1
|
Leonard EM, Porteus CS, Brink D, Milsom WK. Fish gill chemosensing: knowledge gaps and inconsistencies. J Comp Physiol B 2024; 194:1-33. [PMID: 38758303 DOI: 10.1007/s00360-024-01553-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 04/04/2024] [Indexed: 05/18/2024]
Abstract
In this review, we explore the inconsistencies in the data and gaps in our knowledge that exist in what is currently known regarding gill chemosensors which drive the cardiorespiratory reflexes in fish. Although putative serotonergic neuroepithelial cells (NEC) dominate the literature, it is clear that other neurotransmitters are involved (adrenaline, noradrenaline, acetylcholine, purines, and dopamine). And although we assume that these agents act on neurons synapsing with the NECs or in the afferent or efferent limbs of the paths between chemosensors and central integration sites, this process remains elusive and may explain current discrepancies or species differences in the literature. To date it has been impossible to link the distribution of NECs to species sensitivity to different stimuli or fish lifestyles and while the gills have been shown to be the primary sensing site for respiratory gases, the location (gills, oro-branchial cavity or elsewhere) and orientation (external/water or internal/blood sensing) of the NECs are highly variable between species of water and air breathing fish. Much of what has been described so far comes from studies of hypoxic responses in fish, however, changes in CO2, ammonia and lactate have all been shown to elicit cardio-respiratory responses and all have been suggested to arise from stimulation of gill NECs. Our view of the role of NECs is broadening as we begin to understand the polymodal nature of these cells. We begin by presenting the fundamental picture of gill chemosensing that has developed, followed by some key unanswered questions about gill chemosensing in general.
Collapse
Affiliation(s)
- Erin M Leonard
- Department of Biology, Wilfrid Laurier University, Waterloo, ON, Canada
| | - Cosima S Porteus
- Department of Biological Sciences, University of Toronto Scarborough, Toronto, ON, Canada.
| | - Deidre Brink
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
| | - William K Milsom
- Department of Zoology, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
2
|
Kwong RWM. Trace metals in the teleost fish gill: biological roles, uptake regulation, and detoxification mechanisms. J Comp Physiol B 2024; 194:749-763. [PMID: 38916671 DOI: 10.1007/s00360-024-01565-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2024] [Revised: 05/10/2024] [Accepted: 05/21/2024] [Indexed: 06/26/2024]
Abstract
In fish, the gill plays a vital role in regulating the absorption of trace metals and is also highly susceptible to metal toxicity. Trace metals such as iron (Fe), copper (Cu), zinc (Zn), and manganese (Mn) are involved in various catalytic activities and molecular binding within the gill, thereby supporting a range of physiological processes in this organ. While beneficial at normal levels, these metals can become toxic when present in excess. Conversely, nonessential metals like cadmium (Cd) and lead (Pb) can gain entry into gill cells through similar metal transport pathways, potentially interfering with various cellular processes. The transepithelial transport of these metals across the gill epithelium is governed by a variety of metal transport and metal binding proteins. These include the Cu transporter 1 (CTR1), divalent metal transporter 1 (DMT1), and members of the Zrt-/Irt-like protein (ZIP) and zinc transport (ZnT) families. Additionally, some of these metals can compete with major ions (e.g., calcium, sodium) for absorption sites in the gill. This complex crosstalk suggests an interdependent mechanism that balances metal uptake to meet physiological needs while preventing excessive accumulation. In this article, I review the roles of trace metals in proteins/enzymes that support the different functions in the gill of teleost fish. I also discuss current understanding of the pathways involved in regulating the branchial uptake of metals and their influence on ionic regulation, and the potential detoxification mechanisms in the gill. Finally, I summarize knowledge gaps and potential areas for further investigation.
Collapse
Affiliation(s)
- Raymond W M Kwong
- Department of Biology, York University, 4700 Keele Street, Toronto, ON, M3J 1P3, Canada.
| |
Collapse
|
3
|
Carretero VJ, Ramos E, Segura-Chama P, Hernández A, Baraibar AM, Álvarez-Merz I, Muñoz FL, Egea J, Solís JM, Romero A, Hernández-Guijo JM. Non-Excitatory Amino Acids, Melatonin, and Free Radicals: Examining the Role in Stroke and Aging. Antioxidants (Basel) 2023; 12:1844. [PMID: 37891922 PMCID: PMC10603966 DOI: 10.3390/antiox12101844] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2023] [Revised: 09/23/2023] [Accepted: 09/26/2023] [Indexed: 10/29/2023] Open
Abstract
The aim of this review is to explore the relationship between melatonin, free radicals, and non-excitatory amino acids, and their role in stroke and aging. Melatonin has garnered significant attention in recent years due to its diverse physiological functions and potential therapeutic benefits by reducing oxidative stress, inflammation, and apoptosis. Melatonin has been found to mitigate ischemic brain damage caused by stroke. By scavenging free radicals and reducing oxidative damage, melatonin may help slow down the aging process and protect against age-related cognitive decline. Additionally, non-excitatory amino acids have been shown to possess neuroprotective properties, including antioxidant and anti-inflammatory in stroke and aging-related conditions. They can attenuate oxidative stress, modulate calcium homeostasis, and inhibit apoptosis, thereby safeguarding neurons against damage induced by stroke and aging processes. The intracellular accumulation of certain non-excitatory amino acids could promote harmful effects during hypoxia-ischemia episodes and thus, the blockade of the amino acid transporters involved in the process could be an alternative therapeutic strategy to reduce ischemic damage. On the other hand, the accumulation of free radicals, specifically mitochondrial reactive oxygen and nitrogen species, accelerates cellular senescence and contributes to age-related decline. Recent research suggests a complex interplay between melatonin, free radicals, and non-excitatory amino acids in stroke and aging. The neuroprotective actions of melatonin and non-excitatory amino acids converge on multiple pathways, including the regulation of calcium homeostasis, modulation of apoptosis, and reduction of inflammation. These mechanisms collectively contribute to the preservation of neuronal integrity and functions, making them promising targets for therapeutic interventions in stroke and age-related disorders.
