1
|
Li Y, Xue Y, Peng Z, Zhang L. Immune diversity in lophotrochozoans, with a focus on recognition and effector systems. Comput Struct Biotechnol J 2023; 21:2262-2275. [PMID: 37035545 PMCID: PMC10073891 DOI: 10.1016/j.csbj.2023.03.031] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2022] [Revised: 03/11/2023] [Accepted: 03/19/2023] [Indexed: 03/30/2023] Open
Abstract
Lophotrochozoa is one of the most species-rich but immunologically poorly explored phyla. Although lack of acquired response in a narrow sense, lophotrochozoans possess various genetic mechanisms that enhance the diversity and specificity of innate immune system. Here, we review the recent advances of comparative immunology studies in lophotrochozoans with focus on immune recognition and effector systems. Haemocytes and coelomocytes are general important yet understudied player. Comparative genomics studies suggest expansion and functional divergence of lophotrochozoan immune reorganization systems is not as "homogeneous and simple" as we thought including the large-scale expansion and molecular divergence of pattern recognition receptors (PRRs) (TLRs, RLRs, lectins, etc.) and signaling adapters (MyD88s etc.), significant domain recombination of immune receptors (RLR, NLRs, lectins, etc.), extensive somatic recombination of fibrinogenrelated proteins (FREPs) in snails. Furthermore, there are repeatedly identified molecular mechanisms that generate immune effector diversity, including high polymorphism of antimicrobial peptides and proteins (AMPs), reactive oxygen and nitrogen species (RONS) and cytokines. Finally, we argue that the next generation omics tools and the recently emerged genome editing technicism will revolutionize our understanding of innate immune system in a comparative immunology perspective.
Collapse
Affiliation(s)
- Yongnan Li
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology & Center of Deep Sea Research, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| | - Yu Xue
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology & Center of Deep Sea Research, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Qingdao Agricultural University, Qingdao, China
| | - Zhangjie Peng
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology & Center of Deep Sea Research, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- College of Marine Science, University of Chinese Academy of Sciences, Beijing, China
| | - Linlin Zhang
- CAS and Shandong Province Key Laboratory of Experimental Marine Biology & Center of Deep Sea Research, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China
- Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
- College of Marine Science, University of Chinese Academy of Sciences, Beijing, China
- Corresponding author at: CAS and Shandong Province Key Laboratory of Experimental Marine Biology & Center of Deep Sea Research, Center for Ocean Mega-Science, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, China.
| |
Collapse
|
2
|
Wiśniewska K, Rost-Roszkowska M, Homa J, Kasperkiewicz K, Surmiak-Stalmach K, Szulińska E, Wilczek G. The effect of selected immunostimulants on hemocytes of the false black widow Steatoda grossa (Theridiidae) spiders under chronic exposition to cadmium. Comp Biochem Physiol C Toxicol Pharmacol 2022; 252:109221. [PMID: 34718188 DOI: 10.1016/j.cbpc.2021.109221] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/16/2021] [Accepted: 10/20/2021] [Indexed: 11/29/2022]
Abstract
The aim of this study was to analyze whether, and to what extent, long-term exposure to cadmium, administered in sublethal concentrations by the oral route, caused changes in the immune potential of hemocytes in adult female Steatoda grossa spiders. We used artificial and natural immunostimulants, namely phorbol 12-myristate 13-acetate (PMA) and bacterial cell suspension based on Gram-positive (G+, Staphylococcus aureus) and Gram-negative (G-, Pseudomonas fluorescens) bacteria, to compare the status of hemocytes in nonstimulated individuals and those subjected to immunostimulation. After cadmium exposure, the percentage of small nongranular hemocytes in response to G+ cell suspension and PMA mitogen was decreased. Furthermore, in the cadmium-intoxicated spiders the percentage of plasmatocytes after immunostimulation remained lower compared to the complementary control group. Exposure to cadmium also induced several degenerative changes, including typical apoptotic and necrotic changes, in the analyzed types of cells. Immunostimulation by PMA mitogen and G+ bacterial suspension resulted in an increase in the number of cisterns in the rough endoplasmic reticulum of granulocytes, in both the control group and cadmium-treated individuals. These changes were accompanied with a low level of metallothioneins in hemolymph. Chronic cadmium exposure may significantly weaken the immune defense system of spiders during infections.
Collapse
Affiliation(s)
- Kamila Wiśniewska
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia, Bankowa 9, 40-007 Katowice, Poland
| | - Magdalena Rost-Roszkowska
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia, Bankowa 9, 40-007 Katowice, Poland
| | - Joanna Homa
- Department of Evolutionary Immunology, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387 Krakow, Poland
| | - Katarzyna Kasperkiewicz
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia, Bankowa 9, 40-007 Katowice, Poland
| | - Kinga Surmiak-Stalmach
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia, Bankowa 9, 40-007 Katowice, Poland
| | - Elżbieta Szulińska
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia, Bankowa 9, 40-007 Katowice, Poland
| | - Grażyna Wilczek
- Faculty of Natural Sciences, Institute of Biology, Biotechnology and Environmental Protection, University of Silesia, Bankowa 9, 40-007 Katowice, Poland.
