesiomorphic features. However, some of the "ancestral" features of hagfishes, such as rudimentary eyes and the lack of vertebrae, have been proven to be deceptive. Similarly, by the principle of maximum parsimony, the unique body fluid regulatory strategy of hagfishes seems to be apomorphic, since the lamprey, another cyclostome, adopts osmo- and iono-regulatory mechanisms as in jawed vertebrates. Although hagfishes are unequivocally important in discussing the origin and evolution of the vertebrate osmoregulatory system, the molecular basis for the body fluid homeostasis in hagfishes has been poorly understood. In the present study, we explored this matter in the inshore hagfish, Eptatretus burgeri, by analyzing the transcriptomes obtained from the gill, kidney, and muscle of the animals acclimated to distinct environmental salinities. Together with the measurement of parameters in the muscular fluid compartment, our data indicate that the hagfish possesses an ability to conduct free amino acid (FAA)-based osmoregulation at a cellular level, which is in coordination with the renal and branchial FAA absorption. We also revealed that the hagfish does possess the orthologs of the known osmoregulatory genes and that the transepithelial movement of inorganic ions in the hagfish gill and kidney is more complex than previously thought. These observations pose a challenge to the conventional view that the physiological features of hagfishes have been inherited from the last common ancestor of the extant vertebrates.
Collapse
Affiliation(s)
- Yoko Yamaguchi
- Institute of Agricultural and Life Sciences, Academic Assembly, Shimane University, Matsue, Japan
| | - Kiriko Ikeba
- Laboratory of Physiology, Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Japan
| | - Masa-Aki Yoshida
- Institute of Agricultural and Life Sciences, Academic Assembly, Shimane University, Matsue, Japan
- Marine Biological Science Section, Education and Research Center for Biological Resources, Faculty of Life and Environmental Science, Shimane University, Okinoshima, Japan
| | - Wataru Takagi
- Laboratory of Physiology, Atmosphere and Ocean Research Institute, The University of Tokyo, Kashiwa, Japan
| |
Collapse
|
3
|
Evans RG. Evolution of the glomerulus in a marine environment and its implications for renal function in terrestrial vertebrates. Am J Physiol Regul Integr Comp Physiol 2023; 324:R143-R151. [PMID: 36534585 DOI: 10.1152/ajpregu.00210.2022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Nearly a century ago, Homer Smith proposed that the glomerulus evolved to meet the challenge of excretion of water in freshwater vertebrates. This hypothesis has been repeatedly restated in the nephrology and renal physiology literature, even though we now know that vertebrates evolved and diversified in marine (saltwater) environments. A more likely explanation is that the vertebrate glomerulus evolved from the meta-nephridium of marine invertebrates, with the driving force for ultrafiltration being facilitated by the apposition of the filtration barrier to the vasculature (in vertebrates) rather than the coelom (in invertebrates) and the development of a true heart and the more complex vertebrate vascular system. In turn, glomerular filtration aided individual regulation of divalent ions like magnesium, calcium, and sulfate compatible with the function of cardiac and skeletal muscle required for mobile predators. The metabolic cost, imposed by reabsorption of the small amounts of sodium required to drive secretion of these over-abundant divalent ions, was small. This innovation, developed in a salt-water environment, provided a preadaptation for life in freshwater, in which the glomerulus was co-opted to facilitate water excretion, albeit with the additional metabolic demand imposed by the need to reabsorb the majority of filtered sodium. The evolution of the glomerulus in saltwater also provided preadaptation for terrestrial life, where the imperative is conservation of both water and electrolytes. The historical contingencies of this scenario may explain why the mammalian kidney is so metabolically inefficient, with ∼80% of oxygen consumption being used to drive reabsorption of filtered sodium.