Collapse
Affiliation(s)
- Victoria Jiménez Carretero
- Department of Pharmacology and Therapeutic, Teófilo Hernando Institute, Faculty of Medicine, Universidad Autónoma de Madrid, Av. Arzobispo Morcillo 4, 28029 Madrid, Spain
| | - Eva Ramos
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Complutense University of Madrid, 28040 Madrid, Spain
| | - Pedro Segura-Chama
- Investigador por México-CONAHCYT, Instituto Nacional de Psiquiatría "Ramón de la Fuente Muñiz", Calzada México-Xochimilco 101, Huipulco, Tlalpan, Mexico City 14370, Mexico
| | - Adan Hernández
- Institute of Neurobiology, Universidad Nacional Autónoma of México, Juriquilla, Santiago de Querétaro 76230, Querétaro, Mexico
| | - Andrés M Baraibar
- Department of Neurosciences, Universidad del País Vasco UPV/EHU, Achucarro Basque Center for Neuroscience, Barrio Sarriena, s/n, 48940 Leioa, Spain
| | - Iris Álvarez-Merz
- Department of Pharmacology and Therapeutic, Teófilo Hernando Institute, Faculty of Medicine, Universidad Autónoma de Madrid, Av. Arzobispo Morcillo 4, 28029 Madrid, Spain
| | - Francisco López Muñoz
- Faculty of Health Sciences, University Camilo José Cela, C/Castillo de Alarcón 49, Villanueva de la Cañada, 28692 Madrid, Spain
- Neuropsychopharmacology Unit, Hospital 12 de Octubre Research Institute (i + 12), Avda. Córdoba, s/n, 28041 Madrid, Spain
| | - Javier Egea
- Molecular Neuroinflammation and Neuronal Plasticity Research Laboratory, Hospital Universitario Santa Cristina, Health Research Institute, Hospital Universitario de la Princesa, 28006 Madrid, Spain
| | - José M Solís
- Neurobiology-Research Service, Hospital Ramón y Cajal, Carretera de Colmenar Viejo, Km. 9, 28029 Madrid, Spain
| | - Alejandro Romero
- Department of Pharmacology and Toxicology, Faculty of Veterinary Medicine, Complutense University of Madrid, 28040 Madrid, Spain
| | - Jesús M Hernández-Guijo
- Department of Pharmacology and Therapeutic, Teófilo Hernando Institute, Faculty of Medicine, Universidad Autónoma de Madrid, Av. Arzobispo Morcillo 4, 28029 Madrid, Spain
- Ramón y Cajal Institute for Health Research (IRYCIS), Hospital Ramón y Cajal, Carretera de Colmenar Viejo, Km. 9, 28029 Madrid, Spain
| |
Collapse
|
4
|
Perry SF, Pan YK, Gilmour KM. Insights into the control and consequences of breathing adjustments in fishes-from larvae to adults. Front Physiol 2023; 14:1065573. [PMID: 36793421 PMCID: PMC9923008 DOI: 10.3389/fphys.2023.1065573] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 01/11/2023] [Indexed: 01/31/2023] Open
Abstract
Adjustments of ventilation in fishes to regulate the volume of water flowing over the gills are critically important responses to match branchial gas transfer with metabolic needs and to defend homeostasis during environmental fluctuations in O2 and/or CO2 levels. In this focused review, we discuss the control and consequences of ventilatory adjustments in fish, briefly summarizing ventilatory responses to hypoxia and hypercapnia before describing the current state of knowledge of the chemoreceptor cells and molecular mechanisms involved in sensing O2 and CO2. We emphasize, where possible, insights gained from studies on early developmental stages. In particular, zebrafish (Danio rerio) larvae have emerged as an important model for investigating the molecular mechanisms of O2 and CO2 chemosensing as well as the central integration of chemosensory information. Their value stems, in part, from their amenability to genetic manipulation, which enables the creation of loss-of-function mutants, optogenetic manipulation, and the production of transgenic fish with specific genes linked to fluorescent reporters or biosensors.
