1
|
Virkel G, Ballent M, Lanusse C, Lifschitz A. Role of ABC Transporters in Veterinary Medicine: Pharmaco- Toxicological Implications. Curr Med Chem 2019; 26:1251-1269. [DOI: 10.2174/0929867325666180201094730] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2017] [Revised: 11/14/2017] [Accepted: 12/22/2017] [Indexed: 01/10/2023]
Abstract
Unlike physicians, veterinary practitioners must deal with a number of animal species with crucial differences in anatomy, physiology and metabolism. Accordingly, the pharmacokinetic behaviour, the clinical efficacy and the adverse or toxic effects of drugs may differ across domestic animals. Moreover, the use of drugs in food-producing species may impose a risk for humans due to the generation of chemical residues in edible products, a major concern for public health and consumer's safety. As is clearly known in human beings, the ATP binding cassette (ABC) of transport proteins may influence the bioavailability and elimination of numerous drugs and other xenobiotics in domestic animals as well. A number of drugs, currently available in the veterinary market, are substrates of one or more transporters. Therefore, significant drug-drug interactions among ABC substrates may have unpredictable pharmacotoxicological consequences in different species of veterinary interest. In this context, different investigations revealed the major relevance of P-gp and other transport proteins, like breast cancer resistance protein (BCRP) and multidrug resistance-associated proteins (MRPs), in both companion and livestock animals. Undoubtedly, the discovery of the ABC transporters and the deep understanding of their physiological role in the different species introduced a new paradigm into the veterinary pharmacology. This review focuses on the expression and function of the major transport proteins expressed in species of veterinary interest, and their impact on drug disposition, efficacy and toxicity.
Collapse
Affiliation(s)
- Guillermo Virkel
- Laboratorio de Farmacologia, Centro de Investigacion Veterinaria de Tandil (CIVETAN-CONICETCICPBA), Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires (FCV-UNCPBA), Campus Universitario (Los Ombues y Reforma Universitaria), (7000) Tandil, Prov. de Buenos Aires, Argentina
| | - Mariana Ballent
- Laboratorio de Farmacologia, Centro de Investigacion Veterinaria de Tandil (CIVETAN-CONICETCICPBA), Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires (FCV-UNCPBA), Campus Universitario (Los Ombues y Reforma Universitaria), (7000) Tandil, Prov. de Buenos Aires, Argentina
| | - Carlos Lanusse
- Laboratorio de Farmacologia, Centro de Investigacion Veterinaria de Tandil (CIVETAN-CONICETCICPBA), Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires (FCV-UNCPBA), Campus Universitario (Los Ombues y Reforma Universitaria), (7000) Tandil, Prov. de Buenos Aires, Argentina
| | - Adrián Lifschitz
- Laboratorio de Farmacologia, Centro de Investigacion Veterinaria de Tandil (CIVETAN-CONICETCICPBA), Facultad de Ciencias Veterinarias, Universidad Nacional del Centro de la Provincia de Buenos Aires (FCV-UNCPBA), Campus Universitario (Los Ombues y Reforma Universitaria), (7000) Tandil, Prov. de Buenos Aires, Argentina
| |
Collapse
|
2
|
Wilkens MR, Maté LM, Schnepel N, Klinger S, Muscher-Banse AS, Ballent M, Virkel G, Lifschitz AL. Influence of 25-hydroxyvitamin D 3 and 1,25-dihydroxyvitamin D 3 on expression of P-glycoprotein and cytochrome P450 3A in sheep. J Steroid Biochem Mol Biol 2016; 164:271-276. [PMID: 26319202 DOI: 10.1016/j.jsbmb.2015.08.019] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2015] [Revised: 08/13/2015] [Accepted: 08/17/2015] [Indexed: 01/21/2023]
Abstract
In order to improve calcium and phosphorus balance, beef cattle and dairy cows can be supplemented with vitamin D. However, different vitamin D metabolites have been shown to increase expression of P-glycoprotein (P-gp, MDR1, ABCB1) and cytochrome P450 3A (CYP3A) in rodents as well as in cell culture systems. As such interferences might have an impact on pharmacokinetics of some drugs widely-used in veterinary medicine, we investigated the expression of P-gp, CYP3A, vitamin D receptor (VDR), pregnane X receptor (PXR) and retinoid X receptor α (RXRα) in sheep either treated orally with 6μg/kg body weight (BW) 25-hydroxyvitamin D3 (OHD3) for ten days before sacrifice or 12h after intravenous injection of 0.5μg/kg BW 1,25-dihydroxyvitamin D3 (1,25- (OH)2D3). Down-regulation of ruminal, jejunal and hepatic, but not renal P-gp could be found with 25-OHD3 supplementation. Interestingly, this effect on P-gp was not observed in tissues from 1,25-(OH)2D3-treated sheep. In contrast, 1,25-(OH)2D3 induced a significant up-regulation of renal and jejunal CYP3A expression, while 25-OHD3 had no impact. Renal expression of VDR and PXR was also increased by treatment with 1,25-(OH)2D3, while jejunal PXR expression was only stimulated in sheep supplemented with 25-OHD3. Either treatments increased renal, but not ruminal, jejunal or hepatic expression of RXRα. These results demonstrate that the impact of large doses of vitamin D metabolites on different target organs and potential interactions with other medications should be further investigated in vitro and in vivo to understand the effects of vitamin D metabolites on metabolism and excretion pathways in livestock.