Collapse
Affiliation(s)
- Roger G Evans
- Cardiovascular Disease Program, Biomedicine Discovery Institute, and Department of Physiology, Monash University, Melbourne, Victoria, Australia.,Preclinical Critical Care Unit, Florey Institute of Neuroscience and Mental Health, University of Melbourne, Melbourne, Victoria, Australia
| |
Collapse
|
4
|
Glover CN, Goss GG. Hypoxia modifies calcium handling in the Pacific hagfish, Eptatretus stoutii. Comp Biochem Physiol A Mol Integr Physiol 2021; 261:111042. [PMID: 34329740 DOI: 10.1016/j.cbpa.2021.111042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 07/09/2021] [Accepted: 07/23/2021] [Indexed: 10/20/2022]
Abstract
Hagfishes may encounter low dissolved oxygen in their natural habitats, a consequence of association with hypoxic sediments and their feeding behaviour. In teleost fish, hypoxia exposure decreases ion uptake, speculated to be a mechanism for energy conservation. Although hagfishes osmoconform, they do regulate extracellular fluid concentrations of divalent cations such as calcium. The current study hypothesised that exposure of hagfish to hypoxia (0.4 kPA, 24 h) would reduce calcium uptake (determined via in vitro isolated skin and gut epithelial transport assays) and calcium accumulation (determined by in vivo whole animal exposures, using radiolabelled calcium (45Ca) to assess newly acquired calcium). A decrease in in vitro epidermal uptake was observed at sub-environmental calcium levels (10 μM), but not at environmental calcium levels (10 mM). No changes in gut calcium uptake were determined. Conversely, hypoxia led to a more rapid in vivo accumulation of calcium in tissues (skin, muscle, liver, heart, plasma, brain), mediated mostly by a significant increase in accumulation at the gill. These differences were only apparent after 1-h of exposure to the radiolabel (i.e., the last hour of the 24-h hypoxia exposure) and were not observed after 3 and 24 h periods of radiolabel exposure. This outcome was the opposite of the hypothesised effect. The reasons for a more rapid accumulation of calcium in hypoxic hagfish are unknown but may relate to roles for calcium in enhancing hypoxia tolerance in hagfishes or could be a consequence of changes in ventilatory frequency.
Collapse
Affiliation(s)
- Chris N Glover
- Faculty of Science and Technology and Athabasca River Basin Research Institute, Athabasca University, Athabasca, Alberta, Canada; Bamfield Marine Sciences Centre, Bamfield, British Columbia, Canada; Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada.
| | - Greg G Goss
- Bamfield Marine Sciences Centre, Bamfield, British Columbia, Canada; Department of Biological Sciences, University of Alberta, Edmonton, Alberta, Canada
| |
Collapse
|
5
|
In vitro characterisation of calcium influx across skin and gut epithelia of the Pacific hagfish, Eptatretus stoutii. J Comp Physiol B 2020; 190:149-160. [DOI: 10.1007/s00360-020-01262-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2019] [Revised: 11/30/2019] [Accepted: 01/09/2020] [Indexed: 01/20/2023]
|
6
|
Giacomin M, Dal Pont G, Eom J, Schulte PM, Wood CM. The effects of salinity and hypoxia exposure on oxygen consumption, ventilation, diffusive water exchange and ionoregulation in the Pacific hagfish (Eptatretus stoutii). Comp Biochem Physiol A Mol Integr Physiol 2019; 232:47-59. [PMID: 30878760 DOI: 10.1016/j.cbpa.2019.03.007] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Revised: 01/30/2019] [Accepted: 03/06/2019] [Indexed: 10/27/2022]
Abstract
Hagfishes (Class: Myxini) are marine jawless craniate fishes that are widely considered to be osmoconformers whose plasma [Na+], [Cl-] and osmolality closely resemble that of sea water, although they have the ability to regulate plasma [Ca2+] and [Mg2+] below seawater levels. We investigated the responses of Pacific hagfish to changes in respiratory and ionoregulatory demands imposed by a 48-h exposure to altered salinity (25 ppt, 30 ppt (control) and 35 ppt) and by an acute hypoxia exposure (30 Torr; 4 kPa). When hagfish were exposed to 25 ppt, oxygen consumption rate (MO2), ammonia excretion rate (Jamm) and unidirectional diffusive water flux rate (JH2O, measured with 3H2O) were all reduced, pointing to an interaction between ionoregulation and gas exchange. At 35 ppt, JH2O was reduced, though MO2 and Jamm did not change. As salinity increased, so did the difference between plasma and external water [Ca2+] and [Mg2+]. Notably, the same pattern was seen for plasma Cl-, which was kept below seawater [Cl-] at all salinities, while plasma [Na+] was regulated well above seawater [Na+], but plasma osmolality matched seawater values. MO2 was reduced by 49% and JH2O by 36% during hypoxia, despite a small elevation in overall ventilation. Our results depart from the "classical" osmorespiratory compromise but are in accord with responses in other hypoxia-tolerant fish; instead of an exacerbation of gill fluxes when gas transfer is upregulated, the opposite happens.