Collapse
|
5
|
Peter MCS, Gayathry R, Peter VS. Inducible Nitric Oxide Synthase/Nitric Oxide System as a Biomarker for Stress and Ease Response in Fish: Implication on Na+ Homeostasis During Hypoxia. Front Physiol 2022; 13:821300. [PMID: 35655956 PMCID: PMC9152262 DOI: 10.3389/fphys.2022.821300] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2021] [Accepted: 04/06/2022] [Indexed: 11/22/2022] Open
Abstract
The cellular and organismal response to stressor-driven stimuli evokes stress response in vertebrates including fishes. Fishes have evolved varied patterns of stress response, including ionosmotic stress response, due to their sensitivity to both intrinsic and extrinsic stimuli. Fishes that experience hypoxia, a detrimental stressor that imposes systemic and cellular stress response, can evoke disturbed ion homeostasis. In addition, like other vertebrates, fishes have also developed mechanisms to recover from the impact of stress by way of shifting stress response into ease response that could reduce the magnitude of stress response with the aid of certain neuroendocrine signals. Nitric oxide (NO) has been identified as a potent molecule that attenuates the impact of ionosmotic stress response in fish, particularly during hypoxia stress. Limited information is, however, available on this important aspect of ion transport physiology that contributes to the mechanistic understanding of survival during environmental challenges. The present review, thus, discusses the role of NO in Na+ homeostasis in fish particularly in stressed conditions. Isoforms of nitric oxide synthase (NOS) are essential for the synthesis and availability of NO at the cellular level. The NOS/NO system, thus, appears as a unique molecular drive that performs both regulatory and integrative mechanisms of control within and across varied fish ionocytes. The activation of the inducible NOS (iNOS)/NO system during hypoxia stress and its action on the dynamics of Na+/K+-ATPase, an active Na+ transporter in fish ionocytes, reveal that the iNOS/NO system controls cellular and systemic Na+ transport in stressed fish. In addition, the higher sensitivity of iNOS to varied physical stressors in fishes and the ability of NO to lower the magnitude of ionosmotic stress in hypoxemic fish clearly put forth NO as an ease-promoting signal molecule in fishes. This further points to the signature role of the iNOS/NO system as a biomarker for stress and ease response in the cycle of adaptive response in fish.
Collapse
Affiliation(s)
- M. C. Subhash Peter
- Inter-University Centre for Evolutionary and Integrative Biology iCEIB, School of Life Science, University of Kerala, Kariavattom, Thiruvananthapuram, India
- Department of Zoology, University of Kerala, Kariavattom, Thiruvananthapuram, India
- *Correspondence: M. C. Subhash Peter,
| | - R. Gayathry
- Inter-University Centre for Evolutionary and Integrative Biology iCEIB, School of Life Science, University of Kerala, Kariavattom, Thiruvananthapuram, India
| | - Valsa S. Peter
- Inter-University Centre for Evolutionary and Integrative Biology iCEIB, School of Life Science, University of Kerala, Kariavattom, Thiruvananthapuram, India
| |
Collapse
|
6
|
Gerber L, Clow KA, Gamperl AK. Acclimation to warm temperatures has important implications for mitochondrial function in Atlantic salmon ( Salmo salar). J Exp Biol 2021; 224:jeb236257. [PMID: 33288533 DOI: 10.1242/jeb.236257] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Accepted: 12/01/2020] [Indexed: 12/16/2022]
Abstract
In fish, the capacity of thermal acclimation to preserve cardiac mitochondrial function under future warming scenarios is important to understand given the central roles that cardiac energy metabolism and performance play in this taxa's thermal tolerance. We acclimated Atlantic salmon to 12 and 20°C (for >2 months), and investigated the effects of acute and chronic warming on cardiac mitochondrial respiration and reactive oxygen species (ROS) production (release rate) using high-resolution fluorespirometry. Further, we compared the sensitivity of mitochondrial respiration to nitric oxide (i.e. the NO IC50), and assessed the mitochondrial response to anoxia-reoxygenation (AR). Acute exposure to 20°C increased maximal mitochondrial respiration by ∼55%; however, the mitochondria's complex I respiratory control ratio was 17% lower and ROS production was increased by ≥60%. Acclimation to 20°C: (1) preserved mitochondrial coupling and aerobic capacity; (2) decreased the mitochondria's ROS production by ∼30%; (3) increased the mitochondria's NO IC50 by ∼23%; and (4) improved mitochondrial membrane integrity at 20°C. AR did not affect mitochondrial function at 12°C, but acute exposure to 20°C and AR depressed maximal mitochondrial respiration (by ∼9%) and coupling (by ∼16%) without impacting ROS production. Finally, warm acclimation did not improve the capacity of mitochondria to recover from AR, indicating that there was no 'cross-tolerance' between these challenges. Our findings provide compelling evidence that thermal plasticity of cardiac mitochondrial function contributes to the Atlantic salmon's capability to survive at ≥20°C for prolonged periods, but call into question whether this plasticity may allow them to withstand high temperatures when combined with other stressors.
Collapse
Affiliation(s)
- Lucie Gerber
- Department of Ocean Sciences, Memorial University, St. John's, NL A1C 5S7, Canada
| | - Kathy A Clow
- Department of Ocean Sciences, Memorial University, St. John's, NL A1C 5S7, Canada
| | - Anthony K Gamperl
- Department of Ocean Sciences, Memorial University, St. John's, NL A1C 5S7, Canada
| |
Collapse
|
7
|
Pan YK, Perry SF. Neuroendocrine control of breathing in fish. Mol Cell Endocrinol 2020; 509:110800. [PMID: 32240728 DOI: 10.1016/j.mce.2020.110800] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 03/21/2020] [Accepted: 03/23/2020] [Indexed: 10/24/2022]
Abstract
Beginning with the discovery more than 35 years ago that oxygen chemoreceptors of the fish gill are enriched with serotonin, numerous studies have examined the importance of this, and other neuroendocrine factors in piscine chemoreceptor function, and in particular on the chemoreceptor-mediated reflex control of breathing. However, despite these studies, there is continued debate as to the role of neuroendocrine factors in the initiation or modulation of breathing during environmental disturbances or physical activity. In this review, we summarize the state-of-knowledge surrounding the neuroendocrine control of oxygen chemoreception in fish and the associated reflex adjustments to ventilation. We focus on neurohumoral substances that either are present in chemosensory cells or those that are localised elsewhere but have also been implicated in the direct control of breathing. These substances include serotonin, catecholamines (adrenaline and noradrenaline), acetylcholine, purines and gaseous neurotransmitters. Despite the growing indirect evidence for an involvement of these neuroendocrine factors in chemoreception and ventilatory control, direct evidence awaits the incorporation of novel methods currently under development.
