1
|
Cones AG, Westneat DF. Variation in the thermal plasticity of avian embryos is produced by the developmental environment, not genes. Proc Biol Sci 2024; 291:20241892. [PMID: 39378989 PMCID: PMC11461059 DOI: 10.1098/rspb.2024.1892] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2024] [Revised: 09/06/2024] [Accepted: 09/06/2024] [Indexed: 10/10/2024] Open
Abstract
Limited evidence suggests that variation in phenotypic plasticity within populations may arise largely from environmental sources, thereby constraining its evolvability. This is of concern for temperature-sensitive metabolism in the face of climate change. We quantified the relative influence of the developmental environment versus genes on the metabolic plasticity of avian embryos to temperature. We partially cross-fostered 602 house sparrow eggs (Passer domesticus), measured the heart rate plasticity of these embryos to egg temperature and partitioned variance in plasticity. We found that the foster (incubation) environment was the sole meaningful source of variance in embryonic plasticity (not genes, pre-laying effects or ambient conditions). In contrast to heart rate plasticity, offspring growth was influenced by the foster environment, genes/pre-laying parental effects and ambient conditions. Although embryonic plasticity to temperature varied in this population, these results suggest that it is unlikely to evolve quickly. Nevertheless, the expression of this plasticity may be able to shift between generations in response to changes in the developmental environment. Whether the multidimensional plasticity of heart rate to both current temperature and the developmental environment is itself an adaptive, evolved trait allowing avian embryos to optimize their metabolic plasticity to their current environment remains to be tested.
Collapse
Affiliation(s)
- Alexandra G. Cones
- Department of Biology, Ludwig Maximilian University of Munich, Großhaderner Str. 2, Planegg-Martinsried, Bavaria82152, Germany
- Department of Biology, University of Kentucky, 101 Thomas Hunt Morgan Building, Lexington, KY40506, USA
| | - David F. Westneat
- Department of Biology, University of Kentucky, 101 Thomas Hunt Morgan Building, Lexington, KY40506, USA
| |
Collapse
|
2
|
Roussel D, Roussel N, Voituron Y, Rey B. Liver mitochondrial coupling efficiency and its relationship to oxidative capacity and adenine nucleotide translocase content: A comparative study among crocodiles, birds and mammals. Mitochondrion 2024; 78:101909. [PMID: 38844192 DOI: 10.1016/j.mito.2024.101909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 04/29/2024] [Accepted: 05/31/2024] [Indexed: 06/11/2024]
Abstract
The primary objective of this study was to assess whether adenine nucleotide translocase (ANT) content could be associated with phylogenetic disparities in mitochondrial coupling efficiency, within liver mitochondria obtained from rats, crocodiles, and ducklings. Our measurements included mitochondrial membrane conductance, ANT content, and oxidative phosphorylation fluxes at various steady-state rates. We observed significant variations in liver mitochondrial coupling efficiency across the three species. These variations correlated with interspecific differences in mitochondrial oxidative capacity and, to a lesser extent, the ANT content of liver mitochondria. These findings expand upon previous research by highlighting the pivotal role of oxidative capacity and ANT in modulating mitochondrial efficiency on an interspecific scale.
Collapse
Affiliation(s)
- Damien Roussel
- Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR 5023 LEHNA, France.
| | | | - Yann Voituron
- Université Claude Bernard Lyon 1, CNRS, ENTPE, UMR 5023 LEHNA, France
| | - Benjamin Rey
- Université Claude Bernard Lyon 1, CNRS, UMR 5558 LBBE, France
| |
Collapse
|
3
|
Morla J, Salin K, Lassus R, Favre-Marinet J, Sentis A, Daufresne M. Multigenerational exposure to temperature influences mitochondrial oxygen fluxes in the Medaka fish (Oryzias latipes). Acta Physiol (Oxf) 2024; 240:e14194. [PMID: 38924292 DOI: 10.1111/apha.14194] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 05/08/2024] [Accepted: 06/18/2024] [Indexed: 06/28/2024]
Abstract
AIM Thermal sensitivity of cellular metabolism is crucial for animal physiology and survival under climate change. Despite recent efforts, effects of multigenerational exposure to temperature on the metabolic functioning remain poorly understood. We aimed at determining whether multigenerational exposure to temperature modulate the mitochondrial respiratory response of Medaka fish. METHODS We conducted a multigenerational exposure with Medaka fish reared multiple generations at 20 and 30°C (COLD and WARM fish, respectively). We then measured the oxygen consumption of tail muscle at two assay temperatures (20 and 30°C). Mitochondrial function was determined as the respiration supporting ATP synthesis (OXPHOS) and the respiration required to offset proton leak (LEAK(Omy)) in a full factorial design (COLD-20°C; COLD-30°C; WARM-20°C; WARM-30°C). RESULTS We found that higher OXPHOS and LEAK fluxes at 30°C compared to 20°C assay temperature. At each assay temperature, WARM fish had lower tissue oxygen fluxes than COLD fish. Interestingly, we did not find significant differences in respiratory flux when mitochondria were assessed at the rearing temperature of the fish (i.e., COLD-20°C vs. WARM -30°C). CONCLUSION The lower OXPHOS and LEAK capacities in warm fish are likely the result of the multigenerational exposure to warm temperature. This is consistent with a modulatory response of mitochondrial capacity to compensate for potential detrimental effects of warming on metabolism. Finally, the absence of significant differences in respiratory fluxes between COLD-20°C and WARM-30°C fish likely reflects an optimal respiration flux when organisms adapt to their thermal conditions.
Collapse
Affiliation(s)
- Julie Morla
- INRAE, Aix-Marseille University, UMR RECOVER, Aix-en-Provence, France
| | - Karine Salin
- Départment of Environment and Resources, IFREMER, Unité de Physiologie Fonctionnelle des Organismes Marins-LEMAR UMR 6530, BP70, Plouzané, France
| | - Rémy Lassus
- INRAE, Aix-Marseille University, UMR RECOVER, Aix-en-Provence, France
| | | | - Arnaud Sentis
- INRAE, Aix-Marseille University, UMR RECOVER, Aix-en-Provence, France
| | - Martin Daufresne
- INRAE, Aix-Marseille University, UMR RECOVER, Aix-en-Provence, France
| |
Collapse
|
4
|
Léger A, Cormier SB, Blanchard A, Menail HA, Pichaud N. Investigating the thermal sensitivity of key enzymes involved in the energetic metabolism of three insect species. J Exp Biol 2024; 227:jeb247221. [PMID: 38680096 DOI: 10.1242/jeb.247221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 04/16/2024] [Indexed: 05/01/2024]
Abstract
The metabolic responses of insects to high temperatures have been linked to their mitochondrial substrate oxidation capacity. However, the mechanism behind this mitochondrial flexibility is not well understood. Here, we used three insect species with different thermal tolerances (the honey bee, Apis mellifera; the fruit fly, Drosophila melanogaster; and the potato beetle, Leptinotarsa decemlineata) to characterize the thermal sensitivity of different metabolic enzymes. Specifically, we measured activity of enzymes involved in glycolysis (hexokinase, HK; pyruvate kinase, PK; and lactate dehydrogenase, LDH), pyruvate oxidation and the tricarboxylic acid cycle (pyruvate dehydrogenase, PDH; citrate synthase, CS; malate dehydrogenase, MDH; and aspartate aminotransferase, AAT), and the electron transport system (Complex I, CI; Complex II, CII; mitochondrial glycerol-3-phosphate dehydrogenase, mG3PDH; proline dehydrogenase, ProDH; and Complex IV, CIV), as well as that of ATP synthase (CV) at 18, 24, 30, 36, 42 and 45°C. Our results show that at high temperature, all three species have significantly increased activity of enzymes linked to FADH2 oxidation, specifically CII and mG3PDH. In fruit flies and honey bees, this coincides with a significant decrease of PDH and CS activity, respectively, that would limit NADH production. This is in line with the switch from NADH-linked substrates to FADH2-linked substrates previously observed with mitochondrial oxygen consumption. Thus, we demonstrate that even though the three insect species have a different metabolic regulation, a similar response to high temperature involving CII and mG3PDH is observed, denoting the importance of these proteins for thermal tolerance in insects.