Collapse
Affiliation(s)
- Marina Giacomin
- Department of Zoology, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada; Bamfield Marine Sciences Centre, Bamfield, British Columbia V0R 1B0, Canada.
| | - Giorgi Dal Pont
- Department of Zoology, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada; Bamfield Marine Sciences Centre, Bamfield, British Columbia V0R 1B0, Canada; Integrated Group for Aquaculture and Environmental Studies, Department of Animal Science, Federal University of Paraná, Curitiba, Paraná 83035-050, Brazil
| | - Junho Eom
- Department of Zoology, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada; Bamfield Marine Sciences Centre, Bamfield, British Columbia V0R 1B0, Canada.
| | - Patricia M Schulte
- Department of Zoology, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada.
| | - Chris M Wood
- Department of Zoology, The University of British Columbia, Vancouver, BC V6T 1Z4, Canada; Bamfield Marine Sciences Centre, Bamfield, British Columbia V0R 1B0, Canada; Department of Biology, McMaster University, Hamilton, Ontario L8S 4K1, Canada.
| |
Collapse
|
7
|
Inagaki R, Ito F, Shimamura Y, Masuda S. Effect of chloride on the formation of 3-monochloro-1,2-propanediol fatty acid diesters and glycidol fatty acid esters in fish, meats and acylglycerols during heating. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2019; 36:236-243. [PMID: 30652962 DOI: 10.1080/19440049.2018.1562231] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Abstract
The effects of the presence of chloride on the formation of 3-monochloro-1,2-propanediol fatty acid esters (3-MCPDEs) and glycidol fatty acid esters (GEs) in saltwater fish, meats and acylglycerols (diacylglycerol and triacylglycerol) during heating were investigated in this study. Five saltwater fish species (salmon, saury, yellowtail, mackerel and Spanish mackerel) were grilled with a fish griller. 3-MCPDEs and GEs were detected in all of the grilled fish samples. The total amount of GEs was higher than 3-MCPDEs. Beef and pork patties with or without sodium chloride (1.5%) were cooked using gaseous fuel. The formation of 3-MCPDEs was significantly increased by the addition of sodium chloride to the meat patties, whereas the concentration of GEs in the cooked meat patties was not changed by the content of sodium chloride. Hexadecane solutions of diacylglycerol or triacylglycerol containing FeCl3 were heated at 240°C. The formation of 3-MCPDEs was greatly increased by adding FeCl3 to the solutions of triacylglycerol. The amounts of 3-MCPDEs decreased with the extension of the heating time. From these results, it is suggested that 3-MCPDEs and GEs are formed in saltwater fish and meats by cooking, and that the formation of 3-MCPDEs was affected by chloride in foodstuffs.
Collapse
Affiliation(s)
- Ryo Inagaki
- a Laboratory of Food Hygiene, Graduate School of Nutritional and Environmental Sciences , University of Shizuoka , Shizuoka , Japan
| | - Fumika Ito
- a Laboratory of Food Hygiene, Graduate School of Nutritional and Environmental Sciences , University of Shizuoka , Shizuoka , Japan
| | - Yuko Shimamura
- b Laboratory of Microbiology, Graduate School of Nutritional and Environmental Sciences , University of Shizuoka , Shizuoka , Japan
| | - Shuichi Masuda
- a Laboratory of Food Hygiene, Graduate School of Nutritional and Environmental Sciences , University of Shizuoka , Shizuoka , Japan
| |
Collapse
|
8
|
Giacomin M, Eom J, Schulte PM, Wood CM. Acute temperature effects on metabolic rate, ventilation, diffusive water exchange, osmoregulation, and acid–base status in the Pacific hagfish (Eptatretus stoutii). J Comp Physiol B 2018; 189:17-35. [DOI: 10.1007/s00360-018-1191-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Revised: 10/30/2018] [Accepted: 11/05/2018] [Indexed: 12/21/2022]
|
9
|
Cuoghi I, Lazzaretti C, Mandrioli M, Mola L, Pederzoli A. Immunohistochemical analysis of the distribution of molecules involved in ionic and pH regulation in the lancelet Branchiostoma floridae (Hubbs, 1922). Acta Histochem 2018; 120:33-40. [PMID: 29169695 DOI: 10.1016/j.acthis.2017.10.011] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 09/20/2017] [Accepted: 10/30/2017] [Indexed: 11/28/2022]
Abstract