Collapse
Affiliation(s)
- M R Wilkens
- Department of Physiology, University of Veterinary Medicine Hannover, Foundation, 30173 Hannover, Germany.
| | - L M Maté
- Laboratory of Veterinary Pharmacology, Center of Veterinary Research (CIVETAN, CONICET) Faculty of Veterinary Sciences, UNCPBA, B7000 Tandil, Argentina
| | - N Schnepel
- Department of Physiology, University of Veterinary Medicine Hannover, Foundation, 30173 Hannover, Germany
| | - S Klinger
- Department of Physiology, University of Veterinary Medicine Hannover, Foundation, 30173 Hannover, Germany
| | - A S Muscher-Banse
- Department of Physiology, University of Veterinary Medicine Hannover, Foundation, 30173 Hannover, Germany
| | - M Ballent
- Laboratory of Veterinary Pharmacology, Center of Veterinary Research (CIVETAN, CONICET) Faculty of Veterinary Sciences, UNCPBA, B7000 Tandil, Argentina
| | - G Virkel
- Laboratory of Veterinary Pharmacology, Center of Veterinary Research (CIVETAN, CONICET) Faculty of Veterinary Sciences, UNCPBA, B7000 Tandil, Argentina
| | - A L Lifschitz
- Laboratory of Veterinary Pharmacology, Center of Veterinary Research (CIVETAN, CONICET) Faculty of Veterinary Sciences, UNCPBA, B7000 Tandil, Argentina
| |
Collapse
|
3
|
Otero JA, García-Mateos D, de la Fuente A, Prieto JG, Álvarez AI, Merino G. Effect of bovine ABCG2 Y581S polymorphism on concentrations in milk of enrofloxacin and its active metabolite ciprofloxacin. J Dairy Sci 2016; 99:5731-5738. [PMID: 27157572 DOI: 10.3168/jds.2015-10593] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 03/24/2016] [Indexed: 01/16/2023]
Abstract
The ATP-binding cassette transporter G2 (ABCG2) is involved in the secretion of several drugs into milk. The bovine Y581S ABCG2 polymorphism increases the secretion into milk of the fluoroquinolone danofloxacin in Holstein cows. Danofloxacin and enrofloxacin are the fluoroquinolones most widely used in veterinary medicine. Both enrofloxacin (ENRO) and its active metabolite ciprofloxacin (CIPRO) reach milk at relatively high concentrations. The aim of this work was to study the effect of the bovine Y581S ABCG2 polymorphism on in vitro transport as well as on concentrations in plasma and in milk of ENRO and CIPRO. Experiments using cells overexpressing bovine ABCG2 showed the effects of ABCG2 on the transport of CIPRO, demonstrating more efficient in vitro transport of this antimicrobial by the S581 variant as compared with the Y581 variant. Animal studies administering 2.5mg/kg of ENRO subcutaneously to Y/Y 581 and Y/S 581 cows revealed that concentrations in plasma of ENRO and CIPRO were significantly lower in Y/S animals. Regardless of the genotype, the antimicrobial profile in milk after the administration of ENRO was predominantly of CIPRO. With respect to the genotype effects on the amounts of drugs present in milk, AUC0-24 values were more than 1.2 times higher in Y/S cows for ENRO and 2.2 times for CIPRO, indicating a greater capacity of Y581S to transfer these drugs into milk. These results emphasize the clinical relevance of this polymorphism as a factor affecting the concentrations in plasma and in milk of drugs of importance in veterinary medicine.
Collapse
Affiliation(s)
- J A Otero
- Department of Biomedical Sciences-Physiology, Veterinary Faculty, University of Leon, Campus de Vegazana 24071, Leon, Spain; Instituto de Desarrollo Ganadero y Sanidad Animal (INDEGSAL), University of Leon, Campus de Vegazana 24071, Leon, Spain
| | - D García-Mateos
- Department of Biomedical Sciences-Physiology, Veterinary Faculty, University of Leon, Campus de Vegazana 24071, Leon, Spain
| | - A de la Fuente
- Department of Biomedical Sciences-Physiology, Veterinary Faculty, University of Leon, Campus de Vegazana 24071, Leon, Spain
| | - J G Prieto
- Department of Biomedical Sciences-Physiology, Veterinary Faculty, University of Leon, Campus de Vegazana 24071, Leon, Spain; Instituto de Biomedicina (IBIOMED), University of Leon, Campus de Vegazana 24071, Leon, Spain
| | - A I Álvarez
- Department of Biomedical Sciences-Physiology, Veterinary Faculty, University of Leon, Campus de Vegazana 24071, Leon, Spain
| | - G Merino
- Department of Biomedical Sciences-Physiology, Veterinary Faculty, University of Leon, Campus de Vegazana 24071, Leon, Spain; Instituto de Desarrollo Ganadero y Sanidad Animal (INDEGSAL), University of Leon, Campus de Vegazana 24071, Leon, Spain.
| |
Collapse
|
4
|
Effect of bovine ABCG2 polymorphism Y581S SNP on secretion into milk of enterolactone, riboflavin and uric acid. Animal 2016; 10:238-47. [DOI: 10.1017/s1751731115002141] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
|