Collapse
Affiliation(s)
- Adèle Léger
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB, CanadaE1A 3E9
- New Brunswick Centre for Precision Medicine (NBCPM), Moncton, NB, CanadaE1C 8X3
| | - Simon B Cormier
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB, CanadaE1A 3E9
- New Brunswick Centre for Precision Medicine (NBCPM), Moncton, NB, CanadaE1C 8X3
| | - Arianne Blanchard
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB, CanadaE1A 3E9
- New Brunswick Centre for Precision Medicine (NBCPM), Moncton, NB, CanadaE1C 8X3
| | - Hichem A Menail
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB, CanadaE1A 3E9
- New Brunswick Centre for Precision Medicine (NBCPM), Moncton, NB, CanadaE1C 8X3
| | - Nicolas Pichaud
- Department of Chemistry and Biochemistry, Université de Moncton, Moncton, NB, CanadaE1A 3E9
- New Brunswick Centre for Precision Medicine (NBCPM), Moncton, NB, CanadaE1C 8X3
| |
Collapse
|
5
|
He J, Zhan L, Meng S, Wang Z, Gao L, Wang W, Storey KB, Zhang Y, Yu D. Differential Mitochondrial Genome Expression of Three Sympatric Lizards in Response to Low-Temperature Stress. Animals (Basel) 2024; 14:1158. [PMID: 38672309 PMCID: PMC11047653 DOI: 10.3390/ani14081158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 03/28/2024] [Accepted: 04/07/2024] [Indexed: 04/28/2024] Open
Abstract
Ecological factors related to climate extremes have a significant influence on the adaptability of organisms, especially for ectotherms such as reptiles that are sensitive to temperature change. Climate extremes can seriously affect the survival and internal physiology of lizards, sometimes even resulting in the loss of local populations or even complete extinction. Indeed, studies have shown that the expression levels of the nuclear genes and mitochondrial genomes of reptiles change under low-temperature stress. At present, the temperature adaptability of reptiles has rarely been studied at the mitochondrial genome level. In the present study, the mitochondrial genomes of three species of lizards, Calotes versicolor, Ateuchosaurus chinensis, and Hemidactylus bowringii, which live in regions of sympatry, were sequenced. We used RT-qPCR to explore the level of mitochondrial gene expression under low-temperature stress, as compared to a control temperature. Among the 13 protein-coding genes (PCGs), the steady-state transcript levels of ND4L, ND1, ATP6, and COII were reduced to levels of 0.61 ± 0.06, 0.50 ± 0.08, 0.44 ± 0.16, and 0.41 ± 0.09 in C. versicolor, respectively, compared with controls. The transcript levels of the ND3 and ND6 genes fell to levels of just 0.72 ± 0.05 and 0.67 ± 0.05 in H. bowringii, compared with controls. However, the transcript levels of ND3, ND5, ND6, ATP6, ATP8, Cytb, and COIII genes increased to 1.97 ± 0.15, 2.94 ± 0.43, 1.66 ± 0.07, 1.59 ± 0.17, 1.46 ± 0.04, 1.70 ± 0.16, and 1.83 ± 0.07 in A. chinensis. Therefore, the differences in mitochondrial gene expression may be internally related to the adaptative strategy of the three species under low-temperature stress, indicating that low-temperature environments have a greater impact on A. chinensis, with a small distribution area. In extreme environments, the regulatory trend of mitochondrial gene expression in reptiles is associated with their ability to adapt to extreme climates, which means differential mitochondrial genome expression can be used to explore the response of different lizards in the same region to low temperatures. Our experiment aims to provide one new research method to evaluate the potential extinction of reptile species in warm winter climates.
Collapse
Affiliation(s)
- Jingyi He
- College of Life Science, Zhejiang Normal University, Jinhua 321004, China; (J.H.); (L.Z.); (S.M.); (Z.W.); (L.G.); (W.W.)
| | - Lemei Zhan
- College of Life Science, Zhejiang Normal University, Jinhua 321004, China; (J.H.); (L.Z.); (S.M.); (Z.W.); (L.G.); (W.W.)
| | - Siqi Meng
- College of Life Science, Zhejiang Normal University, Jinhua 321004, China; (J.H.); (L.Z.); (S.M.); (Z.W.); (L.G.); (W.W.)
| | - Zhen Wang
- College of Life Science, Zhejiang Normal University, Jinhua 321004, China; (J.H.); (L.Z.); (S.M.); (Z.W.); (L.G.); (W.W.)
| | - Lulu Gao
- College of Life Science, Zhejiang Normal University, Jinhua 321004, China; (J.H.); (L.Z.); (S.M.); (Z.W.); (L.G.); (W.W.)
| | - Wenjing Wang
- College of Life Science, Zhejiang Normal University, Jinhua 321004, China; (J.H.); (L.Z.); (S.M.); (Z.W.); (L.G.); (W.W.)
| | - Kenneth B. Storey
- Department of Biology, Carleton University, Ottawa, ON K1S 5B6, Canada
| | - Yongpu Zhang
- College of Life and Environmental Science, Wenzhou University, Wenzhou 325035, China
| | - Danna Yu
- College of Life Science, Zhejiang Normal University, Jinhua 321004, China; (J.H.); (L.Z.); (S.M.); (Z.W.); (L.G.); (W.W.)
- Key Lab of Wildlife Biotechnology, Conservation and Utilization of Zhejiang Province, Zhejiang Normal University, Jinhua 321004, China
| |
Collapse
|
6
|
Pacheco-Fuentes H, Ton R, Griffith SC. Short- and long-term consequences of heat exposure on mitochondrial metabolism in zebra finches (Taeniopygia castanotis). Oecologia 2023; 201:637-648. [PMID: 36894790 PMCID: PMC10038956 DOI: 10.1007/s00442-023-05344-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Accepted: 02/20/2023] [Indexed: 03/11/2023]
Abstract
Understanding the consequences of heat exposure on mitochondrial function is crucial as mitochondria lie at the core of metabolic processes, also affecting population dynamics. In adults, mitochondrial metabolism varies with temperature but can also depend on thermal conditions experienced during development. We exposed zebra finches to two alternative heat treatments during early development: "constant", maintained birds at ambient 35 °C from parental pair formation to fledglings' independence, while "periodic" heated broods at 40 °C, 6 h daily at nestling stage. Two years later, we acclimated birds from both experiments at 25 °C for 21 days, before exposing them to artificial heat (40 °C, 5 h daily for 10 days). After both conditions, we measured red blood cells' mitochondrial metabolism using a high-resolution respirometer. We found significantly decreased mitochondrial metabolism for Routine, Oxidative Phosphorylation (OxPhos) and Electron Transport System maximum capacity (ETS) after the heat treatments. In addition, the birds exposed to "constant" heat in early life showed lower oxygen consumption at the Proton Leak (Leak) stage after the heat treatment as adults. Females showed higher mitochondrial respiration for Routine, ETS and Leak independent of the treatments, while this pattern was reversed for OxPhos coupling efficiency (OxCE). Our results show that short-term acclimation involved reduced mitochondrial respiration, and that the reaction of adult birds to heat depends on the intensity, pattern and duration of temperature conditions experienced at early-life stages. Our study provides insight into the complexity underlying variation in mitochondrial metabolism and raises questions on the adaptive value of long-lasting physiological adjustments triggered by the early-life thermal environment.
