1
|
Abramochkin DV, Shamshura A, Dzhumaniiazova I, Pustovit OB, Mishchenko AA. High temperature and hyperkalemia increase vulnerability of navaga cod (Eleginus nawaga) cardiomyocytes to the ecotoxicant 3-methyl-phenanthrene. Comp Biochem Physiol A Mol Integr Physiol 2025; 299:111761. [PMID: 39369815 DOI: 10.1016/j.cbpa.2024.111761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Revised: 09/16/2024] [Accepted: 10/03/2024] [Indexed: 10/08/2024]
Abstract
Oil and gas mining and transportation in the Arctic can lead to release of polycyclic aromatic hydrocarbons (PAHs) in the ocean and freshwater basins. PAHs are known for their toxic effects in fish hearts, including the inhibition of main ionic currents (IKr, INa and ICaL) in fish cardiac myocytes. The present study is the first one to assess the effect of a particular PAH abundant in crude oil and diesel, namely 3-methyl-phenanthrene (3-MP), on the electrical excitability (EE) of cardiomyocytes from navaga cod (Eleginus nawaga), commercial fish species from the Arctic. Action potentials (APs) were elicited in current-clamp experiments at 9, 15 and 21 °C, and AP characteristics and the current needed to elicit APs were examined. Also, the effects of 3 μM 3-MP were tested at 3 temperatures and in normal (3.5 mM) and high (8 mM) extracellular K+ concentrations. Elevation of temperature leads to hyperpolarization of resting membrane potential and AP shortening, but does not decrease EE. 3-MP was found to suppress EE in cardiomyocytes at 9 and 15 °C, but not at 21 °C. High extracellular K+ itself drastically decreases EE, although it does not worsen the effect of 3-MP. However, combination of hyperthermia and high K+ leads to augmentation of depressive effect of 3-MP on EE. We hypothesize that hyperthermia rescues Na+ channels from inactivation due to membrane hyperpolarization, thereby compensating for the partial inhibition of INa by 3-MP. However, elevation of extracellular K+ nullifies this protective mechanism by depolarizing the resting potential and aggravates the effect of 3-MP.
Collapse
Affiliation(s)
- Denis V Abramochkin
- Department of Biology, MSU-BIT University, Shenzhen, Guangdong Province, China; Department of human and animal physiology, Lomonosov Moscow State University, Leninskiye Gory, 1, 12, Moscow, Russia; Department of Physiology, Pirogov Russian National Research Medical University, Ostrovityanova str., 1, Moscow, Russia
| | - Artem Shamshura
- Department of human and animal physiology, Lomonosov Moscow State University, Leninskiye Gory, 1, 12, Moscow, Russia
| | - Irina Dzhumaniiazova
- Department of human and animal physiology, Lomonosov Moscow State University, Leninskiye Gory, 1, 12, Moscow, Russia
| | - Oksana B Pustovit
- Department of human and animal physiology, Lomonosov Moscow State University, Leninskiye Gory, 1, 12, Moscow, Russia
| | | |
Collapse
|
2
|
Filatova TS, Dzhumaniiazova I, Abramochkin DV. The metamorphosis of amphibian myocardium: moving to the heart of the matter. J Exp Biol 2024; 227:jeb247712. [PMID: 38916053 DOI: 10.1242/jeb.247712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2024] [Accepted: 04/26/2024] [Indexed: 06/26/2024]
Abstract
Amphibians are a classical object for physiological studies, and they are of great value for developmental studies owing to their transition from an aquatic larval form to an adult form with a terrestrial lifestyle. Axolotls (Ambystoma mexicanum) are of special interest for such studies because of their neoteny and facultative pedomorphosis, as in these animals, metamorphosis can be induced and fully controlled in laboratory conditions. It has been suggested that their metamorphosis, associated with gross anatomical changes in the heart, also involves physiological and electrical remodeling of the myocardium. We used whole-cell patch clamp to investigate possible changes caused by metamorphosis in electrical activity and major ionic currents in cardiomyocytes isolated from paedomorphic and metamorphic axolotls. T4-induced metamorphosis caused shortening of atrial and ventricular action potentials (APs), with no changes in resting membrane potential or maximum velocity of AP upstroke, favoring higher heart rate possible in metamorphic animals. Potential-dependent potassium currents in axolotl myocardium were represented by delayed rectifier currents IKr and IKs, and upregulation of IKs caused by metamorphosis probably underlies AP shortening. Metamorphosis was associated with downregulation of inward rectifier current IK1, probably serving to increase the excitability of myocardium in metamorphic animals. Metamorphosis also led to a slight increase in fast sodium current INa with no changes in its steady-state kinetics and to a significant upregulation of ICa in both atrial and ventricular cells, indicating stronger Ca2+ influx for higher cardiac contractility in metamorphic salamanders. Taken together, these changes serve to increase cardiac reserve in metamorphic animals.