Collapse
Affiliation(s)
- Yihang Kevin Pan
- Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, ON, K1N 6N5, Canada
| | - Steve F Perry
- Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, ON, K1N 6N5, Canada.
| |
Collapse
|
8
|
Mistri A, Kumari U, Mittal S, Mittal AK. Immunohistochemical localization of nitric oxide synthase (NOS) isoforms in epidermis and gill epithelium of an angler catfish, Chaca chaca (Siluriformes, Chacidae). Tissue Cell 2018; 55:25-30. [DOI: 10.1016/j.tice.2018.09.008] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2018] [Revised: 09/21/2018] [Accepted: 09/22/2018] [Indexed: 12/31/2022]
|
9
|
Zhang QY, Jin HF, Chen S, Chen QH, Tang CS, Du JB, Huang YQ. Hydrogen Sulfide Regulating Myocardial Structure and Function by Targeting Cardiomyocyte Autophagy. Chin Med J (Engl) 2018; 131:839-844. [PMID: 29578128 PMCID: PMC5887743 DOI: 10.4103/0366-6999.228249] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Objective: Hydrogen sulfide (H2S), a gaseous signal molecule, plays a crucial role in many pathophysiologic processes in the cardiovascular system. Autophagy has been shown to participate in the occurrence of many cardiac diseases. Increasing evidences indicated that H2S regulates myocardial structure and function in association with the altered autophagy and plays a “switcher” role in the autophagy of myocardial diseases. The aim of this review was to summarize these insights and provide the experimental evidence that H2S targets cardiomyocyte autophagy to regulate cardiovascular function. Data Sources: This review was based on data in articles published in the PubMed databases up to October 30, 2017, with the following keywords: “hydrogen sulfide,” “autophagy,” and “cardiovascular diseases.” Study Selection: Original articles and critical reviews on H2S and autophagy were selected for this review. Results: When autophagy plays an adaptive role in the pathogenesis of diseases, H2S restores autophagy; otherwise, when autophagy plays a detrimental role, H2S downregulates autophagy to exert a cardioprotective function. For example, H2S has beneficial effects by regulating autophagy in myocardial ischemia/reperfusion and plays a protective role by inhibiting autophagy during the operation of cardioplegia and cardiopulmonary bypass. H2S postpones cardiac aging associated with the upregulation of autophagy but improves the left ventricular function of smoking rats by lowering autophagy. Conclusions: H2S exerts cardiovascular protection by regulating autophagy. Cardiovascular autophagy would likely become a potential target of H2S therapy for cardiovascular diseases.
Collapse
Affiliation(s)
- Qing-You Zhang
- Department of Pediatrics, Peking University First Hospital, Beijing 100034, China
| | - Hong-Fang Jin
- Department of Pediatrics, Peking University First Hospital, Beijing 100034, China
| | - Selena Chen
- Division of Biological Sciences, University of California, San Diego, La Jolla, California 92093, USA
| | - Qing-Hua Chen
- Department of Pediatrics, Peking University First Hospital, Beijing 100034, China
| | - Chao-Shu Tang
- Small Gaseous Molecules and Cardiovascular Disease Section, Key Laboratory of Molecular Cardiology, Ministry of Education; Department of Physiology and Pathophysiology, Health Sciences Center, Peking University, Beijing 100191, China
| | - Jun-Bao Du
- Department of Pediatrics, Peking University First Hospital, Beijing 100034, China
| | - Ya-Qian Huang
- Department of Pediatrics, Peking University First Hospital, Beijing 100034, China
| |
Collapse
|
10
|
Imbrogno S, Filice M, Cerra MC, Gattuso A. NO, CO and H 2 S: What about gasotransmitters in fish and amphibian heart? Acta Physiol (Oxf) 2018; 223:e13035. [PMID: 29338122 DOI: 10.1111/apha.13035] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Revised: 01/08/2018] [Accepted: 01/08/2018] [Indexed: 12/25/2022]
Abstract
The gasotransmitters nitric oxide (NO), carbon monoxide (CO), and hydrogen sulphide (H2 S), long considered only toxicant, are produced in vivo during the catabolism of common biological molecules and are crucial for a large variety of physiological processes. Mounting evidence is emerging that in poikilotherm vertebrates, as in mammals, they modulate the basal performance of the heart and the response to stress challenges. In this review, we will focus on teleost fish and amphibians to highlight the evolutionary importance in vertebrates of the cardiac control elicited by NO, CO and H2 S, and the conservation of the intracellular cascades they activate. Although many gaps are still present due to discontinuous information, we will use examples obtained by studies from our and other laboratories to illustrate the complexity of the mechanisms that, by involving gasotransmitters, allow beat-to-beat, short-, medium- and long-term cardiac homoeostasis. By presenting the latest data, we will also provide a framework in which the peculiar morpho-functional arrangement of the teleost and amphibian heart can be considered as a reference tool to decipher cardiac regulatory networks which are difficult to explore using more conventional vertebrates, such as mammals.