Collapse
Affiliation(s)
| | - Riccardo Ton
- School of Natural Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| | - Simon C Griffith
- School of Natural Sciences, Macquarie University, Sydney, NSW, 2109, Australia
| |
Collapse
|
7
|
Porter WR, Witmer LM. Vascular Patterns in the Heads of Dinosaurs: Evidence for Blood Vessels, Sites of Thermal Exchange, and Their Role in Physiological Thermoregulatory Strategies. Anat Rec (Hoboken) 2019; 303:1075-1103. [DOI: 10.1002/ar.24234] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Revised: 03/22/2019] [Accepted: 05/11/2019] [Indexed: 11/11/2022]
Affiliation(s)
- William Ruger Porter
- Department of Biomedical Sciences Ohio University Heritage College of Osteopathic Medicine, Ohio Center for Ecology and Evolutionary Studies Athens Ohio
| | - Lawrence M. Witmer
- Department of Biomedical Sciences Ohio University Heritage College of Osteopathic Medicine, Ohio Center for Ecology and Evolutionary Studies Athens Ohio
| |
Collapse
|
8
|
Barneche DR, Jahn M, Seebacher F. Warming increases the cost of growth in a model vertebrate. Funct Ecol 2019. [DOI: 10.1111/1365-2435.13348] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Diego R. Barneche
- School of Life and Environmental Sciences The University of Sydney Camperdown New South Wales Australia
| | - Miki Jahn
- School of Life and Environmental Sciences The University of Sydney Camperdown New South Wales Australia
| | - Frank Seebacher
- School of Life and Environmental Sciences The University of Sydney Camperdown New South Wales Australia
| |
Collapse
|
9
|
Cao JY, Xing K, Liu HP, Zhao F. Effects of developmental acclimation on fitness costs differ between two aphid species. J Therm Biol 2018; 78:58-64. [DOI: 10.1016/j.jtherbio.2018.09.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2018] [Revised: 08/31/2018] [Accepted: 09/08/2018] [Indexed: 01/24/2023]
|
10
|
Eme J, Cooper CJ, Alvo A, Vasquez J, Muhtaseb S, Rayman S, Schmoyer T, Elsey RM. Scaling of major organs in hatchling female American alligators (Alligator mississippiensis
). JOURNAL OF EXPERIMENTAL ZOOLOGY PART 2018; 331:38-51. [DOI: 10.1002/jez.2236] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2018] [Revised: 08/27/2018] [Accepted: 09/02/2018] [Indexed: 01/20/2023]
Affiliation(s)
- John Eme
- Department of Biological Sciences; California State University San Marcos; San Marcos California
| | - Cassidy J. Cooper
- Department of Biological Sciences; California State University San Marcos; San Marcos California
| | - Andrew Alvo
- Department of Biological Sciences; California State University San Marcos; San Marcos California
| | - Juan Vasquez
- Department of Biological Sciences; California State University San Marcos; San Marcos California
| | - Sara Muhtaseb
- Department of Biological Sciences; California State University San Marcos; San Marcos California
| | - Susan Rayman
- Department of Biological Sciences; California State University San Marcos; San Marcos California
| | - Thomas Schmoyer
- Department of Biological Sciences; California State University San Marcos; San Marcos California
| | - Ruth M. Elsey
- Louisiana Department of Wildlife and Fisheries, Rockefeller Wildlife Refuge; Grand Chenier Louisiana
| |
Collapse
|
11
|
Dupoué A, Brischoux F, Lourdais O. Climate and foraging mode explain interspecific variation in snake metabolic rates. Proc Biol Sci 2018; 284:rspb.2017.2108. [PMID: 29142118 DOI: 10.1098/rspb.2017.2108] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 10/16/2017] [Indexed: 11/12/2022] Open
Abstract
The energy cost of self-maintenance is a critical facet of life-history strategies. Clarifying the determinant of interspecific variation in metabolic rate (MR) at rest is important to understand and predict ecological patterns such as species distributions or responses to climatic changes. We examined variation of MR in snakes, a group characterized by a remarkable diversity of activity rates and a wide distribution. We collated previously published MR data (n = 491 observations) measured in 90 snake species at different trial temperatures. We tested for the effects of metabolic state (standard MR (SMR) versus resting MR (RMR)), foraging mode (active versus ambush foragers) and climate (temperature and precipitation) while accounting for non-independence owing to phylogeny, body mass and thermal dependence. We found that RMR was 40% higher than SMR, and that active foragers have higher MR than species that ambush their prey. We found that MR was higher in cold environments, supporting the metabolic cold adaptation hypothesis. We also found an additive and positive effect of precipitation on MR suggesting that lower MR in arid environments may decrease dehydration and energetic costs. Altogether, our findings underline the complex influences of climate and foraging mode on MR and emphasize the relevance of these facets to understand the physiological impact of climate change.
Collapse
Affiliation(s)
- Andréaz Dupoué
- CNRS UPMC, UMR 7618, iEES Paris, Université Pierre et Marie Curie, Tours 44-45, 4 Place Jussieu, 75005 Paris, France
| | | | - Olivier Lourdais
- CEBC-CNRS, UMR 7372, 79360, Villiers en Bois, France.,School of Life Sciences, Arizona State University, Tempe, AZ 85287-4501, USA
| |
Collapse
|
12
|
Liang S, Li W, Zhang Y, Tang X, He J, Bai Y, Li D, Wang Y, Chen Q. Seasonal variation of metabolism in lizard Phrynocephalus vlangalii at high altitude. Comp Biochem Physiol A Mol Integr Physiol 2016; 203:341-347. [PMID: 27793615 DOI: 10.1016/j.cbpa.2016.10.010] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2016] [Revised: 10/04/2016] [Accepted: 10/21/2016] [Indexed: 11/16/2022]
Abstract
Seasonal acclimatization is important for animals to live optimally in the varying environment. Phrynocephalus vlangalii, a species of lizard endemic in China, distributes on Qinghai-Tibet Plateau ranging from 2000 to 4600m above sea level. To dissect how this lizard mediate metabolism to adapt various season, the preferred body temperature (Tb), standard metabolic rate (SMR), mitochondrial respiration rates and activities of four metabolic enzymes in this species were tested in different seasons (spring, summer, and autumn). The results showed that the preferred Tb was the lowest in spring and the highest in summer. SMR, maximal mitochondrial respiration rates in liver and skeletal muscle were the highest in spring. Similarly, higher activities of lactate dehydrogenase (LDH), citrate synthase (CS) and cytochrome c oxidase (CCO) activities of liver and skeletal muscle were observed in spring. However, β-hydroxyacyl coenzyme A dehydrogenase (HOAD) activities of liver and skeletal muscle were higher in autumn. On the whole, seasonal variation of metabolism is the highest in spring and the lowest in summer. Seasonal variation of metabolism is the opposite of preferred body temperature, this may be one of the mechanisms to adapt to the environment in P. vlangalii. Our results suggested that P. vlangalii at high altitude has certain adaptive characteristics on metabolism in different seasons.