Collapse
Affiliation(s)
- Tatiana S Filatova
- Department of Human and Animal Physiology, Lomonosov Moscow State University, Leninskiye gory, 1, 12, Moscow 119234, Russia
| | - Irina Dzhumaniiazova
- Department of Human and Animal Physiology, Lomonosov Moscow State University, Leninskiye gory, 1, 12, Moscow 119234, Russia
| | - Denis V Abramochkin
- Department of Human and Animal Physiology, Lomonosov Moscow State University, Leninskiye gory, 1, 12, Moscow 119234, Russia
| |
Collapse
|
3
|
Abramochkin DV, Filatova TS, Kuzmin VS, Voronkov YI, Kamkin A, Shiels HA. Tricyclic hydrocarbon fluorene attenuates ventricular ionic currents and pressure development in the navaga cod. Comp Biochem Physiol C Toxicol Pharmacol 2023; 273:109736. [PMID: 37659611 DOI: 10.1016/j.cbpc.2023.109736] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 08/22/2023] [Accepted: 08/30/2023] [Indexed: 09/04/2023]
Abstract
The release of polycyclic aromatic hydrocarbons (PAHs) into the environment due to oil and diesel fuel spills is a serious threat to Arctic fish populations. PAHs produce multiple toxic effects in fish, but disturbance of electrical and contractile activity of the heart seems to be the most negative effect. Our study focused on the effects of fluorene, a tricyclic PAH resembling the well-investigated tricyclic phenanthrene, on major ionic currents and action potential (AP) waveform in isolated ventricular myocytes and on contractile activity in isolated whole hearts of polar navaga cod (Eleginus nawaga). Among the studied currents, the repolarizing rapid delayed rectifier K+ current IKr demonstrated the highest sensitivity to fluorene with IC50 of 0.54 μM. The depolarizing inward currents, INa and ICaL, were inhibited with 10 μM fluorene by 20.2 ± 2.8 % and 27.9 ± 8.4 %, respectively, thereby being much less sensitive to fluorene than IKr. Inward rectifier IK1 current was insensitive to fluorene (up to 10 μM). While 3 μM fluorene prolonged APs, 10 μM also slowed the AP upstroke. Resting membrane potential was not affected by any tested concentrations. In isolated heart experiments 10 μM fluorene caused modest depression of ventricular contractile activity. Thus, we have demonstrated that fluorene, a tricyclic PAH present in high quantities in crude oil, strongly impacts electrical activity with only slight effects on contractile activity in the heart of the polar fish, the navaga cod.
Collapse
Affiliation(s)
- Denis V Abramochkin
- Department of Biology, MSU-BIT University, Shenzhen, Guangdong Province, China; Department of Human and Animal Physiology, Lomonosov Moscow State University, Leninskiye Gory, 1, 12, Moscow, Russia.