Collapse
Affiliation(s)
- S. Imbrogno
- Department of Biology, Ecology and Earth Sciences; University of Calabria; Arcavacata di Rende; Italy
| | - M. Filice
- Department of Biology, Ecology and Earth Sciences; University of Calabria; Arcavacata di Rende; Italy
| | - M. C. Cerra
- Department of Biology, Ecology and Earth Sciences; University of Calabria; Arcavacata di Rende; Italy
| | - A. Gattuso
- Department of Biology, Ecology and Earth Sciences; University of Calabria; Arcavacata di Rende; Italy
| |
Collapse
|
11
|
Lewis L, Kwong RWM. Zebrafish as a Model System for Investigating the Compensatory Regulation of Ionic Balance during Metabolic Acidosis. Int J Mol Sci 2018; 19:E1087. [PMID: 29621145 PMCID: PMC5979485 DOI: 10.3390/ijms19041087] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 03/25/2018] [Accepted: 04/02/2018] [Indexed: 12/16/2022] Open
Abstract
Zebrafish (Danio rerio) have become an important model for integrative physiological research. Zebrafish inhabit a hypo-osmotic environment; to maintain ionic and acid-base homeostasis, they must actively take up ions and secrete acid to the water. The gills in the adult and the skin at larval stage are the primary sites of ionic regulation in zebrafish. The uptake of ions in zebrafish is mediated by specific ion transporting cells termed ionocytes. Similarly, in mammals, ion reabsorption and acid excretion occur in specific cell types in the terminal region of the renal tubules (distal convoluted tubule and collecting duct). Previous studies have suggested that functional regulation of several ion transporters/channels in the zebrafish ionocytes resembles that in the mammalian renal cells. Additionally, several mechanisms involved in regulating the epithelial ion transport during metabolic acidosis are found to be similar between zebrafish and mammals. In this article, we systemically review the similarities and differences in ionic regulation between zebrafish and mammals during metabolic acidosis. We summarize the available information on the regulation of epithelial ion transporters during acidosis, with a focus on epithelial Na⁺, Cl- and Ca2+ transporters in zebrafish ionocytes and mammalian renal cells. We also discuss the neuroendocrine responses to acid exposure, and their potential role in ionic compensation. Finally, we identify several knowledge gaps that would benefit from further study.
Collapse
Affiliation(s)
- Lletta Lewis
- Department of Biology, York University, Toronto, ON M3J 1P3, Canada.
| | - Raymond W M Kwong
- Department of Biology, York University, Toronto, ON M3J 1P3, Canada.
| |
Collapse
|
12
|
Prabhudesai S, Koceja C, Dey A, Eisa-Beygi S, Leigh NR, Bhattacharya R, Mukherjee P, Ramchandran R. Cystathionine β-Synthase Is Necessary for Axis Development in Vivo. Front Cell Dev Biol 2018; 6:14. [PMID: 29503817 PMCID: PMC5820354 DOI: 10.3389/fcell.2018.00014] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Accepted: 01/30/2018] [Indexed: 12/20/2022] Open
Abstract
The cystathionine ß-synthase (CBS) is a critical enzyme in the transsulfuration pathway and is responsible for the synthesis of cystathionine from serine and homocysteine. Cystathionine is a precursor to amino acid cysteine. CBS is also responsible for generation of hydrogen sulfide (H2S) from cysteine. Mutation in CBS enzyme causes homocysteine levels to rise, and gives rise to a condition called hyperhomocysteinuria. To date, numerous mouse knockout models for CBS enzyme has been generated, which show panoply of defects, reflecting the importance of this enzyme in development. In zebrafish, we and others have identified two orthologs of cbs, which we call cbsa and cbsb. Previous gene knockdown studies in zebrafish have reported a function for cbsb ortholog in maintaining ion homeostasis in developing embryos. However, its role in maintaining H2S homeostasis in embryos is unknown. Here, we have performed RNA analysis in whole zebrafish embryos that showed a wide expression pattern for cbsa and cbsb primarily along the embryonic axis of the developing embryo. Loss-of-function analysis using a combination of approaches which include splice morpholinos and CRISPR/Cas9 genomic engineering show evidence that cbsb ortholog is responsible for anterior-posterior axis development, and cbsa function is redundant. Cbsb loss of function fish embryos show shortened and bent axis, along with less H2S and more homocysteine, effects resulting from loss of Cbsb. Using a chemical biology approach, we rescued the axis defects with betaine, a compound known to reduce homocysteine levels in plasma, and GYY4137, a long term H2S donor. These results collectively argue that cells along the axis of a developing embryo are sensitive to changes in homocysteine and H2S levels, pathways that are controlled by Cbsb, and thus is essential for development.