Collapse
Affiliation(s)
- Shiwei Liang
- School of Life Sciences, Lanzhou University, 222 Tian Shui South Road, 730000 Lanzhou, China
| | - Weixin Li
- School of Life Sciences, Lanzhou University, 222 Tian Shui South Road, 730000 Lanzhou, China
| | - Yang Zhang
- School of Life Sciences, Lanzhou University, 222 Tian Shui South Road, 730000 Lanzhou, China
| | - Xiaolong Tang
- School of Life Sciences, Lanzhou University, 222 Tian Shui South Road, 730000 Lanzhou, China
| | - Jianzheng He
- School of Life Sciences, Lanzhou University, 222 Tian Shui South Road, 730000 Lanzhou, China
| | - Yucheng Bai
- School of Life Sciences, Lanzhou University, 222 Tian Shui South Road, 730000 Lanzhou, China
| | - Dongqin Li
- School of Life Sciences, Lanzhou University, 222 Tian Shui South Road, 730000 Lanzhou, China
| | - Yan Wang
- School of Life Sciences, Lanzhou University, 222 Tian Shui South Road, 730000 Lanzhou, China
| | - Qiang Chen
- School of Life Sciences, Lanzhou University, 222 Tian Shui South Road, 730000 Lanzhou, China.
| |
Collapse
|
13
|
Price ER, Sirsat TS, Sirsat SKG, Kang G, Keereetaweep J, Aziz M, Chapman KD, Dzialowski EM. Thermal acclimation in American alligators: Effects of temperature regime on growth rate, mitochondrial function, and membrane composition. J Therm Biol 2016; 68:45-54. [PMID: 28689720 DOI: 10.1016/j.jtherbio.2016.06.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 06/22/2016] [Accepted: 06/24/2016] [Indexed: 10/21/2022]
Abstract
We investigated the ability of juvenile American alligators (Alligator mississippiensis) to acclimate to temperature with respect to growth rate. We hypothesized that alligators would acclimate to cold temperature by increasing the metabolic capacity of skeletal muscles and the heart. Additionally, we hypothesized that lipid membranes in the thigh muscle and liver would respond to low temperature, either to maintain fluidity (via increased unsaturation) or to maintain enzyme reaction rates (via increased docosahexaenoic acid). Alligators were assigned to one of 3 temperature regimes beginning at 9 mo of age: constant warm (30°C), constant cold (20°C), and daily cycling for 12h at each temperature. Growth rate over the following 7 mo was highest in the cycling group, which we suggest occurred via high digestive function or feeding activity during warm periods and energy-saving during cold periods. The warm group also grew faster than the cold group. Heart and liver masses were proportional to body mass, while kidney was proportionately larger in the cold group compared to the warm animals. Whole-animal metabolic rate was higher in the warm and cycling groups compared to the cold group - even when controlling for body mass - when assayed at 30°C, but not at 20°C. Mitochondrial oxidative phosphorylation capacity in permeabilized fibers of thigh muscle and heart did not differ among treatments. Membrane fatty acid composition of the brain was largely unaffected by temperature treatment, but adjustments were made in the phospholipid headgroup composition that are consistent with homeoviscous adaptation. Thigh muscle cell membranes had elevated polyunsaturated fatty acids in the cold group relative to the cycling group, but this was not the case for thigh muscle mitochondrial membranes. Liver mitochondria from cold alligators had elevated docosahexaenoic acid, which might be important for maintenance of reaction rates of membrane-bound enzymes.
Collapse
Affiliation(s)
- Edwin R Price
- Developmental Integrative Biology Research Group, Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA.
| | - Tushar S Sirsat
- Developmental Integrative Biology Research Group, Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA
| | - Sarah K G Sirsat
- Developmental Integrative Biology Research Group, Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA
| | - Gurdeep Kang
- Developmental Integrative Biology Research Group, Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA
| | - Jantana Keereetaweep
- Developmental Integrative Biology Research Group, Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA
| | - Mina Aziz
- Developmental Integrative Biology Research Group, Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA
| | - Kent D Chapman
- Developmental Integrative Biology Research Group, Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA
| | - Edward M Dzialowski
- Developmental Integrative Biology Research Group, Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA
| |
Collapse
|
14
|
Sirsat SKG, Sirsat TS, Price ER, Dzialowski EM. Post-hatching development of mitochondrial function, organ mass and metabolic rate in two ectotherms, the American alligator (Alligator mississippiensis) and the common snapping turtle (Chelydra serpentina). Biol Open 2016; 5:443-51. [PMID: 26962048 PMCID: PMC4890673 DOI: 10.1242/bio.017160] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The ontogeny of endothermy in birds is associated with disproportionate growth of thermogenic organs and increased mitochondrial oxidative capacity. However, no similar study has been made of the development of these traits in ectotherms. For comparison, we therefore investigated the metabolism, growth and muscle mitochondrial function in hatchlings of a turtle and a crocodilian, two ectotherms that never develop endothermy. Metabolic rate did not increase substantially in either species by 30 days post-hatching. Yolk-free body mass and heart mass did not change through 30 days in alligators and heart mass was a constant proportion of body mass, even after 1 year. Yolk-free body mass and liver mass grew 36% and 27%, respectively, in turtles during the first 30 days post-hatch. The mass-specific oxidative phosphorylation capacity of mitochondria, assessed using permeabilized muscle fibers, increased by a non-significant 47% in alligator thigh and a non-significant 50% in turtle thigh over 30 days, but did not increase in the heart. This developmental trajectory of mitochondrial function is slower and shallower than that previously observed in ducks, which demonstrate a 90% increase in mass-specific oxidative phosphorylation capacity in thigh muscles over just a few days, a 60% increase in mass-specific oxidative phosphorylation capacity of the heart over a few days, and disproportionate growth of the heart and other organs. Our data thus support the hypothesis that these developmental changes in ducks represent mechanistic drivers for attaining endothermy. Summary: Unlike endothermic species, there is little change in skeletal and cardiac muscle mitochondrial function from the embryonic stage through the first year of life in ectothermic alligators and snapping turtles.