| |
Collapse
|
3
|
Swartzwelter BJ, Mayall C, Alijagic A, Barbero F, Ferrari E, Hernadi S, Michelini S, Navarro Pacheco NI, Prinelli A, Swart E, Auguste M. Cross-Species Comparisons of Nanoparticle Interactions with Innate Immune Systems: A Methodological Review. NANOMATERIALS (BASEL, SWITZERLAND) 2021; 11:1528. [PMID: 34207693 PMCID: PMC8230276 DOI: 10.3390/nano11061528] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 06/04/2021] [Accepted: 06/07/2021] [Indexed: 12/18/2022]
Abstract
Many components of the innate immune system are evolutionarily conserved and shared across many living organisms, from plants and invertebrates to humans. Therefore, these shared features can allow the comparative study of potentially dangerous substances, such as engineered nanoparticles (NPs). However, differences of methodology and procedure between diverse species and models make comparison of innate immune responses to NPs between organisms difficult in many cases. To this aim, this review provides an overview of suitable methods and assays that can be used to measure NP immune interactions across species in a multidisciplinary approach. The first part of this review describes the main innate immune defense characteristics of the selected models that can be associated to NPs exposure. In the second part, the different modes of exposure to NPs across models (considering isolated cells or whole organisms) and the main endpoints measured are discussed. In this synergistic perspective, we provide an overview of the current state of important cross-disciplinary immunological models to study NP-immune interactions and identify future research needs. As such, this paper could be used as a methodological reference point for future nano-immunosafety studies.
Collapse
Affiliation(s)
| | - Craig Mayall
- Department of Biology, Biotechnical Faculty, University of Liubljana, 1000 Ljubljana, Slovenia;
| | - Andi Alijagic
- Institute for Biomedical Research and Innovation, National Research Council, 90146 Palermo, Italy;
| | - Francesco Barbero
- Institut Català de Nanosciència i Nanotecnologia (ICN2), Bellaterra, 08193 Barcelona, Spain;
| | - Eleonora Ferrari
- Center for Plant Molecular Biology–ZMBP Eberhard-Karls University Tübingen, 72076 Tübingen, Germany;
| | - Szabolcs Hernadi
- School of Biosciences, Cardiff University, Cardiff CF10 3AX, UK;
| | - Sara Michelini
- Department of Biosciences, Paris-Lodron University Salzburg, 5020 Salzburg, Austria;
| | | | | | - Elmer Swart
- UK Centre for Ecology and Hydrology, Wallingford OX10 8BB, UK;
| | - Manon Auguste
- Department of Earth Environment and Life Sciences, University of Genova, 16126 Genova, Italy
| |
Collapse
|
4
|
Arginase Activity in Eisenia andrei Coelomocytes: Function in the Earthworm Innate Response. Int J Mol Sci 2021; 22:ijms22073687. [PMID: 33916228 PMCID: PMC8037997 DOI: 10.3390/ijms22073687] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 03/24/2021] [Accepted: 03/27/2021] [Indexed: 11/17/2022] Open
Abstract
Arginase is the manganese metalloenzyme catalyzing the conversion of l-arginine to l-ornithine and urea. In vertebrates, arginase is involved in the immune response, tissue regeneration, and wound healing and is an important marker of alternative anti-inflammatory polarization of macrophages. In invertebrates, data concerning the role of arginase in these processes are very limited. Therefore, in the present study, we focused on the changes in arginase activity in the coelomocytes of Eisenia andrei. We studied the effects of lipopolysaccharide (LPS), hydrogen peroxide (H2O2), heavy metals ions (e.g., Mn2+), parasite infection, wound healing, and short-term fasting (5 days) on arginase activity. For the first time in earthworms, we described arginase activity in the coelomocytes and found that it can be up-regulated upon in vitro stimulation with LPS and H2O2 and in the presence of Mn2+ ions. Moreover, arginase activity was also up-regulated in animals in vivo infected with nematodes or experiencing segment amputation, but not in fasting earthworms. Furthermore, we confirmed that the activity of coelomocyte arginase can be suppressed by l-norvaline. Our studies strongly suggest that similarly to the vertebrates, also in the earthworms, coelomocyte arginase is an important element of the immune response and wound healing processes.
Collapse
|
5
|
Arroyo Portilla C, Tomas J, Gorvel JP, Lelouard H. From Species to Regional and Local Specialization of Intestinal Macrophages. Front Cell Dev Biol 2021; 8:624213. [PMID: 33681185 PMCID: PMC7930007 DOI: 10.3389/fcell.2020.624213] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Accepted: 12/30/2020] [Indexed: 12/13/2022] Open
Abstract
Initially intended for nutrient uptake, phagocytosis represents a central mechanism of debris removal and host defense against invading pathogens through the entire animal kingdom. In vertebrates and also many invertebrates, macrophages (MFs) and MF-like cells (e.g., coelomocytes and hemocytes) are professional phagocytic cells that seed tissues to maintain homeostasis through pathogen killing, efferocytosis and tissue shaping, repair, and remodeling. Some MF functions are common to all species and tissues, whereas others are specific to their homing tissue. Indeed, shaped by their microenvironment, MFs become adapted to perform particular functions, highlighting their great plasticity and giving rise to high population diversity. Interestingly, the gut displays several anatomic and functional compartments with large pools of strikingly diversified MF populations. This review focuses on recent advances on intestinal MFs in several species, which have allowed to infer their specificity and functions.