| | - Tatiana S Filatova
- Department of Human and Animal Physiology, Lomonosov Moscow State University, Leninskiye Gory, 1, 12, Moscow, Russia
| | - Vladislav S Kuzmin
- Department of Human and Animal Physiology, Lomonosov Moscow State University, Leninskiye Gory, 1, 12, Moscow, Russia; Laboratory of Cardiac Electrophysiology, Chazov National Medical Research Center for Cardiology, Moscow, Russia
| | - Yuri I Voronkov
- State Research Center of the Russian Federation, Institute of Biomedical Problems, Russian Academy of Sciences, Moscow, Russia
| | - Andre Kamkin
- Department of Physiology, Pirogov Russian National Research Medical University, Ostrovityanova str., 1, Moscow, Russia
| | - Holly A Shiels
- Faculty of Biology, Medicine and Health, Core Technology Facility, 46 Grafton Street, University of Manchester, Manchester M13 9NT, UK
| |
Collapse
|
4
|
Filatova TS, Kuzmin VS, Guskova VO, Abramochkin DV. Sodium current preserves electrical excitability in the heart of hibernating ground squirrel (Citellus undulatus). Comp Biochem Physiol A Mol Integr Physiol 2023; 282:111452. [PMID: 37207928 DOI: 10.1016/j.cbpa.2023.111452] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Revised: 05/16/2023] [Accepted: 05/16/2023] [Indexed: 05/21/2023]
Abstract
Hibernating mammals are capable of maintaining normal cardiac function at low temperatures. Excitability of cardiac myocytes crucially depends on the fast sodium current (INa), which is decreased in hypothermia due to both depolarization of resting membrane potential and direct negative effect of low temperature. Therefore, INa in hibernating mammals should have specific features allowing to maintain excitability of myocardium at low temperatures. The current-voltage dependence of INa, its steady-state inactivation and activation and recovery from inactivation were studied in winter hibernating (WH) and summer active (SA) ground squirrels and in rats using whole-cell patch clamp at 10 °C and 20 °C. INa peak amplitude and the parameters of steady-state activation and inactivation curves did not differ between SA and WH ground squirrels at both temperatures. However, at both temperatures strong positive shift of activation and inactivation curves by 5-12 mV was observed in both WH and SA ground squirrels if compared to rats. This peculiarity of cardiac INa in ground squirrels helps to maintain excitability in conditions of depolarized resting membrane potential. The time course of INa recovery from inactivation at 10 °C was faster in WH than in SA ground squirrels, which could ensure normal activation of myocardium during hibernation.
Collapse
Affiliation(s)
- Tatiana S Filatova
- Department of Human and Animal Physiology, Lomonosov Moscow State University, Leninskiye Gory, 1, 12, Moscow 119234, Russia
| | - Vladislav S Kuzmin
- Department of Human and Animal Physiology, Lomonosov Moscow State University, Leninskiye Gory, 1, 12, Moscow 119234, Russia; Laboratory of Cardiac Electrophysiology, Chazov National Medical Research Center for Cardiology, Moscow, Russia
| | - Viktoria O Guskova
- Department of Human and Animal Physiology, Lomonosov Moscow State University, Leninskiye Gory, 1, 12, Moscow 119234, Russia
| | - Denis V Abramochkin
- Department of Human and Animal Physiology, Lomonosov Moscow State University, Leninskiye Gory, 1, 12, Moscow 119234, Russia.