Collapse
Affiliation(s)
- Sarah K G Sirsat
- Developmental Integrative Biology Research Group, Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA
| | - Tushar S Sirsat
- Developmental Integrative Biology Research Group, Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA
| | - Edwin R Price
- Developmental Integrative Biology Research Group, Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA
| | - Edward M Dzialowski
- Developmental Integrative Biology Research Group, Department of Biological Sciences, University of North Texas, Denton, TX 76203, USA
| |
Collapse
|
15
|
Rodgers EM, Schwartz JJ, Franklin CE. Diving in a warming world: the thermal sensitivity and plasticity of diving performance in juvenile estuarine crocodiles (Crocodylus porosus). CONSERVATION PHYSIOLOGY 2015; 3:cov054. [PMID: 27293738 PMCID: PMC4778457 DOI: 10.1093/conphys/cov054] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/09/2015] [Revised: 10/18/2015] [Accepted: 10/27/2015] [Indexed: 06/06/2023]
Abstract
Air-breathing, diving ectotherms are a crucial component of the biodiversity and functioning of aquatic ecosystems, but these organisms may be particularly vulnerable to the effects of climate change on submergence times. Ectothermic dive capacity is thermally sensitive, with dive durations significantly reduced by acute increases in water temperature; it is unclear whether diving performance can acclimate/acclimatize in response to long-term exposure to elevated water temperatures. We assessed the thermal sensitivity and plasticity of 'fright-dive' capacity in juvenile estuarine crocodiles (Crocodylus porosus; n = 11). Crocodiles were exposed to one of three long-term thermal treatments, designed to emulate water temperatures under differing climate change scenarios (i.e. current summer, 28°C; 'moderate' climate warming, 31.5°C; 'high' climate warming, 35°C). Dive trials were conducted in a temperature-controlled tank across a range of water temperatures. Dive durations were independent of thermal acclimation treatment, indicating a lack of thermal acclimation response. Acute increases in water temperature resulted in significantly shorter dive durations, with mean submergence times effectively halving with every 3.5°C increase in water temperature (Q 10 0.17, P < 0.001). Maximal dive performances, however, were found to be thermally insensitive across the temperature range of 28-35°C. These results suggest that C. porosus have a limited or non-existent capacity to thermally acclimate sustained 'fright-dive' performance. If the findings here are applicable to other air-breathing, diving ectotherms, the functional capacity of these organisms will probably be compromised under climate warming.
Collapse
Affiliation(s)
- Essie M. Rodgers
- School of Biological Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Jonathon J. Schwartz
- School of Biological Sciences, The University of Queensland, Brisbane, Queensland, Australia
| | - Craig E. Franklin
- School of Biological Sciences, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
16
|
Deremiens L, Schwartz L, Angers A, Glémet H, Angers B. Interactions between nuclear genes and a foreign mitochondrial genome in the redbelly dace Chrosomus eos. Comp Biochem Physiol B Biochem Mol Biol 2015; 189:80-6. [PMID: 26277640 DOI: 10.1016/j.cbpb.2015.08.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 07/28/2015] [Accepted: 08/04/2015] [Indexed: 11/26/2022]
Abstract
Given the coevolution process occurring between nuclear and mitochondrial genomes, the effects of introgressive hybridization remain puzzling. In this study, we take advantage of the natural co-occurrence of two biotypes bearing a similar nuclear genome (Chrosomus eos) but harbouring mitochondria from different species (wild type: C. eos; cybrids: Chrosomus neogaeus) to determine the extent of phenotype changes linked to divergence in the mitochondrial genome. Changes were assessed through differences in gene expression, enzymatic activity, proteomic and swimming activity. Our data demonstrate that complex IV activity was significantly higher in cybrids compared to wild type. This difference could result from one variable amino acid on the COX3 mitochondrial subunit and/or from a tremendous change in the proteome. We also show that cybrids present a higher swimming performance than wild type. Ultimately, our results demonstrate that the absence of coevolution for a period of almost ten million years between nuclear and mitochondrial genomes does not appear to be necessarily deleterious but could even have beneficial effects. Indeed, the capture of foreign mitochondria could be an efficient way to circumvent the selection process of genomic coevolution, allowing the rapid accumulation of new mutations in C. eos cybrids.
Collapse
Affiliation(s)
- Léo Deremiens
- Department of Biological Sciences, Université de Montréal, C.P. 6128, succ. Centre-Ville, Montréal, QC H3C 3J7, Canada.
| | - Logan Schwartz
- Department of Biological Sciences, Université de Montréal, C.P. 6128, succ. Centre-Ville, Montréal, QC H3C 3J7, Canada
| | - Annie Angers
- Department of Biological Sciences, Université de Montréal, C.P. 6128, succ. Centre-Ville, Montréal, QC H3C 3J7, Canada
| | - Hélène Glémet
- Department of Environmental Sciences, Université du Québec à Trois-Rivières, C.P. 500, Trois-Rivières, QC G9A 5H7, Canada
| | - Bernard Angers
- Department of Biological Sciences, Université de Montréal, C.P. 6128, succ. Centre-Ville, Montréal, QC H3C 3J7, Canada
| |
Collapse
|
17
|
Sappal R, MacDougald M, Fast M, Stevens D, Kibenge F, Siah A, Kamunde C. Alterations in mitochondrial electron transport system activity in response to warm acclimation, hypoxia-reoxygenation and copper in rainbow trout, Oncorhynchus mykiss. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2015; 165:51-63. [PMID: 26022556 DOI: 10.1016/j.aquatox.2015.05.014] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2015] [Revised: 04/20/2015] [Accepted: 05/16/2015] [Indexed: 06/04/2023]
Abstract
Fish expend significant amounts of energy to handle the numerous potentially stressful biotic and abiotic factors that they commonly encounter in aquatic environments. This universal requirement for energy singularizes mitochondria, the primary cellular energy transformers, as fundamental drivers of responses to environmental change. Our study probed the interacting effects of thermal stress, hypoxia-reoxygenation (HRO) and copper (Cu) exposure in rainbow trout to test the prediction that they act jointly to impair mitochondrial function. Rainbow trout were acclimated to 11 (controls) or 20°C for 2 months. Liver mitochondria were then isolated and their responses in vitro to Cu (0-20μM) without and with HRO were assessed. Sequential inhibition and activation of mitochondrial electron transport system (ETS) enzyme complexes permitted the measurement of respiratory activities supported by complex I-IV (CI-IV) in one run. The results showed that warm acclimation reduced fish and liver weights but increased mitochondrial protein indicating impairment of energy metabolism, increased synthesis of defense proteins and/or reduced liver water content. Whereas acute rise (11→20°C) in temperature increased mitochondrial oxidation rates supported by CI-IV, warm acclimation reduced the maximal (state 3) and increased the basal (state 4) respiration leading to global uncoupling of oxidative phosphorylation (OXPHOS). HRO profoundly inhibited both maximal and basal respiration rates supported by CI-IV, reduced RCR for all except CII and lowered CI:CII respiration ratio, an indication of decreased OXPHOS efficiency. The effects of Cu were less pronounced but more variable and included inhibition of CII-IV maximal respiration rates and stimulation of both CI and CIII basal respiration rates. Surprisingly, only CII and CIII indices exhibited significant 3-way interactions whereas 2-way interactions of acclimation either with Cu or HRO were portrayed mostly by CIV, and those of HRO and Cu were most common in CI and II respiratory indices. Our study suggests that warm acclimation blunts sensitivity of the ETS to temperature rise and that HRO and warm acclimation impose mitochondrial changes that sensitize the ETS to Cu. Overall, our study highlights the significance of the ETS in mitochondrial bioenergetic dysfunction caused by thermal stress, HRO and Cu exposure.