Collapse
Affiliation(s)
- Cynthia Arroyo Portilla
- Aix Marseille Univ, CNRS, INSERM, CIML, Marseille, France.,Departamento de Análisis Clínicos, Facultad de Microbiología, Universidad de Costa Rica, San José, Costa Rica
| | - Julie Tomas
- Aix Marseille Univ, CNRS, INSERM, CIML, Marseille, France
| | | | | |
Collapse
|
6
|
Navarro Pacheco NI, Roubalova R, Semerad J, Grasserova A, Benada O, Kofronova O, Cajthaml T, Dvorak J, Bilej M, Prochazkova P. In Vitro Interactions of TiO 2 Nanoparticles with Earthworm Coelomocytes: Immunotoxicity Assessment. NANOMATERIALS 2021; 11:nano11010250. [PMID: 33477826 PMCID: PMC7832855 DOI: 10.3390/nano11010250] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 01/13/2021] [Accepted: 01/14/2021] [Indexed: 12/27/2022]
Abstract
Titanium dioxide nanoparticles (TiO2 NPs) are manufactured worldwide. Once they arrive in the soil environment, they can endanger living organisms. Hence, monitoring and assessing the effects of these nanoparticles is required. We focus on the Eisenia andrei earthworm immune cells exposed to sublethal concentrations of TiO2 NPs (1, 10, and 100 µg/mL) for 2, 6, and 24 h. TiO2 NPs at all concentrations did not affect cell viability. Further, TiO2 NPs did not cause changes in reactive oxygen species (ROS) production, malondialdehyde (MDA) production, and phagocytic activity. Similarly, they did not elicit DNA damage. Overall, we did not detect any toxic effects of TiO2 NPs at the cellular level. At the gene expression level, slight changes were detected. Metallothionein, fetidin/lysenin, lumbricin and MEK kinase I were upregulated in coelomocytes after exposure to 10 µg/mL TiO2 NPs for 6 h. Antioxidant enzyme expression was similar in exposed and control cells. TiO2 NPs were detected on coelomocyte membranes. However, our results do not show any strong effects of these nanoparticles on coelomocytes at both the cellular and molecular levels.
Collapse
Affiliation(s)
- Natividad Isabel Navarro Pacheco
- Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic; (N.I.N.P.); (R.R.); (J.S.); (A.G.); (O.B.); (O.K.); (T.C.); (J.D.); (M.B.)
- First Faculty of Medicine, Charles University, Katerinska 1660/32, 121 08 Prague 2, Czech Republic
| | - Radka Roubalova
- Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic; (N.I.N.P.); (R.R.); (J.S.); (A.G.); (O.B.); (O.K.); (T.C.); (J.D.); (M.B.)
| | - Jaroslav Semerad
- Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic; (N.I.N.P.); (R.R.); (J.S.); (A.G.); (O.B.); (O.K.); (T.C.); (J.D.); (M.B.)
- Faculty of Science, Institute for Environmental Studies, Charles University, Benatska 2, 128 01 Prague 2, Czech Republic
| | - Alena Grasserova
- Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic; (N.I.N.P.); (R.R.); (J.S.); (A.G.); (O.B.); (O.K.); (T.C.); (J.D.); (M.B.)
- Faculty of Science, Institute for Environmental Studies, Charles University, Benatska 2, 128 01 Prague 2, Czech Republic
| | - Oldrich Benada
- Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic; (N.I.N.P.); (R.R.); (J.S.); (A.G.); (O.B.); (O.K.); (T.C.); (J.D.); (M.B.)
| | - Olga Kofronova
- Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic; (N.I.N.P.); (R.R.); (J.S.); (A.G.); (O.B.); (O.K.); (T.C.); (J.D.); (M.B.)
| | - Tomas Cajthaml
- Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic; (N.I.N.P.); (R.R.); (J.S.); (A.G.); (O.B.); (O.K.); (T.C.); (J.D.); (M.B.)
- Faculty of Science, Institute for Environmental Studies, Charles University, Benatska 2, 128 01 Prague 2, Czech Republic
| | - Jiri Dvorak
- Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic; (N.I.N.P.); (R.R.); (J.S.); (A.G.); (O.B.); (O.K.); (T.C.); (J.D.); (M.B.)
| | - Martin Bilej
- Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic; (N.I.N.P.); (R.R.); (J.S.); (A.G.); (O.B.); (O.K.); (T.C.); (J.D.); (M.B.)
| | - Petra Prochazkova
- Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic; (N.I.N.P.); (R.R.); (J.S.); (A.G.); (O.B.); (O.K.); (T.C.); (J.D.); (M.B.)
- Correspondence:
| |
Collapse
|
7
|
Roubalová R, Procházková P, Hanč A, Dvořák J, Bilej M. Mutual interactions of E. andrei earthworm and pathogens during the process of vermicomposting. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2020; 27:33429-33437. [PMID: 30840250 DOI: 10.1007/s11356-019-04329-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2018] [Accepted: 01/22/2019] [Indexed: 06/09/2023]
Abstract
Vermicomposting is a process by which earthworms together with microorganisms degrade organic wastes into a humus-like material called vermicompost. This process does not include a thermophilic stage, and therefore, the possible presence of pathogens represents a potential health hazard. To elucidate the effect of earthworms in the selective reduction of pathogens, grape marc substrate was artificially inoculated with Escherichia coli, Enterococcus spp., thermotolerant coliform bacteria (TCB), and Salmonella spp., and their reduction during vermicomposting was monitored. Various defense mechanisms eliminating microorganisms in the earthworm gut were assumed to be involved in the process of pathogen reduction. Therefore, we followed the expression of three pattern recognition receptors (coelomic cytolytic factor (CCF), lipopolysaccharide-binding protein (LBP), and Toll-like receptor (v-TLR)), two antimicrobial molecules (fetidin/lysenins and lysozyme), and heat shock protein HSP70. We detected the significant decrease of some defense molecules (fetidin/lysenins and LBP) in all pathogen-inoculated substrates, and the increase of CCF and LBP in the Salmonella spp.-inoculated substrate. At the same time, the reduction of pathogens during vermicomposting was assessed. We observed the accelerated reduction of E. coli, Enterococcus spp., and TCB in pathogen-inoculated substrates with earthworms compared to that without earthworms. Moreover, the differences between the microbiome of grape marc substrate and earthworm intestines were determined by high throughput sequencing. This analysis revealed that the bacterial composition of grape marc substrate differed from the composition of the content of earthworm intestines, suggesting the elimination of specific bacterial species during food passage through the gut.