The aim of present work is to analyse the distribution of carbonic anhydrase II (CAII), cystic fibrosis transmembrane regulator (CFTR), vacuolar-type H+-ATPase (V-H+-ATPase), Na+/K+ ATPase, Na+/H+ exchanger (NHE) and SLC26A6 (solute carrier family 26, member 6), also known as pendrin protein, in the lancelet Branchiostoma floridae in order to go in depth in the evolution of osmoregulation and pH regulation in Chordates. In view of their phylogenetic position, lancelets may indeed provide a critical point of reference for studies on osmoregulation evolution in Chordates. The results of present work demonstrated that, except to Na+/K+ ATPase that is strongly expressed in nephridia only, all the other studied molecules are abundantly present in skin, coelomic epithelium, renal papillae and nephridia and hepatic coecum. Thus, it is possible to hypothesize that also in lancelet, as in fish, these organs are involved in pH control and ionic regulation. In the digestive tract of B. floridae, the intestine epithelium was weakly immune-reactive to all tested antibodies, while the hepatic coecum showed an intense immunoreactivity to all molecules. Since in amphioxus the hepatic coecum functions simultaneously as stomach, liver and pancreas, these immunohistochemical results proved the secretion of H+ and HCO3- ions, typical of digestive process. Colocalization studies indicated a co-expression of the studied proteins in all considered organs, excluding NHE and pendrin for renal papillae, since some renal papillae are NHE immunopositive only.
Collapse
Affiliation(s)
- Ivan Cuoghi
- Department of Life Sciences, University of Modena and Reggio Emilia, via Campi 213/D, I-41125 Modena, Italy
| | - Clara Lazzaretti
- Department of Life Sciences, University of Modena and Reggio Emilia, via Campi 213/D, I-41125 Modena, Italy
| | - Mauro Mandrioli
- Department of Life Sciences, University of Modena and Reggio Emilia, via Campi 213/D, I-41125 Modena, Italy
| | - Lucrezia Mola
- Department of Life Sciences, University of Modena and Reggio Emilia, via Campi 213/D, I-41125 Modena, Italy.
| | - Aurora Pederzoli
- Department of Life Sciences, University of Modena and Reggio Emilia, via Campi 213/D, I-41125 Modena, Italy
| |
Collapse
|
10
|
Clifford AM, Bury NR, Schultz AG, Ede JD, Goss BL, Goss GG. Regulation of plasma glucose and sulfate excretion in Pacific hagfish, Eptatretus stoutii is not mediated by 11-deoxycortisol. Gen Comp Endocrinol 2017; 247:107-115. [PMID: 28126345 DOI: 10.1016/j.ygcen.2017.01.022] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Revised: 01/16/2017] [Accepted: 01/19/2017] [Indexed: 10/20/2022]
Abstract
The goal of this study was to identify whether Pacific hagfish (Eptatretus stoutii) possess glucocorticoid and mineralocorticoid responses and to examine the potential role(s) of four key steroids in these responses. Pacific hagfish were injected with varying amounts of cortisol, corticosterone or 11-deoxycorticosterone (DOC) using coconut oil implants and plasma glucose and gill total-ATPase activity were monitored as indices of glucocorticoid and mineralocorticoid responses. Furthermore, we also monitored plasma glucose and 11-deoxycortisol (11-DOC) levels following exhaustive stress (30 min of agitation) or following repeated infusion with SO42-. There were no changes in gill total-ATPase following implantation with any steroid, with only very small statistical increases in plasma glucose noted in hagfish implanted with either DOC (at 20 and 200mgkg-1 at 7 and 4days post-injection, respectively) or corticosterone (at 100mgkg-1 at 7days post-injection). Following exhaustive stress, hagfish displayed a large and sustained increase in plasma glucose. Repeated infusion of SO42- into hagfish caused increases in both plasma glucose levels and SO42- excretion rate suggesting a regulated glucocorticoid and mineralocorticoid response. However, animals under either condition did not show any significant increases in plasma 11-DOC concentrations. Our results suggest that while there are active glucocorticoid and mineralocorticoid responses in hagfish, 11-DOC does not appear to be involved and the identity and primary function of the steroid in hagfish remains to be elucidated.