| |
Collapse
|
5
|
Filatova TS, Mikhailova VB, Guskova VO, Abramochkin DV. The Effects of Phenanthrene on the Electrical Activity in the Heart of Shorthorn Sculpin (Myoxocephalus scorpio). J EVOL BIOCHEM PHYS+ 2022. [DOI: 10.1134/s0022093022070055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
6
|
Kuzmin V, Ushenin KS, Dzhumaniiazova IV, Abramochkin D, Vornanen M. High temperature and hyperkalemia cause exit block of action potentials at the atrioventricular junction of rainbow trout (Oncorhynchus mykiss) heart. J Therm Biol 2022; 110:103378. [PMID: 36462845 DOI: 10.1016/j.jtherbio.2022.103378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 10/13/2022] [Accepted: 10/21/2022] [Indexed: 11/07/2022]
Abstract
At critically high temperatures, atrioventricular (AV) block causes ventricular bradycardia and collapse of cardiac output in fish. Here, the possible role of the AV canal in high temperature-induced heart failure was examined. To this end, optical mapping was used to measure action potential (AP) conduction in isolated AV junction preparations of the rainbow trout (Oncorhynchus mykiss) heart during acute warming/cooling in the presence of 4 or 8 mM external K+ concentration. The preparation included the AV canal and some atrial and ventricular tissue at its edges, and it was paced either from atrial or ventricular side at a frequency of 0.67 Hz (40 beats min-1) to trigger forward (anterograde) and backward (retrograde) conduction, respectively. The propagation of AP was fast in atrial and ventricular tissues, but much slower in the AV canal, causing an AV delay. Acute warming from 15 °C to 27 °C or cooling from 15 °C to 5 °C did not impair AP conduction in the AV canal, as both anterograde and retrograde excitations propagated regularly through the AV canal. In contrast, anterograde conduction through the AV canal did not trigger ventricular excitation at the boundary zone between the AV canal and the ventricle when extracellular K+ concentration was raised from 4 mM to 8 mM at 27 °C. Also, the retrograde conduction was blocked at the border between the AV canal and the atrium in high K+ at 27 °C. These findings suggest that the AV canal is resistant against high temperatures (and high K+), but the ventricular muscle cannot be excited by APs coming from the AV canal when temperature and external K+ concentration are simultaneously elevated. Therefore, bradycardia at high temperatures in fish may occur due to inability of AP of the AV canal to trigger ventricular AP at the junctional zone between the AV canal and the proximal part of the ventricle.
Collapse
Affiliation(s)
- Vladislav Kuzmin
- Department of Human and Animal Physiology, Lomonosov Moscow State University, Leninskiye gory, building 12, Moscow, 119991, Russia.
| | - Konstantin S Ushenin
- Ural Federal University, Institute of Natural Sciences and Mathematics, Ekaterinburg, Kuybysheva Str., 48, Ekaterinburg, 620026, Russia
| | - Irina V Dzhumaniiazova
- Department of Human and Animal Physiology, Lomonosov Moscow State University, Leninskiye gory, building 12, Moscow, 119991, Russia
| | - Denis Abramochkin
- Department of Human and Animal Physiology, Lomonosov Moscow State University, Leninskiye gory, building 12, Moscow, 119991, Russia; Laboratory of Cardiac Electrophysiology, National Medical Research Center for Cardiology, Moscow, Russia; Department of Physiology, Pirogov Russian National Research Medical University, Ostrovitjanova 1, Moscow, 117997, Russia
| | - Matti Vornanen
- University of Eastern Finland, Department of Environmental and Biological Sciences, P.O.Box 111, 80101, Joensuu, Finland
| |
Collapse
|
7
|
Abramochkin DV, Filatova TS, Pustovit KB, Voronina YA, Kuzmin VS, Vornanen M. Ionic currents underlying different patterns of electrical activity in working cardiac myocytes of mammals and non-mammalian vertebrates. Comp Biochem Physiol A Mol Integr Physiol 2022; 268:111204. [PMID: 35346823 DOI: 10.1016/j.cbpa.2022.111204] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2022] [Revised: 03/21/2022] [Accepted: 03/22/2022] [Indexed: 12/19/2022]
Abstract
The orderly contraction of the vertebrate heart is determined by generation and propagation of cardiac action potentials (APs). APs are generated by the integrated activity of time- and voltage-dependent ionic channels which carry inward Na+ and Ca2+ currents, and outward K+ currents. This review compares atrial and ventricular APs and underlying ion currents between different taxa of vertebrates. We have collected literature data and attempted to find common electrophysiological features for two or more vertebrate groups, show differences between taxa and cardiac chambers, and indicate gaps in the existing data. Although electrical excitability of the heart in all vertebrates is based on the same superfamily of channels, there is a vast variability of AP waveforms between atrial and ventricular myocytes, between different species of the same vertebrate class and between endothermic and ectothermic animals. The wide variability of AP shapes is related to species-specific differences in animal size, heart rate, stage of ontogenetic development, excitation-contraction coupling, temperature and oxygen availability. Some of the differences between taxa are related to evolutionary development of genomes, which appear e.g. in the expression of different Na+ and K+ channel orthologues in cardiomyocytes of vertebrates. There is a wonderful variability of AP shapes and underlying ion currents with which electrical excitability of vertebrate heart can be generated depending on the intrinsic and extrinsic conditions of animal body. This multitude of ionic mechanisms provides excellent material for studying how the function of the vertebrate heart can adapt or acclimate to prevailing physiological and environmental conditions.