Collapse
Affiliation(s)
- Radka Roubalová
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-142 20, Prague 4, Czech Republic.
| | - Petra Procházková
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-142 20, Prague 4, Czech Republic
| | - Aleš Hanč
- Czech University of Life Sciences Prague, Kamýcká 129, CZ-165 00, Prague 6, Czech Republic
| | - Jiří Dvořák
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-142 20, Prague 4, Czech Republic
| | - Martin Bilej
- Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, CZ-142 20, Prague 4, Czech Republic
| |
Collapse
|
8
|
Swart E, Dvorak J, Hernádi S, Goodall T, Kille P, Spurgeon D, Svendsen C, Prochazkova P. The Effects of In Vivo Exposure to Copper Oxide Nanoparticles on the Gut Microbiome, Host Immunity, and Susceptibility to a Bacterial Infection in Earthworms. NANOMATERIALS (BASEL, SWITZERLAND) 2020; 10:E1337. [PMID: 32659907 PMCID: PMC7408611 DOI: 10.3390/nano10071337] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/03/2020] [Accepted: 07/06/2020] [Indexed: 02/06/2023]
Abstract
Nanomaterials (NMs) can interact with the innate immunity of organisms. It remains, however, unclear whether these interactions can compromise the immune functioning of the host when faced with a disease threat. Co-exposure with pathogens is thus a powerful approach to assess the immuno-safety of NMs. In this paper, we studied the impacts of in vivo exposure to a biocidal NM on the gut microbiome, host immune responses, and susceptibility of the host to a bacterial challenge in an earthworm. Eisenia fetida were exposed to CuO-nanoparticles in soil for 28 days, after which the earthworms were challenged with the soil bacterium Bacillus subtilis. Immune responses were monitored by measuring mRNA levels of known earthworm immune genes. Effects of treatments on the gut microbiome were also assessed to link microbiome changes to immune responses. Treatments caused a shift in the earthworm gut microbiome. Despite these effects, no impacts of treatment on the expression of earthworm immune markers were recorded. The methodological approach applied in this paper provides a useful framework for improved assessment of immuno-safety of NMs. In addition, we highlight the need to investigate time as a factor in earthworm immune responses to NM exposure.
Collapse
Affiliation(s)
- Elmer Swart
- UK Centre for Ecology and Hydrology, Maclean Building, Benson Lane, Wallingford OX10 8BB, UK; (T.G.); (D.S.)
| | - Jiri Dvorak
- Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic; (J.D.); (P.P.)
| | - Szabolcs Hernádi
- School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff CF10 3AX, UK; (S.H.); (P.K.)
| | - Tim Goodall
- UK Centre for Ecology and Hydrology, Maclean Building, Benson Lane, Wallingford OX10 8BB, UK; (T.G.); (D.S.)
| | - Peter Kille
- School of Biosciences, Cardiff University, Sir Martin Evans Building, Museum Avenue, Cardiff CF10 3AX, UK; (S.H.); (P.K.)
| | - David Spurgeon
- UK Centre for Ecology and Hydrology, Maclean Building, Benson Lane, Wallingford OX10 8BB, UK; (T.G.); (D.S.)
| | - Claus Svendsen
- UK Centre for Ecology and Hydrology, Maclean Building, Benson Lane, Wallingford OX10 8BB, UK; (T.G.); (D.S.)
| | - Petra Prochazkova
- Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the Czech Academy of Sciences, Videnska 1083, 142 20 Prague 4, Czech Republic; (J.D.); (P.P.)
| |
Collapse
|
9
|
Tsakou-Ngouafo L, Paganini J, Kaufman J, Pontarotti P. Origins of the RAG Transposome and the MHC. Trends Immunol 2020; 41:561-571. [PMID: 32467030 DOI: 10.1016/j.it.2020.05.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Revised: 05/04/2020] [Accepted: 05/06/2020] [Indexed: 01/12/2023]
Abstract
How innate immunity gave rise to adaptive immunity in vertebrates remains unknown. We propose an evolutionary scenario beginning with pathogen-associated molecular pattern(s) (PAMPs) being presented by molecule(s) on one cell to specific receptor(s) on other cells, much like MHC molecules and T cell receptors (TCRs). In this model, mutations in MHC-like molecule(s) that bound new PAMP(s) would not be recognized by original TCR-like molecule(s), and new MHC-like gene(s) would be lost by neutral drift. Integrating recombination activating gene (RAG) transposon(s) in a TCR-like gene would result in greater recognition diversity, with new MHC-like variants recognized and selected, along with a new RAG/TCR-like system. MHC genes would be selected to present many peptides, through multigene families, allelic polymorphism, and peptide-binding promiscuity.
Collapse
Affiliation(s)
- Louis Tsakou-Ngouafo
- Aix Marseille University IRD, APHM, MEPHI, IHU Méditerranée Infection, Marseille France 3, 19-21 Boulevard Jean Moulin, 13005 Marseille, France
| | | | - Jim Kaufman
- University of Cambridge, Department of Pathology, Tennis Court Road, Cambridge CB2 1QP, UK; University of Cambridge, Department of Veterinary Medicine, Madingley Road, Cambridge CB2 0ES, UK; University of Edinburgh, Institute for Immunology and Infection Research, Charlotte Auerbach Road, Edinburgh EH9 3FL, UK.
| | - Pierre Pontarotti
- Aix Marseille University IRD, APHM, MEPHI, IHU Méditerranée Infection, Marseille France 3, 19-21 Boulevard Jean Moulin, 13005 Marseille, France; SNC5039 CNRS, 19-21 Boulevard Jean Moulin, 13005 Marseilles, France.
| |
Collapse
|
10
|
Prochazkova P, Roubalova R, Dvorak J, Navarro Pacheco NI, Bilej M. Pattern recognition receptors in annelids. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 102:103493. [PMID: 31499098 DOI: 10.1016/j.dci.2019.103493] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 09/04/2019] [Accepted: 09/06/2019] [Indexed: 06/10/2023]
Abstract
The existence of pattern recognition receptors (PRRs) on immune cells was discussed in 1989 by Charles Janeway, Jr., who proposed a general concept of the ability of PRRs to recognize and bind conserved molecular structures of microorganisms known as pathogen-associated molecular patterns (PAMPs). Upon PAMP engagement, PRRs trigger intracellular signaling cascades resulting in the expression of various proinflammatory molecules. These recognition molecules represent an important and efficient innate immunity tool of all organisms. As invertebrates lack the instruments of the adaptive immune system, based on "true" lymphocytes and functional antibodies, the importance of PRRs are even more fundamental. In the present review, the structure, specificity, and expression profiles of PRRs characterized in annelids are discussed, and their role in innate defense is suggested.