Collapse
Affiliation(s)
- Ravinder Sappal
- Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE, C1A 4P3, Canada; Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE, C1A 4P3, Canada
| | - Michelle MacDougald
- Faculty of Medicine, Memorial University of Newfoundland, Health Sciences Centre, Prince Philip Drive, St. John's, NL, A1B 3V6, Canada
| | - Mark Fast
- Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE, C1A 4P3, Canada
| | - Don Stevens
- Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE, C1A 4P3, Canada
| | - Fred Kibenge
- Department of Pathology and Microbiology, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE, C1A 4P3, Canada
| | - Ahmed Siah
- British Columbia Centre for Aquatic Health Sciences, 871A Island Highway, Campbell River, BC, V9W 2C2, Canada
| | - Collins Kamunde
- Department of Biomedical Sciences, Atlantic Veterinary College, University of Prince Edward Island, Charlottetown, PE, C1A 4P3, Canada.
| |
Collapse
|
18
|
Roussel D, Salin K, Dumet A, Romestaing C, Rey B, Voituron Y. Oxidative phosphorylation efficiency, proton conductance and reactive oxygen species production of liver mitochondria correlates with body mass in frogs. J Exp Biol 2015; 218:3222-8. [DOI: 10.1242/jeb.126086] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Accepted: 08/18/2015] [Indexed: 01/27/2023]
Abstract
Body size is a central biological parameter affecting most biological processes (especially energetics) and mitochondria is a key organelle controlling metabolism and is also the cell's main source of chemical energy. However, the link between body size and mitochondrial function is still unclear, especially in ectotherms. In this study, we investigated several parameters of mitochondrial bioenergetics in the liver of three closely related species of frogs (the common frog Rana temporaria, the marsh frog Pelophylax ridibundus and the bull frog Lithobates catesbeiana). These particular species were chosen due to their differences in adult body mass. We found that the mitochondrial coupling efficiency was markedly increased with animal size, which lead to a higher ATP production (+70%) in the larger frogs (L. catesbeiana) compared to the smaller frogs (R. temporaria). This was essentially driven by a strong negative dependence of mitochondrial proton conductance on body mass. Liver mitochondria from the larger frogs (L. catesbeiana) displayed 50% of the proton conductance of mitochondria from the smaller frogs (R. temporaria). Contrary to our prediction, the low mitochondrial proton conductance measured in L. catesbeiana was not associated with higher radical oxygen species production. Instead, liver mitochondria from the larger individuals produced significantly lower radical oxygen species than those from the smaller frogs. Collectively, the data shows that key bioenergetics parameters of mitochondria (proton leak, ATP production efficiency and radical oxygen species production) are correlated with body mass in frogs. This research expands our understanding of the relationship between mitochondrial function and the evolution of allometric scaling in ectotherms.
Collapse
Affiliation(s)
- Damien Roussel
- Laboratoire d'Ecologie des Hydrosystèmes Naturels et Anthropisés, UMR 5023, CNRS, Université de Lyon 1, Lyon, France
| | - Karine Salin
- Laboratoire d'Ecologie des Hydrosystèmes Naturels et Anthropisés, UMR 5023, CNRS, Université de Lyon 1, Lyon, France
- Institute of Biodiversity, Animal Health and Comparative Medicine, University of Glasgow, Glasgow, Scotland
| | - Adeline Dumet
- Laboratoire d'Ecologie des Hydrosystèmes Naturels et Anthropisés, UMR 5023, CNRS, Université de Lyon 1, Lyon, France
| | - Caroline Romestaing
- Laboratoire d'Ecologie des Hydrosystèmes Naturels et Anthropisés, UMR 5023, CNRS, Université de Lyon 1, Lyon, France
| | - Benjamin Rey
- Laboratoire de Biométrie et Biologie Évolutive, UMR 5558, CNRS, Université de Lyon 1, Lyon, France
- Brain Function Research Group, School of Physiology, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Yann Voituron
- Laboratoire d'Ecologie des Hydrosystèmes Naturels et Anthropisés, UMR 5023, CNRS, Université de Lyon 1, Lyon, France
| |
Collapse
|
19
|
Yan Y, Xie X. Metabolic compensations in mitochondria isolated from the heart, liver, kidney, brain and white muscle in the southern catfish (Silurus meridionalis) by seasonal acclimation. Comp Biochem Physiol A Mol Integr Physiol 2014; 183:64-71. [PMID: 25498350 DOI: 10.1016/j.cbpa.2014.12.011] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2014] [Revised: 11/10/2014] [Accepted: 12/04/2014] [Indexed: 10/24/2022]
Abstract
In order to examine the effects of seasonal acclimation on mitochondrial metabolic functions and test tissue-specific pattern of the metabolic compensation within individuals of the southern catfish (Silurus meridionalis Chen), rates of mitochondrial respiration and activities of cytochrome c oxidase (COX) in the heart, liver, kidney, brain and white muscle of this fish in the summer-acclimatized group (153.20±1.66 g) and winter-acclimatized group (177.71±3.04 g) were measured at seven assay temperatures (7.5, 12.5, 17.5, 22.5, 27.5, 32.5 and 37.5°C), respectively. The results show that compensatory adjustments in state III respiratory rate and COX activity occur significantly in the heart, kidney and liver, but do not in the brain and white muscle, which suggest that the metabolic compensation of this fish in response to seasonal acclimation exhibits a tissue-specific pattern. The cold acclimation increases mitochondrial oxidative capacities in the heart, kidney and liver concomitantly with reducing their upper thermal limits of mitochondrial functions at acute warming and the thermal tolerance shifts in the same tissue-specific pattern as the metabolic compensation. When combining the effects of seasonal acclimation on mitochondrial oxidative capacity and organ mass, the metabolic compensation demonstrates an organ-specific pattern with four categories: over-compensation in the heart, complete compensation in the kidney, partial compensation in the liver and no compensation in the brain. The organ-specific pattern of metabolic compensation might be a trade-off strategy of the performance adjustments in the seasonal acclimation for this fish to maximize its fitness.
Collapse
Affiliation(s)
- Yulian Yan
- Institute of Hydrobiology and Water Environment, School of Life Sciences, Southwest University, Chongqing 400715, China.
| | - Xiaojun Xie
- Institute of Hydrobiology and Water Environment, School of Life Sciences, Southwest University, Chongqing 400715, China.
| |
Collapse
|
20
|
Wollenberg Valero KC, Pathak R, Prajapati I, Bankston S, Thompson A, Usher J, Isokpehi RD. A candidate multimodal functional genetic network for thermal adaptation. PeerJ 2014; 2:e578. [PMID: 25289178 PMCID: PMC4183952 DOI: 10.7717/peerj.578] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Accepted: 08/24/2014] [Indexed: 01/20/2023] Open
Abstract
Vertebrate ectotherms such as reptiles provide ideal organisms for the study of adaptation to environmental thermal change. Comparative genomic and exomic studies can recover markers that diverge between warm and cold adapted lineages, but the genes that are functionally related to thermal adaptation may be difficult to identify. We here used a bioinformatics genome-mining approach to predict and identify functions for suitable candidate markers for thermal adaptation in the chicken. We first established a framework of candidate functions for such markers, and then compiled the literature on genes known to adapt to the thermal environment in different lineages of vertebrates. We then identified them in the genomes of human, chicken, and the lizard Anolis carolinensis, and established a functional genetic interaction network in the chicken. Surprisingly, markers initially identified from diverse lineages of vertebrates such as human and fish were all in close functional relationship with each other and more associated than expected by chance. This indicates that the general genetic functional network for thermoregulation and/or thermal adaptation to the environment might be regulated via similar evolutionarily conserved pathways in different vertebrate lineages. We were able to identify seven functions that were statistically overrepresented in this network, corresponding to four of our originally predicted functions plus three unpredicted functions. We describe this network as multimodal: central regulator genes with the function of relaying thermal signal (1), affect genes with different cellular functions, namely (2) lipoprotein metabolism, (3) membrane channels, (4) stress response, (5) response to oxidative stress, (6) muscle contraction and relaxation, and (7) vasodilation, vasoconstriction and regulation of blood pressure. This network constitutes a novel resource for the study of thermal adaptation in the closely related nonavian reptiles and other vertebrate ectotherms.