Collapse
Affiliation(s)
- Denis V Abramochkin
- Department of Human and Animal Physiology, Lomonosov Moscow State University, Leninskiye gory, 1, 12, Moscow 119234, Russia.
| | - Tatiana S Filatova
- Department of Human and Animal Physiology, Lomonosov Moscow State University, Leninskiye gory, 1, 12, Moscow 119234, Russia
| | - Ksenia B Pustovit
- Department of Human and Animal Physiology, Lomonosov Moscow State University, Leninskiye gory, 1, 12, Moscow 119234, Russia
| | - Yana A Voronina
- Department of Human and Animal Physiology, Lomonosov Moscow State University, Leninskiye gory, 1, 12, Moscow 119234, Russia; Laboratory of Cardiac Electrophysiology, National Medical Research Center for Cardiology, 3(rd) Cherepkovskaya str., 15A, Moscow, Russia
| | - Vladislav S Kuzmin
- Department of Human and Animal Physiology, Lomonosov Moscow State University, Leninskiye gory, 1, 12, Moscow 119234, Russia; Department of Physiology, Pirogov Russian National Research Medical University, Ostrovityanova str., 1, Moscow, Russia
| | - Matti Vornanen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Joensuu, Finland
| |
Collapse
|
8
|
Bazmi M, Escobar AL. Autonomic Regulation of the Goldfish Intact Heart. Front Physiol 2022; 13:793305. [PMID: 35222073 PMCID: PMC8864152 DOI: 10.3389/fphys.2022.793305] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Accepted: 01/19/2022] [Indexed: 11/13/2022] Open
Abstract
Autonomic regulation plays a central role in cardiac contractility and excitability in numerous vertebrate species. However, the role of autonomic regulation is less understood in fish physiology. Here, we used Goldfish as a model to explore the role of autonomic regulation. A transmural electrocardiogram recording showed perfusion of the Goldfish heart with isoproterenol increased the spontaneous heart rate, while perfusion with carbamylcholine decreased the spontaneous heart rate. Cardiac action potentials obtained via sharp microelectrodes exhibited the same modifications of the spontaneous heart rate in response to isoproterenol and carbamylcholine. Interestingly, the duration of the cardiac action potentials lengthened in the presence of both isoproterenol and carbamylcholine. To evaluate cardiac contractility, the Goldfish heart was perfused with the Ca2+ indicator Rhod-2 and ventricular epicardial Ca2+ transients were measured using Pulsed Local Field Fluorescence Microscopy. Following isoproterenol perfusion, the amplitude of the Ca2+ transient significantly increased, the half duration of the Ca2+ transient shortened, and there was an observable increase in the velocity of the rise time and fall time of the Ca2+ transient, all of which are compatible with the shortening of the action potential induced by isoproterenol perfusion. On the other hand, carbamylcholine perfusion significantly reduced the amplitude of the Ca2+ transient and increased the half duration of the Ca2+ transient. These results are interesting because the effect of carbamylcholine is opposite to what happens in classically used models, such as mouse hearts, and the autonomic regulation of the Goldfish heart is strikingly similar to what has been observed in larger mammalian models resembling humans.