Collapse
Affiliation(s)
- P Prochazkova
- Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the Czech Academy of Sciences, v. v. i., Prague, Czech Republic.
| | - R Roubalova
- Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the Czech Academy of Sciences, v. v. i., Prague, Czech Republic
| | - J Dvorak
- Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the Czech Academy of Sciences, v. v. i., Prague, Czech Republic
| | - N I Navarro Pacheco
- Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the Czech Academy of Sciences, v. v. i., Prague, Czech Republic
| | - M Bilej
- Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the Czech Academy of Sciences, v. v. i., Prague, Czech Republic
| |
Collapse
|
11
|
Garcia-Velasco N, Irizar A, Urionabarrenetxea E, Scott-Fordsmand JJ, Soto M. Selection of an optimal culture medium and the most responsive viability assay to assess AgNPs toxicity with primary cultures of Eisenia fetida coelomocytes. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 183:109545. [PMID: 31446174 DOI: 10.1016/j.ecoenv.2019.109545] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 08/01/2019] [Accepted: 08/04/2019] [Indexed: 06/10/2023]
Abstract
Earthworm immune cells (coelomocytes) have become a target system in ecotoxicology due to their sensitivity against a wide range of pollutants, including silver nanoparticles (AgNPs). Presently, in vitro approaches (viability assays in microplate, flow cytometry, cell sorting) with primary cultures of Eisenia fetida coelomocytes have been successfully used to test the toxicity and the dissimilar response of cell subpopulations (amoebocytes and eleocytes) after PVP-PEI coated AgNPs and AgNO3 exposures. In order to obtain reliable data and to accurately assess toxicity with coelomocytes, first an optimal culture medium and the most responsive assay were determined. AgNPs posed a gradual decrease in coelomocytes viability, establishing the LC50 value in RPMI-1640 medium at 6 mg/l and discarding that the observed cytotoxicity was attributable to its coating agent PVP-PEI. Exposure to AgNPs caused selective cytotoxicity in amoebocytes, which correlated with the Ag concentrations measured in sorted amoebocytes and reinforced the idea of dissimilar sensitivities among amoebocytes and eleocytes. Silver nano and ionic forms exerted similar toxicity in coelomocytes. The in vitro approaches with coelomocytes of E. fetida performed in this study have the capacity to predict impairments caused by pollutants at longer exposure levels and thus, provide rapid and valuable information for eco(nano)toxicology.
Collapse
Affiliation(s)
- N Garcia-Velasco
- Cell Biology in Environmental Toxicology (CBET) Research Group, Dept. Zoology and Animal Cell Biology, Faculty of Science and Technology and Research Centre for Experimental Marine Biology and Biotechnology PIE-UPV/EHU, University of the Basque Country UPV/EHU, E-48080, Bilbao, Basque Country, Spain.
| | - A Irizar
- Department of Bioscience - Soil Fauna Ecology and Ecotoxicology, Vejlsøvej 25. Building M3.14, 8600, Silkeborg, Denmark
| | - E Urionabarrenetxea
- Cell Biology in Environmental Toxicology (CBET) Research Group, Dept. Zoology and Animal Cell Biology, Faculty of Science and Technology and Research Centre for Experimental Marine Biology and Biotechnology PIE-UPV/EHU, University of the Basque Country UPV/EHU, E-48080, Bilbao, Basque Country, Spain
| | - J J Scott-Fordsmand
- Department of Bioscience - Soil Fauna Ecology and Ecotoxicology, Vejlsøvej 25. Building M3.14, 8600, Silkeborg, Denmark
| | - M Soto
- Cell Biology in Environmental Toxicology (CBET) Research Group, Dept. Zoology and Animal Cell Biology, Faculty of Science and Technology and Research Centre for Experimental Marine Biology and Biotechnology PIE-UPV/EHU, University of the Basque Country UPV/EHU, E-48080, Bilbao, Basque Country, Spain
| |
Collapse
|
12
|
Homa J. Earthworm coelomocyte extracellular traps: structural and functional similarities with neutrophil NETs. Cell Tissue Res 2018; 371:407-414. [PMID: 29404728 PMCID: PMC5820388 DOI: 10.1007/s00441-018-2787-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2017] [Accepted: 01/04/2018] [Indexed: 12/20/2022]
Abstract
Invertebrate immunity is associated with natural mechanisms that include cellular and humoral elements, similar to those that play a role in vertebrate innate immune responses. Formation of extracellular traps (ETs) is a newly discovered mechanism to combat pathogens, operating not only in vertebrate leucocytes but also in invertebrate immune cells. The ET components include extracellular DNA (exDNA), antimicrobial proteins and histones. Formation of mammalian ETs depends on enzymes such as neutrophil elastase, myeloperoxidase, the citrullination of histones and protease activity. It was confirmed that coelomocytes-immunocompetent cells of the earthworm Eisenia andrei-are also able to release ETs in a protease-dependent manner, dependent or independent of the formation of reactive oxygen species and rearrangement of the cell cytoskeleton. Similar to vertebrate leukocytes (e.g., neutrophil), coelomocytes are responsible for many immune functions like phagocytosis, cytotoxicity and secretion of humoral factors. ETs formed by coelomocyte analogues to neutrophil ETs consist of exDNA, histone H3 and attached to these structures proteins, e.g., heat shock proteins HSP27. The latter fact confirms that mechanisms of ET release are conserved in evolution. The study on Annelida adds this animal group to the list of invertebrates capable of ET release, but most importantly provides insides into innate mechanisms of ET formation in lower animal taxa.