Collapse
Affiliation(s)
| | - Rachana Pathak
- College of Science, Engineering and Mathematics, Bethune-Cookman University , Daytona Beach, FL , USA
| | - Indira Prajapati
- College of Science, Engineering and Mathematics, Bethune-Cookman University , Daytona Beach, FL , USA
| | - Shannon Bankston
- College of Science, Engineering and Mathematics, Bethune-Cookman University , Daytona Beach, FL , USA
| | - Aprylle Thompson
- College of Science, Engineering and Mathematics, Bethune-Cookman University , Daytona Beach, FL , USA
| | - Jaytriece Usher
- College of Science, Engineering and Mathematics, Bethune-Cookman University , Daytona Beach, FL , USA
| | - Raphael D Isokpehi
- College of Science, Engineering and Mathematics, Bethune-Cookman University , Daytona Beach, FL , USA
| |
Collapse
|
21
|
Blier PU, Lemieux H, Pichaud N. Holding our breath in our modern world: will mitochondria keep the pace with climate changes? CAN J ZOOL 2014. [DOI: 10.1139/cjz-2013-0183] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Changes in environmental temperature can pose considerable challenges to animals and shifts in thermal habitat have been shown to be a major force driving species’ adaptation. These adaptations have been the focus of major research efforts to determine the physiological or metabolic constraints related to temperature and to reveal the phenotypic characters that can or should adjust. Considering the current consensus on climate change, the focus of research will likely shift to questioning whether ectothermic organisms will be able to survive future modifications of their thermal niches. Organisms can adjust to temperature changes through physiological plasticity (e.g., acclimation), genetic adaptation, or via dispersal to more suitable thermal habitats. Thus, it is important to understand what genetic and phenotypic attributes—at the individual, population, and species levels—could improve survival success. These issues are particularly important for ectotherms, which are in thermal equilibrium with the surrounding environment. To start addressing these queries, we should consider what physiological or metabolic functions are responsible for the impact of temperature on organisms. Some recent developments indicate that mitochondria are key metabolic structures determining the thermal range that an organism can tolerate. The catalytic capacity of mitochondria is highly sensitive to thermal variation and therefore should partly dictate the temperature dependence of biological functions. Mitochondria contain a complex network of different enzymatic reaction pathways that interact synergistically. The precise regulation of both adenosine triphosphate (ATP) and reactive oxygen species (ROS) production depends on the integration of different enzymes and pathways. Here, we examine the temperature dependence of different parts of mitochondrial pathways and evaluate the evolutionary challenges that need to be overcome to ensure mitochondrial adaptations to new thermal environments.
Collapse
Affiliation(s)
- Pierre U. Blier
- Laboratoire de physiologie animale intégrative, Département de Biologie, Université du Québec, 300 Allée des Ursulines, Rimouski, QC G5L 3A1, Canada
| | - Hélène Lemieux
- Campus Saint-Jean, University of Alberta, 8406, Marie-Anne-Gaboury Street (91 Street), Edmonton, AB T6C 4G9, Canada
| | - Nicolas Pichaud
- Laboratoire de physiologie animale intégrative, Département de Biologie, Université du Québec, 300 Allée des Ursulines, Rimouski, QC G5L 3A1, Canada
| |
Collapse
|
22
|
Paital B, Chainy GBN. Effects of temperature on complexes I and II mediated respiration, ROS generation and oxidative stress status in isolated gill mitochondria of the mud crab Scylla serrata. J Therm Biol 2014; 41:104-11. [PMID: 24679979 DOI: 10.1016/j.jtherbio.2014.02.013] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2013] [Revised: 02/04/2014] [Accepted: 02/10/2014] [Indexed: 01/11/2023]
Abstract
Effects of fluctuations in habitat temperature (18-30°) on mitochondrial respiratory behavior and oxidative metabolic responses in the euryhaline ectotherm Scylla serrata are not fully understood. In the present study, effects of different temperatures ranging from 12 to 40°C on glutamate and succinate mediated mitochondrial respiration, respiratory control ratio (RCR), ATP generation rate, ratio for the utilization of phosphate molecules per atomic oxygen consumption (P/O), levels of lipid peroxidation and H2O2 in isolated gill mitochondria of S. serrata are reported. The pattern of variation in the studied parameters was similar for the two substrates at different temperatures. The values recorded for RCR (≥3) and P/O ratio (1.4-2.7) at the temperature range of 15-25°C were within the normal range reported for other animals (3-10 for RCR and 1.5-3 for P/O). Values for P/O ratio, ATP generation rate and RCR were highest at 18°C when compared to the other assay temperatures. However, at low and high extreme temperatures, i.e. at 12 and 40°C, states III and IV respiration rates were not clearly distinguishable from each other indicating that mitochondria were completely uncoupled. Positive correlations were noticed between temperature and the levels of both lipid peroxidation and H2O2. It is inferred that fluctuations on either side of ambient habitat temperature may adversely influence mitochondrial respiration and oxidative metabolism in S. serrata. The results provide baseline data to understand the impacts of acute changes in temperature on ectotherms inhabiting estuarine or marine environments.
Collapse
Affiliation(s)
| | - G B N Chainy
- Department of Zoology, Utkal University, Bhubaneswar 751004, India; Department of Biotechnology, Utkal University, Bhubaneswar 751004, India
| |
Collapse
|
23
|
Tang X, Xin Y, Wang H, Li W, Zhang Y, Liang S, He J, Wang N, Ma M, Chen Q. Metabolic characteristics and response to high altitude in Phrynocephalus erythrurus (Lacertilia: Agamidae), a lizard dwell at altitudes higher than any other living lizards in the world. PLoS One 2013; 8:e71976. [PMID: 23951275 PMCID: PMC3737200 DOI: 10.1371/journal.pone.0071976] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2013] [Accepted: 07/07/2013] [Indexed: 11/18/2022] Open
Abstract
Metabolic response to high altitude remains poorly explored in reptiles. In the present study, the metabolic characteristics of Phrynocephaluserythrurus (Lacertilia: Agamidae), which inhabits high altitudes (4500 m) and Phrynocephalusprzewalskii (Lacertilia: Agamidae), which inhabits low altitudes, were analysed to explore the metabolic regulatory strategies for lizards living at high-altitude environments. The results indicated that the mitochondrial respiratory rates of P. erythrurus were significantly lower than those of P. przewalskii, and that proton leak accounts for 74~79% of state 4 and 7~8% of state3 in P. erythrurus vs. 43~48% of state 4 and 24~26% of state3 in P. przewalskii. Lactate dehydrogenase (LDH) activity in P. erythrurus was lower than in P. przewalskii, indicating that at high altitude the former does not, relatively, have a greater reliance on anaerobic metabolism. A higher activity related to β-hydroxyacyl coenzyme A dehydrogenase (HOAD) and the HOAD/citrate synthase (CS) ratio suggested there was a possible higher utilization of fat in P. erythrurus. The lower expression of PGC-1α and PPAR-γ in P. erythrurus suggested their expression was not influenced by cold and low PO2 at high altitude. These distinct characteristics of P. erythrurus are considered to be necessary strategies in metabolic regulation for living at high altitude and may effectively compensate for the negative influence of cold and low PO2.