Collapse
Affiliation(s)
- Alexander M Clifford
- Bamfield Marine Sciences Centre, Bamfield, BC, Canada; Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Nicolas R Bury
- Bamfield Marine Sciences Centre, Bamfield, BC, Canada; Diabetes & Nutritional Sciences Division, Kings College, London, UK; Faculty of Health and Life Sciences, University of Suffolk, Suffolk, UK
| | - Aaron G Schultz
- Bamfield Marine Sciences Centre, Bamfield, BC, Canada; Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - James D Ede
- Bamfield Marine Sciences Centre, Bamfield, BC, Canada; Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Brendan L Goss
- Bamfield Marine Sciences Centre, Bamfield, BC, Canada; Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada
| | - Greg G Goss
- Bamfield Marine Sciences Centre, Bamfield, BC, Canada; Department of Biological Sciences, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
11
|
Glover CN, Wood CM, Goss GG. Drinking and water permeability in the Pacific hagfish, Eptatretus stoutii. J Comp Physiol B 2017; 187:1127-1135. [DOI: 10.1007/s00360-017-1097-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 03/17/2017] [Accepted: 04/06/2017] [Indexed: 01/09/2023]
|
12
|
Effect of environmental salinity manipulation on uptake rates and distribution patterns of waterborne amino acids in the Pacific hagfish. Comp Biochem Physiol A Mol Integr Physiol 2017; 204:164-168. [DOI: 10.1016/j.cbpa.2016.11.021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2016] [Revised: 11/24/2016] [Accepted: 11/28/2016] [Indexed: 11/19/2022]
|
13
|
Hagfish: Champions of CO2 tolerance question the origins of vertebrate gill function. Sci Rep 2015; 5:11182. [PMID: 26057989 PMCID: PMC4460890 DOI: 10.1038/srep11182] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2014] [Accepted: 04/07/2015] [Indexed: 11/30/2022] Open
Abstract
The gill is widely accepted to have played a key role in the adaptive radiation of early vertebrates by supplanting the skin as the dominant site of gas exchange. However, in the most basal extant craniates, the hagfishes, gills play only a minor role in gas exchange. In contrast, we found hagfish gills to be associated with a tremendous capacity for acid-base regulation. Indeed, Pacific hagfish exposed acutely to severe sustained hypercarbia tolerated among the most severe blood acidoses ever reported (1.2 pH unit reduction) and subsequently exhibited the greatest degree of acid-base compensation ever observed in an aquatic chordate. This was accomplished through an unprecedented increase in plasma [HCO3−] (>75 mM) in exchange for [Cl−]. We thus propose that the first physiological function of the ancestral gill was acid-base regulation, and that the gill was later co-opted for its central role in gas exchange in more derived aquatic vertebrates.
Collapse
|
14
|
Expression of carbonic anhydrase, cystic fibrosis transmembrane regulator (CFTR) and V-H(+)-ATPase in the lancelet Branchiostoma lanceolatum (Pallas, 1774). Acta Histochem 2014; 116:487-92. [PMID: 24220283 DOI: 10.1016/j.acthis.2013.10.005] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2013] [Revised: 10/07/2013] [Accepted: 10/08/2013] [Indexed: 12/20/2022]
Abstract
Sequencing of the amphioxus genome revealed that it contains a basic set of chordate genes involved in development and cell signaling. Despite the availability of genomic data, up till now no studies have been addressed on the comprehension of the amphioxus osmoregulation. Using primers designed on Branchiostoma floridae carbonic anhydrase (CA) II, cystic fibrosis transmembrane regulator (CFTR) and V-H(+)-ATPase, a 100bp long region, containing the protein region recognized by the respective antibodies, has been amplified and sequenced in B. lanceolatum indicating the presence of hortologous V-ATPase, CFTR and carbonic anhydrase II genes in Branchiostoma lanceolatum. Immunohistochemical results showed that all three transporting proteins are expressed in almost 90% of epithelial cells of the skin in B. lanceolatum adults with a different degree of positivity in different regions of body wall and with a different localization in the cells. The comparison of results between young and adult lancelets showed that the distribution of these transporters is quite different. Indeed, in the young specimens the expression pattern of all tested molecules appears concentrated at the gut level, whereas in adult the gut loses its key role that is mostly supported by skin.