Collapse
Affiliation(s)
- Shubhangi Prabhudesai
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Chris Koceja
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Anindya Dey
- Department of Obstetrics and Gynecology, University of Oklahoma Health Science Center, Oklahoma City, OK, United States
| | - Shahram Eisa-Beygi
- Pediatrics Radiology, Developmental Vascular Biology Program, Children's Research Institute, Medical College of Wisconsin, Milwaukee, WI, United States
| | - Noah R. Leigh
- Milwaukee Health Department, City of Milwaukee, Milwaukee, WI, United States
| | - Resham Bhattacharya
- Department of Obstetrics and Gynecology, University of Oklahoma Health Science Center, Oklahoma City, OK, United States
- Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Science Center, Oklahoma City, OK, United States
| | - Priyabrata Mukherjee
- Department of Obstetrics and Gynecology, University of Oklahoma Health Science Center, Oklahoma City, OK, United States
- Peggy and Charles Stephenson Cancer Center, University of Oklahoma Health Science Center, Oklahoma City, OK, United States
- Department of Pathology, University of Oklahoma Health Science Center, Oklahoma City, OK, United States
- Department of Cell Biology, University of Oklahoma Health Science Center, Oklahoma City, OK, United States
| | - Ramani Ramchandran
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI, United States
- Pediatrics Radiology, Developmental Vascular Biology Program, Children's Research Institute, Medical College of Wisconsin, Milwaukee, WI, United States
- Obstetrics and Gynecology, Medical College of Wisconsin, Milwaukee, WI, United States
| |
Collapse
|
13
|
Gerber L, Jensen FB, Madsen SS. Dynamic changes in nitric oxide synthase expression are involved in seawater acclimation of rainbow trout Oncorhynchus mykiss. Am J Physiol Regul Integr Comp Physiol 2017; 314:R552-R562. [PMID: 29351430 DOI: 10.1152/ajpregu.00519.2016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Recent research has shown that nitric oxide (NO) produced by nitric oxide synthases (NOS) is an inhibitor of ion transporter activity and a modulator of epithelial ion transport in fish, but little is known on changes in the NOS/NO system during osmotic stress. We hypothesized that the NOS/NO system responds to salinity changes as an integrated part of the acclimation process. Expression and localization of nos1/Nos1 and nos2/Nos2 were investigated in gill, kidney, and intestine of freshwater (FW)- and seawater (SW)-transferred trout using quantitative PCR, Western blotting, and immunohistochemistry, along with expressional changes of major ion transporters in the gill. The classical branchial ion transporters showed expected expressional changes upon SW transfer, there among a rapid decrease in Slc26a6 mRNA, coding a branchial Cl-/[Formula: see text] exchanger. There was a major downregulation of nos1/ nos2/Nos2 expression in the gill during SW acclimation. A significant decrease in plasma nitrite supported an overall decreased Nos activity and NO production. In the middle intestine, Nos1 was upregulated during SW acclimation, whereas no changes in nos/Nos expression were observed in the posterior intestine and the kidney. Nos1 was localized along the longitudinal axis of the gill filament, beneath smooth muscle fibers of the intestine wall and in blood vessel walls of the kidney. Nos2 was localized within the epithelium adjacent to the gill filament axis and in hematopoietic tissues of the kidney. We conclude that downregulation of branchial NOS is integrated to the SW acclimation process likely to avoid the inhibitory effects of NO on active ion extrusion.
Collapse
Affiliation(s)
- Lucie Gerber
- Department of Biology, University of Southern Denmark, Odense M, Denmark
| | - Frank B Jensen
- Department of Biology, University of Southern Denmark, Odense M, Denmark
| | - Steffen S Madsen
- Department of Biology, University of Southern Denmark, Odense M, Denmark
| |
Collapse
|
14
|
Zaccone G, Lauriano ER, Kuciel M, Capillo G, Pergolizzi S, Alesci A, Ishimatsu A, Ip YK, Icardo JM. Identification and distribution of neuronal nitric oxide synthase and neurochemical markers in the neuroepithelial cells of the gill and the skin in the giant mudskipper, Periophthalmodon schlosseri. ZOOLOGY 2017; 125:41-52. [PMID: 28830730 DOI: 10.1016/j.zool.2017.08.002] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2016] [Revised: 08/02/2017] [Accepted: 08/02/2017] [Indexed: 12/12/2022]
Abstract
Mudskippers are amphibious fishes living in mudflats and mangroves. These fishes hold air in their large buccopharyngeal-opercular cavities where respiratory gas exchange takes place via the gills and higher vascularized epithelium lining the cavities and also the skin epidermis. Although aerial ventilation response to changes in ambient gas concentration has been studied in mudskippers, the localization and distribution of respiratory chemoreceptors, their neurochemical coding and function as well as physiological evidence for the gill or skin as site for O2 and CO2 sensing are currently not known. In the present study we assessed the distribution of serotonin, acetylcholine, catecholamines and nitric oxide in the neuroepithelial cells (NECs) of the mudskipper gill and skin epithelium using immunohistochemistry and confocal microscopy. Colocalization studies showed that 5-HT is coexpressed with nNOS, Na+/K+-ATPase, TH and VAChT; nNOS is coexpressed with Na+/K+-ATPase and TH in the skin. In the gill 5-HT is coexpressed with nNOS and VAhHT and nNOS is coexpressed with Na+/K+-ATPase and TH. Acetylcholine is also expressed in chain and proximal neurons projecting to the efferent filament artery and branchial smooth muscle. The serotonergic cells c labeled with VAChT, nNOS and TH, thus indicating the presence of NEC populations and the possibility that these neurotransmitters (other than serotonin) may act as primary transmitters in the hypoxic reflex in fish gills. Immunolabeling with TH antibodies revealed that NECs in the gill and the skin are innervated by catecholaminergic nerves, thus suggesting that these cells are involved in a central control of branchial functions through their relationships with the sympathetic branchial nervous system. The Na+/K+-ATPase in mitochondria-rich cells (MRCs), which are most concentrated in the gill lamellar epithelium, is colabeled with nNOS and associated with TH nerve terminals. TH-immunopositive fine varicosities were also associated with the numerous capillaries in the skin surface and the layers of the swollen cells. Based on the often hypercapnic and hypoxic habitat of the mudskippers, these fishes may represent an attractive model for pursuing studies on O2 and CO2 sensing due to the air-breathing that increases the importance of acid/base regulation and the O2-related drive including the function of gasotransmitters such as nitric oxide that has an inhibitory (regulatory) function in ionoregulation.