Collapse
Affiliation(s)
- Xiaolong Tang
- Institute of Biochemistry and Molecular Biology, School of Life Science, Lanzhou University, Lanzhou, China
| | - Ying Xin
- Institute of Biochemistry and Molecular Biology, School of Life Science, Lanzhou University, Lanzhou, China
| | - Huihui Wang
- Institute of Biochemistry and Molecular Biology, School of Life Science, Lanzhou University, Lanzhou, China
| | - Weixin Li
- Institute of Biochemistry and Molecular Biology, School of Life Science, Lanzhou University, Lanzhou, China
| | - Yang Zhang
- Institute of Biochemistry and Molecular Biology, School of Life Science, Lanzhou University, Lanzhou, China
| | - Shiwei Liang
- Institute of Biochemistry and Molecular Biology, School of Life Science, Lanzhou University, Lanzhou, China
| | - Jianzheng He
- Institute of Biochemistry and Molecular Biology, School of Life Science, Lanzhou University, Lanzhou, China
| | - Ningbo Wang
- Institute of Biochemistry and Molecular Biology, School of Life Science, Lanzhou University, Lanzhou, China
| | - Ming Ma
- Institute of Biochemistry and Molecular Biology, School of Life Science, Lanzhou University, Lanzhou, China
| | - Qiang Chen
- Institute of Biochemistry and Molecular Biology, School of Life Science, Lanzhou University, Lanzhou, China
- * E-mail:
| |
Collapse
|
24
|
Williard A. Physiology as Integrated Systems. THE BIOLOGY OF SEA TURTLES, VOLUME III 2013. [DOI: 10.1201/b13895-2] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
25
|
He J, Xiu M, Tang X, Yue F, Wang N, Yang S, Chen Q. The different mechanisms of hypoxic acclimatization and adaptation in Lizard Phrynocephalus vlangalii living on Qinghai-Tibet Plateau. ACTA ACUST UNITED AC 2013; 319:117-23. [PMID: 23319459 DOI: 10.1002/jez.1776] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2012] [Revised: 10/26/2012] [Accepted: 11/05/2012] [Indexed: 11/10/2022]
Abstract
Phrynocephalus vlangalii is a species of lizard endemic in China, which lives on Qinghai-Tibet Plateau ranging from 2000 to 4600 m above sea level. In this study, P. vlangalii were collected from low altitude (2750 m) and high altitude (4564 m). The lizards from low altitude were acclimatized in simulated hypoxic chamber (equivalent to 4600 m) for 7, 15, and 30 days. The hematological parameters, heart weight, myocardial capillary density, and myocardial enzyme activities were examined. The results showed that acclimatization to hypoxia significantly increased hemoglobin concentration ([Hb]), hematocrit (Hct), heart weight (HW), heart weight to body mass (HW/BM), lactate dehydrogenase (LDH) activity, but markedly decreased mean corpuscular hemoglobin concentration (MCHC) and succinate dehydrogenase (SDH) activity. Red blood cell (RBC) count, body mass (BM), myocardial capillary density did not change markedly during hypoxic acclimatization. On the other hand, [Hb], Hct, MCHC, HW/BM, myocardium capillary density, and SDH activity of P. vlangalii from high altitude were remarkably higher than those from low-altitude; however, LDH activity of high-altitude P. vlangalii was lower than that of low-altitude lizards. There was no significant difference in HW or BM between populations of high-altitude and low-altitude. Based on the present data, we suggest that P. vlangalii has special anatomical, physiological, and biochemical accommodate mechanisms to live in hypoxic environment, and the regulative mechanisms are different between hypoxic acclimatization and adaptation.
Collapse
Affiliation(s)
- Jianzheng He
- Institute of Biochemistry and Molecular Biology, School of Life Sciences, Lanzhou University, Lanzhou, PR China
| | | | | | | | | | | | | |
Collapse
|
26
|
Dos Santos RS, Galina A, Da-Silva WS. Cold acclimation increases mitochondrial oxidative capacity without inducing mitochondrial uncoupling in goldfish white skeletal muscle. Biol Open 2012; 2:82-7. [PMID: 23336079 PMCID: PMC3545271 DOI: 10.1242/bio.20122295] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2012] [Accepted: 10/23/2012] [Indexed: 11/20/2022] Open
Abstract
Goldfish have been used for cold acclimation studies, which have focused on changes in glycolytic and oxidative enzymes or alterations in lipid composition in skeletal muscle. Here we examine the effects of cold acclimation on the functional properties of isolated mitochondria and permeabilized fibers from goldfish white skeletal muscle, focusing on understanding the types of changes that occur in the mitochondrial respiratory states. We observed that cold acclimation promoted a significant increase in the mitochondrial oxygen consumption rates. Western blot analysis showed that UCP3 was raised by ∼1.5-fold in cold-acclimated muscle mitochondria. Similarly, we also evidenced a rise in the adenine nucleotide translocase content in cold-acclimated muscle mitochondria compared to warm-acclimated mitochondria (0.96±0.05 vs 0.68±0.02 nmol carboxyatractyloside mg(-1) protein). This was followed by a 2-fold increment in the citrate synthase activity, which suggests a higher mitochondrial content in cold-acclimated goldfish. Even with higher levels of UCP3 and ANT, the effects of activator (palmitate) and inhibitors (carboxyatractyloside and GDP) on mitochondrial parameters were similar in both warm- and cold-acclimated goldfish. Thus, we propose that cold acclimation in goldfish promotes an increase in functional oxidative capacity, with higher mitochondrial content without changes in the mitochondrial uncoupling pathways.
Collapse
Affiliation(s)
- Reinaldo Sousa Dos Santos
- Instituto de Bioquímica Médica, Programa de Bioquímica e Biofísica Celular, Universidade Federal do Rio de Janeiro, Cidade Universitária , Rio de Janeiro 21941-902 , Brazil
| | | | | |
Collapse
|
27
|
Tattersall GJ, Sinclair BJ, Withers PC, Fields PA, Seebacher F, Cooper CE, Maloney SK. Coping with Thermal Challenges: Physiological Adaptations to Environmental Temperatures. Compr Physiol 2012; 2:2151-202. [DOI: 10.1002/cphy.c110055] [Citation(s) in RCA: 184] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
|
28
|
Micheli-Campbell MA, Campbell HA, Cramp RL, Booth DT, Franklin CE. Staying cool, keeping strong: incubation temperature affects performance in a freshwater turtle. J Zool (1987) 2011. [DOI: 10.1111/j.1469-7998.2011.00840.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|