Collapse
Affiliation(s)
- Joanna Homa
- Department of Evolutionary Immunology, Institute of Zoology and Biomedical Research, Jagiellonian University, Gronostajowa 9, 30-387, Krakow, Poland.
| |
Collapse
|
13
|
Rorat A, Vandenbulcke F, Gałuszka A, Klimek B, Plytycz B. Protective role of metallothionein during regeneration in Eisenia andrei exposed to cadmium. Comp Biochem Physiol C Toxicol Pharmacol 2017; 203:39-50. [PMID: 29038073 DOI: 10.1016/j.cbpc.2017.10.002] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/07/2017] [Revised: 10/02/2017] [Accepted: 10/04/2017] [Indexed: 02/08/2023]
Abstract
Lumbricid earthworms are often exposed to simultaneous action of various environmental stressors like soil contamination, temperature fluctuation or predators' attacks, which may induce extrusion of coelomocyte-containing coelomic fluid or loss of tail segments. If the injuries are not lethal, renewal of the immune-competent cells and soluble components of coelomic fluid and/or the regeneration of tail segments occurs. The aim of our investigations was to test the hypothesis that exposure of adult earthworms Eisenia andrei to cadmium-polluted soil at room temperature (RT) and/or low temperature (6°C) have adverse effects on restoration of experimentally depleted coelomocytes or on regeneration of amputated posterior segments. Intact control earthworms and their experimental counterparts subjected to electrostimulation-induced coelomocyte depletion or surgical amputation of posterior segments were maintained either in control soil or in soil spiked with cadmium chloride (500mg/kg air-dried soil) at RT or 6°C. Four weeks after the beginning of experiments, cadmium accumulation in earthworm bodies was significantly lower at 6°C than at room temperature. The numbers of restored cells and fluorophore contents were hardly affected by temperature or cadmium. However, cocoon production was reduced by cadmium and completely abolished at 6°C and regeneration of amputated posterior segments was inhibited in cold but was enhanced by cadmium exposure at RT. Independently on the temperature, the 4-week cadmium exposure of adult earthworms was connected with significantly upregulated expression of Cd-metallothionein (but not of catalase, lysenin and phytochelatin) in coelomocytes.
Collapse
Affiliation(s)
- Agnieszka Rorat
- Institute of Environmental Engineering, Czestochowa University of Technology, Czestochowa, Poland; Université de Lille, Sciences et Technologies, Laboratoire de Génie Civil et géo-Environnement, SN3 59655 Villeneuve d'Ascq, France.
| | - Franck Vandenbulcke
- Université de Lille, Sciences et Technologies, Laboratoire de Génie Civil et géo-Environnement, SN3 59655 Villeneuve d'Ascq, France
| | - Adrianna Gałuszka
- Department of Evolutionary Immunology, Institute of Zoology, Jagiellonian University, Krakow, Poland
| | - Beata Klimek
- Institute of Environmental Sciences, Jagiellonian University, Krakow, Poland
| | - Barbara Plytycz
- Department of Evolutionary Immunology, Institute of Zoology, Jagiellonian University, Krakow, Poland
| |
Collapse
|
14
|
Engelmann P, Hayashi Y, Bodó K, Ernszt D, Somogyi I, Steib A, Orbán J, Pollák E, Nyitrai M, Németh P, Molnár L. Phenotypic and functional characterization of earthworm coelomocyte subsets: Linking light scatter-based cell typing and imaging of the sorted populations. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 65:41-52. [PMID: 27349970 DOI: 10.1016/j.dci.2016.06.017] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2016] [Revised: 06/22/2016] [Accepted: 06/22/2016] [Indexed: 05/17/2023]
Abstract
Flow cytometry is a common approach to study invertebrate immune cells including earthworm coelomocytes. However, the link between light-scatter- and microscopy-based phenotyping remains obscured. Here we show, by means of light scatter-based cell sorting, both subpopulations (amoebocytes and eleocytes) can be physically isolated with good sort efficiency and purity confirmed by downstream morphological and cytochemical applications. Immunocytochemical analysis using anti-EFCC monoclonal antibodies combined with phalloidin staining has revealed antigenically distinct, sorted subsets. Screening of lectin binding capacity indicated wheat germ agglutinin (WGA) as the strongest reactor to amoebocytes. This is further evidenced by WGA inhibition assays that suggest high abundance of N-acetyl-d-glucosamine in amoebocytes. Post-sort phagocytosis assays confirmed the functional differences between amoebocytes and eleocytes, with the former being in favor of bacterial engulfment. This study has proved successful in linking flow cytometry and microscopy analysis and provides further experimental evidence of phenotypic and functional heterogeneity in earthworm coelomocyte subsets.