Collapse
Affiliation(s)
- Giacomo Zaccone
- Department of Biomedical and Dental Sciences and Department of Morphofunctional Imaging, University of Messina, Polo Universitario dell'Annunziata, 98168 Messina, Italy.
| | - Eugenia Rita Lauriano
- Department of Environmental Sciences, Territorial, Food and Health Security (S.A.S.T.A.S.), University of Messina, Viale Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Michał Kuciel
- Poison Information Centre, Department of Toxicology and Environmental Disease, Jagiellonian University Medical Collage, Kopernika 15, 31-501 Krakow, Poland.
| | - Gioele Capillo
- Department of Environmental Sciences, Territorial, Food and Health Security (S.A.S.T.A.S.), University of Messina, Viale Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Simona Pergolizzi
- Department of Environmental Sciences, Territorial, Food and Health Security (S.A.S.T.A.S.), University of Messina, Viale Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Alessio Alesci
- Department of Environmental Sciences, Territorial, Food and Health Security (S.A.S.T.A.S.), University of Messina, Viale Stagno d'Alcontres 31, 98166 Messina, Italy
| | - Atsushi Ishimatsu
- Institute for East China Sea Research, Nagasaki University, 1551-7 Tairamachi, Nagasaki 851-2213, Japan
| | - Yuen Kwong Ip
- Department of Biological Science, National University of Singapore, 14 Science Drive 4, Singapore 117543, Singapore
| | - Jose M Icardo
- Department of Anatomy and Cell Biology, Polígono de Cazoña, University of Cantabria, 39011 Santander, Spain
| |
Collapse
|
15
|
Gerber L, Madsen SS, Jensen FB. Cortisol regulates nitric oxide synthase in freshwater and seawater acclimated rainbow trout, Oncorhynchus mykiss. Comp Biochem Physiol A Mol Integr Physiol 2016; 204:1-8. [PMID: 27838356 DOI: 10.1016/j.cbpa.2016.11.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2016] [Revised: 11/02/2016] [Accepted: 11/07/2016] [Indexed: 12/16/2022]
Abstract
Cortisol and nitric oxide (NO) are regulators of ion transport and metabolic functions in fish. In the gill, they show opposite effects on Na+/K+-ATPase (NKA) activity: cortisol stimulates NKA activity while NO inhibits NKA activity. We hypothesized that cortisol may impact NO production in osmoregulatory tissues by regulating NO synthase (NOS) expression. We evaluated the influence of cortisol treatment on mRNA expression of Nos1 and Nos2 in gill, kidney and middle intestine of both freshwater (FW) and seawater (SW) acclimated rainbow trout and found both tissue- and salinity-dependent effects. Nos2 expression was down-regulated in the gill by cortisol injection in both FW and SW trout. This was substantiated by incubating gill tissue with cortisol ex vivo. Similarly, cortisol injection significantly down-regulated Nos2 expression in kidney of SW fish but not in FW fish. In the middle intestine, Nos2 expression was up-regulated by cortisol injection in FW but unchanged in SW fish. Nos1 expression was up-regulated by cortisol injection in FW kidney and down-regulated in SW kidney, whereas it was unaffected in gill and middle intestine of FW and SW fish. Our data provide the first evidence that cortisol may influence NO production in fish by regulating Nos expression. Indeed, the down-regulation of Nos2 expression by cortisol in the gill may prevent the inhibitory effect of NO on NKA activity thereby furthering the stimulatory effect of cortisol on ion-transport.
Collapse
Affiliation(s)
- Lucie Gerber
- Department of Biology, University of Southern Denmark, DK-5230 Odense M, Denmark.
| | - Steffen S Madsen
- Department of Biology, University of Southern Denmark, DK-5230 Odense M, Denmark
| | - Frank B Jensen
- Department of Biology, University of Southern Denmark, DK-5230 Odense M, Denmark
| |
Collapse
|
16
|
Gerber L, Jensen FB, Madsen SS, Marshall WS. Nitric oxide inhibition of NaCl secretion in the opercular epithelium of seawater-acclimated killifish, Fundulus heteroclitus. ACTA ACUST UNITED AC 2016; 219:3455-3464. [PMID: 27591310 DOI: 10.1242/jeb.145045] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 08/22/2016] [Indexed: 11/20/2022]
Abstract
Nitric oxide (NO) modulates epithelial ion transport pathways in mammals, but this remains largely unexamined in fish. We explored the involvement of NO in controlling NaCl secretion by the opercular epithelium of seawater killifish using an Ussing chamber approach. Pharmacological agents were used to explore the mechanism(s) triggering NO action. A modified Biotin-switch technique was used to investigate S-nitrosation of proteins. Stimulation of endogenous NO production via the nitric oxide synthase (NOS) substrate l-arginine (2.0 mmol l-1), and addition of exogenous NO via the NO donor SNAP (10-6 to 10-4 mol l-1), decreased the epithelial short-circuit current (Isc). Inhibition of endogenous NO production by the NOS inhibitor l-NAME (10-4 mol l-1) increased Isc and revealed a tonic control of ion transport by NO in unstimulated opercular epithelia. The NO scavenger PTIO (10-5 mol l-1) supressed the NO-mediated decrease in Isc, and confirmed that the effect observed was elicited by release of NO. The effect of SNAP on Isc was abolished by inhibitors of the soluble guanylyl cyclase (sGC), ODQ (10-6 mol l-1) and Methylene Blue (10-4 mol l-1), revealing NO signalling via the sGC/cGMP pathway. Incubation of opercular epithelium and gill tissues with SNAP (10-4 mol l-1) led to S-nitrosation of proteins, including Na+/K+-ATPase. Blocking of NOS with l-NAME (10-6 mol l-1) or scavenging of NO with PTIO during hypotonic shock suggested an involvement of NO in the hypotonic-mediated decrease in Isc Yohimbine (10-4 mol l-1), an inhibitor of α2-adrenoceptors, did not block NO effects, suggesting that NO is not involved in the α-adrenergic control of NaCl secretion.