Collapse
|
15
|
Larsen EH, Deaton LE, Onken H, O'Donnell M, Grosell M, Dantzler WH, Weihrauch D. Osmoregulation and Excretion. Compr Physiol 2014; 4:405-573. [DOI: 10.1002/cphy.c130004] [Citation(s) in RCA: 127] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
|
16
|
Lee LH, Hui CF, Chuang CM, Chen JY. Electrotransfer of the epinecidin-1 gene into skeletal muscle enhances the antibacterial and immunomodulatory functions of a marine fish, grouper (Epinephelus coioides). FISH & SHELLFISH IMMUNOLOGY 2013; 35:1359-1368. [PMID: 23973381 DOI: 10.1016/j.fsi.2013.07.050] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Revised: 07/30/2013] [Accepted: 07/30/2013] [Indexed: 06/02/2023]
Abstract
Electrotransfer of plasmid DNA into skeletal muscle is a common non-viral delivery system for the study of gene function and for gene therapy. However, the effects of epinecidin-1 (epi) on bacterial growth and immune system modulation following its electrotransfer into the muscle of grouper (Epinephelus coioides), a marine fish species, have not been addressed. In this study, pCMV-gfp-epi plasmid was electroporated into grouper muscle, and its effect on subsequent infection with Vibrio vulnificus was examined. Over-expression of epi efficiently reduced bacterial numbers at 24 and 48 h after infection, and augmented the expression of immune-related genes in muscle and liver, inducing a moderate innate immune response associated with pro-inflammatory infiltration. Furthermore, electroporation of pCMV-gfp-epi plasmid without V. vulnificus infection induced moderate expression of certain immune-related genes, particularly innate immune genes. These data suggest that electroporation-mediated gene transfer of epi into the muscle of grouper may hold potential as an antimicrobial therapy for pathogen infection in marine fish.
Collapse
Affiliation(s)
- Lin-Han Lee
- Marine Research Station, Institute of Cellular and Organismic Biology, Academia Sinica, 23-10 Dahuen Road, Jiaushi, Ilan 262, Taiwan
| | | | | | | |
Collapse
|
17
|
Brauner CJ, Rombough PJ. Ontogeny and paleophysiology of the gill: new insights from larval and air-breathing fish. Respir Physiol Neurobiol 2012; 184:293-300. [PMID: 22884973 DOI: 10.1016/j.resp.2012.07.011] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Revised: 07/13/2012] [Accepted: 07/17/2012] [Indexed: 11/17/2022]
Abstract
There are large changes in gill function during development associated with ionoregulation and gas exchange in both larval and air-breathing fish. Physiological studies of larvae indicate that, contrary to accepted dogma but consistent with morphology, the initial function of the gill is primarily ionoregulatory and only secondarily respiratory. In air-breathing fish, as the gill becomes progressively less important in terms of O(2) uptake with expansion of the air-breathing organ, it retains its roles in CO(2) excretion, ion exchange and acid-base balance. The observation that gill morphology and function is strongly influenced by ionoregulatory needs in both larval and air-breathing fish may have evolutionary implications. In particular, it suggests that the inability of the skin to maintain ion and acid-base balance as protovertebrates increased in size and became more active may have been more important in driving gill development than O(2) insufficiency.
Collapse
Affiliation(s)
- Colin J Brauner
- Department of Zoology, University of British Columbia, Vancouver, BC V6 T 1Z4, Canada.
| | | |
Collapse
|
18
|
Edwards SL, Marshall WS. Principles and Patterns of Osmoregulation and Euryhalinity in Fishes. FISH PHYSIOLOGY 2012. [DOI: 10.1016/b978-0-12-396951-4.00001-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
|
19
|
The curious case of the chemical composition of hagfish tissues—50years on. Comp Biochem Physiol A Mol Integr Physiol 2010; 157:111-5. [DOI: 10.1016/j.cbpa.2010.06.164] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2010] [Revised: 06/04/2010] [Accepted: 06/05/2010] [Indexed: 11/21/2022]
|