Collapse
Affiliation(s)
- Péter Engelmann
- Department of Immunology and Biotechnology, Clinical Center, University of Pécs, Pécs, Hungary.
| | - Yuya Hayashi
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, Denmark
| | - Kornélia Bodó
- Department of Immunology and Biotechnology, Clinical Center, University of Pécs, Pécs, Hungary
| | - Dávid Ernszt
- Department of Pharmaceutical Biotechnology, Faculty of Pharmacy, University of Pécs, Pécs, Hungary; János Szentágothai Research Centre, Pécs, Hungary
| | - Ildikó Somogyi
- Department of Comparative Anatomy and Developmental Biology, Faculty of Sciences, University of Pécs, Pécs, Hungary
| | - Anita Steib
- Department of Comparative Anatomy and Developmental Biology, Faculty of Sciences, University of Pécs, Pécs, Hungary
| | - József Orbán
- János Szentágothai Research Centre, Pécs, Hungary; Department of Biophysics, Faculty of Medicine, University of Pécs, Pécs, Hungary
| | - Edit Pollák
- Department of Comparative Anatomy and Developmental Biology, Faculty of Sciences, University of Pécs, Pécs, Hungary
| | - Miklós Nyitrai
- János Szentágothai Research Centre, Pécs, Hungary; Department of Biophysics, Faculty of Medicine, University of Pécs, Pécs, Hungary; MTA-PTE Nuclear-Mitochondrial Interactions Research Group, Pécs, Hungary
| | - Péter Németh
- Department of Immunology and Biotechnology, Clinical Center, University of Pécs, Pécs, Hungary
| | - László Molnár
- Department of Comparative Anatomy and Developmental Biology, Faculty of Sciences, University of Pécs, Pécs, Hungary
| |
Collapse
|
15
|
Homa J, Ortmann W, Kolaczkowska E. Conservative Mechanisms of Extracellular Trap Formation by Annelida Eisenia andrei: Serine Protease Activity Requirement. PLoS One 2016; 11:e0159031. [PMID: 27416067 PMCID: PMC4945018 DOI: 10.1371/journal.pone.0159031] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2016] [Accepted: 06/24/2016] [Indexed: 12/30/2022] Open
Abstract
Formation of extracellular traps (ETs) capturing and immobilizing pathogens is now a well-established defense mechanism added to the repertoire of vertebrate phagocytes. These ETs are composed of extracellular DNA (extDNA), histones and antimicrobial proteins. Formation of mouse and human ETs depends on enzymes (i) facilitating decondensation of chromatin by citrullination of histones, and (ii) serine proteases degrading histones. In invertebrates, initial reports revealed existence of ETs composed of extDNA and histones, and here we document for the first time that also coelomocytes, immunocompetent cells of an earthworm Eisenia andrei, cast ETs which successfully trap bacteria in a reactive oxygen species (ROS)-dependent and -independent manner. Importantly, the formation of ETs was observed not only when coelomocytes were studied ex vivo, but also in vivo, directly in the earthworm coelom. These ETs were composed of extDNA, heat shock proteins (HSP27) and H3 histones. Furthermore, the formation of E. andrei ETs depended on activity of serine proteases, including elastase-like activity. Moreover, ETs interconnected and hold together aggregating coelomocytes, a processes proceeding encapsulation. In conclusion, the study confirms ET formation by earthworms, and unravels mechanisms leading to ET formation and encapsulation in invertebrates.
Collapse
Affiliation(s)
- Joanna Homa
- Department of Evolutionary Immunology, Institute of Zoology, Jagiellonian University, Gronostajowa 9, 30-387, Krakow, Poland
| | - Weronika Ortmann
- Department of Evolutionary Immunology, Institute of Zoology, Jagiellonian University, Gronostajowa 9, 30-387, Krakow, Poland
| | - Elzbieta Kolaczkowska
- Department of Evolutionary Immunology, Institute of Zoology, Jagiellonian University, Gronostajowa 9, 30-387, Krakow, Poland
| |
Collapse
|
16
|
Homa J, Stalmach M, Wilczek G, Kolaczkowska E. Effective activation of antioxidant system by immune-relevant factors reversely correlates with apoptosis of Eisenia andrei coelomocytes. J Comp Physiol B 2016; 186:417-30. [PMID: 26922789 PMCID: PMC4830880 DOI: 10.1007/s00360-016-0973-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2015] [Revised: 02/10/2016] [Accepted: 02/12/2016] [Indexed: 11/30/2022]
Abstract
Oxidative stress is harmful to the microbes but also to the host, and may result in bystander damage or death. Because of this, respiratory burst triggered in phagocytes by pathogens is counteracted by production of antioxidative factors. The aim of this work was to examine effectiveness of the latter system in earthworms Eisenia andrei by induction of reactive oxygen species, lipofuscin and phenoloxidase by natural (LPS, zymosan, Micrococus luteus) and synthetic (phorbol ester, PMA) stimulants. The compounds impaired numbers, viability (increased apoptosis) and composition of coelomocytes, and triggered the antioxidant activity of catalase and selenium-dependent glutathione peroxidase. The natural pathogenic compounds, unlike PMA, strongly activated antioxidative responses that diminished cell apoptosis. Moreover, repeated exposure to the same or different pathogenic compounds did not induce respiratory burst exhausted phenotype showing that coelomocytes are constantly at bay to withstand numerous infections. The current study reveals importance and efficiency of the oxidative-antioxidative systems in annelids but also confirms its evolutionary conservatism and complexity even in lower taxa of the animal kingdom.
Collapse
Affiliation(s)
- J Homa
- Department of Evolutionary Immunology, Institute of Zoology, Jagiellonian University, Gronostajowa 9, 30-387, Kraków, Poland.