Collapse
Affiliation(s)
- Lucie Gerber
- Department of Biology, University of Southern Denmark, Odense M DK-5230, Denmark
| | - Frank B Jensen
- Department of Biology, University of Southern Denmark, Odense M DK-5230, Denmark
| | - Steffen S Madsen
- Department of Biology, University of Southern Denmark, Odense M DK-5230, Denmark
| | - William S Marshall
- Department of Biology, St Francis Xavier University, Antigonish, NS, Canada B2G 2W5
| |
Collapse
|
17
|
Tzaneva V, Perry SF. Role of endogenous carbon monoxide in the control of breathing in zebrafish (Danio rerio). Am J Physiol Regul Integr Comp Physiol 2016; 311:R1262-R1270. [PMID: 27581810 DOI: 10.1152/ajpregu.00094.2016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Revised: 08/22/2016] [Accepted: 08/24/2016] [Indexed: 01/05/2023]
Abstract
Carbon monoxide (CO) is a gaseous signaling molecule and is produced in vivo from the intracellular breakdown of heme via the heme oxygenase (HO) family of enzymes. In this study we investigated the role of the HO-1/CO system in the control of ventilation in zebrafish, Danio rerio Immunohistochemistry revealed the presence of HO-1 in the chemoreceptive neuroepithelial cells (NECs) of larvae (4 days postfertilization) and adults, indicating the potential for endogenous CO production in the NECs. Hypoxia (20 min, water Po2 of 30 mmHg) caused a significant increase in HO-1 activity in whole larvae and in the gills of adult fish. Zebrafish with reduced HO-1 activity (via HO-1 knockdown in larvae or zinc protoporphyrin IX treatment in adults) exhibited increased ventilation frequency (Vf) under normoxic but not hypoxic conditions. The addition of exogenous CO restored resting Vf in fish with diminished CO production, and in some cases (e.g., hypoxic sham larvae) CO modestly reduced Vf below resting levels. Larval fish were treated with phenylhydrazine (PHZ) to eliminate the potential confounding effects of CO-hemoglobin interactions that might influence ventilation. PHZ treatment did not cause changes in Vf of normoxic larvae, and the addition of CO to PHZ-exposed larvae resulted in a significant decrease in sham and HO-1-deficient fish under normoxic conditions. This study demonstrates for the first time that CO plays an inhibitory role in the control of breathing in larval and adult zebrafish.
Collapse
Affiliation(s)
- Velislava Tzaneva
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| | - Steve F Perry
- Department of Biology, University of Ottawa, Ottawa, Ontario, Canada
| |
Collapse
|
18
|
Tzaneva V, Perry SF. Evidence for a role of heme oxygenase-1 in the control of cardiac function in zebrafish (Danio rerio) larvae exposed to hypoxia. ACTA ACUST UNITED AC 2016; 219:1563-71. [PMID: 26994186 DOI: 10.1242/jeb.136853] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Accepted: 02/29/2016] [Indexed: 12/15/2022]
Abstract
Carbon monoxide (CO) is a gaseous neurotransmitter produced from the breakdown of heme via heme oxygenase-1 (HO-1; hypoxia-inducible isoform) and heme oxygenase-2 (HO-2; constitutively expressed isoform). In mammals, CO is involved in modulating cardiac function. The role of the HO-1/CO system in the control of heart function in fish, however, is unknown and investigating its physiological function in lower vertebrates will provide a better understanding of the evolution of this regulatory mechanism. We explored the role of the HO-1/CO system in larval zebrafish (Danio rerio) in vivo by investigating the impact of translational gene knockdown of HO-1 on cardiac function. Immunohistochemistry revealed the presence of HO-1 in the pacemaker cells of the heart at 4 days post-fertilization and thus the potential for CO production at these sites. Sham-treated zebrafish larvae (experiencing normal levels of HO-1) significantly increased heart rate (fH) when exposed to hypoxia (PwO2 =30 mmHg). Zebrafish larvae lacking HO-1 expression after morpholino knockdown (morphants) exhibited significantly higher fH under normoxic (but not hypoxic) conditions when compared with sham-treaded fish. The increased fH in HO-1 morphants was rescued (fH was restored to control levels) after treatment of larvae with a CO-releasing molecule (40 µmol l(-1) CORM). The HO-1-deficient larvae developed significantly larger ventricles and when exposed to hypoxia they displayed higher cardiac output ([Formula: see text]) and stroke volume (SV). These results suggest that under hypoxic conditions, HO-1 regulates [Formula: see text] and SV presumably via the production of CO. Overall, this study provides a better understanding of the role of the HO-1/CO system in controlling heart function in lower vertebrates. We demonstrate for the first time the ability for CO to be produced in presumptive pacemaker cells of the heart where it plays an inhibitory role in setting the resting cardiac frequency.
Collapse
Affiliation(s)
- Velislava Tzaneva
- Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, ON, Canada K1N 6N5
| | - Steve F Perry
- Department of Biology, University of Ottawa, 30 Marie Curie, Ottawa, ON, Canada K1N 6N5
| |
Collapse
|