| | - M Stalmach
- Department of Animal Physiology and Ecotoxicology, Faculty of Biology and Environmental Protection, University of Silesia, Bankowa 9, 40-007, Katowice, Poland
| | - G Wilczek
- Department of Animal Physiology and Ecotoxicology, Faculty of Biology and Environmental Protection, University of Silesia, Bankowa 9, 40-007, Katowice, Poland
| | - E Kolaczkowska
- Department of Evolutionary Immunology, Institute of Zoology, Jagiellonian University, Gronostajowa 9, 30-387, Kraków, Poland
| |
Collapse
|
17
|
Dvořák J, Roubalová R, Procházková P, Rossmann P, Škanta F, Bilej M. Sensing microorganisms in the gut triggers the immune response in Eisenia andrei earthworms. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2016; 57:67-74. [PMID: 26684064 DOI: 10.1016/j.dci.2015.12.001] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2015] [Revised: 11/30/2015] [Accepted: 12/02/2015] [Indexed: 06/05/2023]
Abstract
The tube-within-tube body plan of earthworms is appropriate for studying the interactions of microorganisms with the immune system of body cavities such as the digestive tract and coelom. This study aims to describe the immune response on the molecular and cellular level in the coelomic cavity and the gut of the earthworm Eisenia andrei after experimental microbial challenge by administering two bacterial strains (Escherichia coli and Bacillus subtilis) or yeast Saccharomyces cerevisiae to the environment. The changes in mRNA levels of defense molecules (pattern recognition receptor CCF, lysozyme, fetidin/lysenins) in the coelomocytes and gut tissue were determined by quantitative PCR. The immune response at a cellular level was captured in histological sections, and the expression of CCF was localized using in situ hybridization. Coelomocytes respond to the presence of bacteria in the coelomic cavity by increasing the mRNA levels of defense molecules, especially CCF. The immune response in gut tissue is less affected by microbial stimulation because the epithelial cells of gut exhibit basically strong mRNA synthesis of ccf as a defense against the continuous microbial load in the gut lumen. The cellular immune response is mediated by coelomocytes released from the mesenchymal lining of the coelomic cavity. These combined immune mechanisms are necessary for the survival of earthworms in the microbially rich environment of soil.
Collapse
Affiliation(s)
- Jiří Dvořák
- Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the CAS, v. v. i., Vídeňská 1083, 142 20, Prague 4, Czech Republic
| | - Radka Roubalová
- Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the CAS, v. v. i., Vídeňská 1083, 142 20, Prague 4, Czech Republic
| | - Petra Procházková
- Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the CAS, v. v. i., Vídeňská 1083, 142 20, Prague 4, Czech Republic
| | - Pavel Rossmann
- Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the CAS, v. v. i., Vídeňská 1083, 142 20, Prague 4, Czech Republic
| | - František Škanta
- Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the CAS, v. v. i., Vídeňská 1083, 142 20, Prague 4, Czech Republic
| | - Martin Bilej
- Laboratory of Cellular and Molecular Immunology, Institute of Microbiology of the CAS, v. v. i., Vídeňská 1083, 142 20, Prague 4, Czech Republic.
| |
Collapse
|
18
|
Budán F, Kovács N, Engelmann P, Horváth I, Veres DS, Németh P, Szigeti K, Máthé D. Longitudinal in vivo MR imaging of live earthworms. ACTA ACUST UNITED AC 2014; 321:479-89. [PMID: 25059556 DOI: 10.1002/jez.1880] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2014] [Revised: 06/14/2014] [Accepted: 06/14/2014] [Indexed: 11/08/2022]
Abstract
Earthworm (Oligochaeta, Lumbricidae) species are used widely in eco-toxicological tests especially with contaminated soils. These long-term tests are reliable, but a high sample size is needed. Magnetic resonance imaging (MRI) can produce fast, robust, sensitive, and longitudinal morphological results using a small sample size. Performing longitudinal in vivo examinations of earthworms using MRI requires the need for anesthetics to completely avoid earthworm's moving. Our goal was to develop a simple and non-invasive method to anesthetize earthworms for in vivo longitudinal imaging studies. We investigated a number of different anesthesia methods and found that propan-2-ol and its vapor was optimal. We used a commercial sequential nanoScan® PET/MRI system (Mediso Ltd, Hungary, Budapest) to explore feasibility of MR imaging in immobilized earthworms. It was possible to visualize via micro MRI the brain, gastrointestinal tract, seminal vesicles, calciferous gland (Morren gland), and main blood vessels of the circulatory system. Our findings show the possibilities to examine changes in morphology using MRI of certain organs using a reversible, long-term immobilization method.
Collapse
Affiliation(s)
- Ferenc Budán
- CROmed, Translational Research Centers, Budapest, Baross utca, Hungary
| | | | | | | | | | | | | | | |
Collapse
|
19
|
Gupta S, Kushwah T, Yadav S. Earthworm coelomocytes as nanoscavenger of ZnO NPs. NANOSCALE RESEARCH LETTERS 2014; 9:259. [PMID: 24959107 PMCID: PMC4060845 DOI: 10.1186/1556-276x-9-259] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2014] [Accepted: 04/14/2014] [Indexed: 05/20/2023]
Abstract
Earthworms can 'biotransform' or 'biodegrade' chemical contaminants, rendering them harmless in their bodies, and can bioaccumulate them in their tissues. They 'absorb' the dissolved chemicals through their moist 'body wall' due to the interstitial water and also ingest by 'mouth' while soil passes through the gut. Since the advent of the nanotechnology era, the environmental sink has been continuously receiving engineered nanomaterials as well as their derivatives. Our current understanding of the potential impact of nanomaterials and their natural scavenger is limited. In the present investigation, we studied the cellular uptake of ZnO nanoparticles (NPs) by coelomocytes especially by chloragocytes of Eisenia fetida and their role as nanoscavenger. Results from exposure to 100- and 50-nm ZnO NPs indicate that coelomocytes of the earthworm E. fetida show no significant DNA damage at a dose lower than 3 mg/l and have the potential ability to uptake ZnO NPs from the soil ecosystem and transform them into microparticles.
Collapse
Affiliation(s)
- Shruti Gupta
- Department of Zoology, School of Biological Sciences, Dr H S Gour Central University, Sagar, MP 470003, India
| | - Tanuja Kushwah
- Department of Zoology, School of Biological Sciences, Dr H S Gour Central University, Sagar, MP 470003, India
| | - Shweta Yadav
- Department of Zoology, School of Biological Sciences, Dr H S Gour Central University, Sagar, MP 470003, India
| |
Collapse
|