Collapse
Affiliation(s)
- Maedeh Bazmi
- Quantitative Systems Biology Program, School of Natural Sciences, University of California, Merced, Merced, CA, United States
| | - Ariel L Escobar
- Department of Bioengineering, School of Engineering, University of California, Merced, Merced, CA, United States
| |
Collapse
|
9
|
Abramochkin DV, Kompella SN, Shiels HA. Phenanthrene alters the electrical activity of atrial and ventricular myocytes of a polar fish, the Navaga cod. AQUATIC TOXICOLOGY (AMSTERDAM, NETHERLANDS) 2021; 235:105823. [PMID: 33906022 PMCID: PMC8121755 DOI: 10.1016/j.aquatox.2021.105823] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2020] [Revised: 03/18/2021] [Accepted: 03/26/2021] [Indexed: 05/03/2023]
Abstract
Oil and gas exploration in the Arctic can result in the release of polycyclic aromatic hydrocarbons (PAHs) into relatively pristine environments. Following the recent spill of approximately 17 500 tonnes of diesel fuel in Norilsk, Russia, May 2020, our study focussed on the effects of phenanthrene, a low molecular weight PAH found in diesel and crude oil, on the isolated atrial and ventricular myocytes from the heart of the polar teleost, the Navaga cod (Eleginus nawaga). Acute exposure to phenanthrene in navaga cardiomyocytes caused significant action potential (AP) prolongation, confirming the proarrhythmic effects of this pollutant. We show AP prolongation was due to potent inhibition of the main repolarising current, IKr, with an IC50 value of ~2 µM. We also show a potent inhibitory effect (~55%) of 1 µM phenanthrene on the transient IKr currents that protects the heart from early-after-depolarizations and arrhythmias. These data, along with more minor effects on inward sodium (INa) (~17% inhibition at 10 µM) and calcium (ICa) (~17% inhibition at 30 µM) currents, and no effects on inward rectifier (IK1 and IKAch) currents, demonstrate the cardiotoxic effects exerted by phenanthrene on the atrium and ventricle of navaga cod. Moreover, we report the first data that we are aware of on the impact of phenanthrene on atrial myocyte function in any fish species.
Collapse
Affiliation(s)
- Denis V Abramochkin
- Department of Human and Animal Physiology, Lomonosov Moscow State University, Leninskiye gory, 1, 12, Moscow, 119234, Russia; Laboratory of Cardiac Electrophysiology, National Medical Research Center for Cardiology, 3rd Cherepkovskaya, 15a, Moscow, Russia; Department of Physiology, Pirogov Russian National Research Medical University, Ostrovityanova str., 1, Moscow, Russia; Ural Federal University, 19 Mira Street, 620002 Ekaterinburg, Russia
| | - Shiva N Kompella
- Faculty of Biology, Medicine and Health, Core Technology Facility, University of Manchester, 46 Grafton Street, Manchester M13 9NT, UK
| | - Holly A Shiels
- Faculty of Biology, Medicine and Health, Core Technology Facility, University of Manchester, 46 Grafton Street, Manchester M13 9NT, UK.
| |
Collapse
|
10
|
Stecyk JAW, Couturier CS, Abramochkin DV, Hall D, Arrant-Howell A, Kubly KL, Lockmann S, Logue K, Trueblood L, Swalling C, Pinard J, Vogt A. Cardiophysiological responses of the air-breathing Alaska blackfish to cold acclimation and chronic hypoxic submergence at 5°C. J Exp Biol 2020; 223:jeb225730. [PMID: 33020178 PMCID: PMC7687868 DOI: 10.1242/jeb.225730] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Accepted: 09/28/2020] [Indexed: 01/29/2023]
Abstract
The Alaska blackfish (Dallia pectoralis) remains active at cold temperatures when experiencing aquatic hypoxia without air access. To discern the cardiophysiological adjustments that permit this behaviour, we quantified the effect of acclimation from 15°C to 5°C in normoxia (15N and 5N fish), as well as chronic hypoxic submergence (6-8 weeks; ∼6.3-8.4 kPa; no air access) at 5°C (5H fish), on in vivo and spontaneous heart rate (fH), electrocardiogram, ventricular action potential (AP) shape and duration (APD), the background inward rectifier (IK1) and rapid delayed rectifier (IKr) K+ currents and ventricular gene expression of proteins involved in excitation-contraction coupling. In vivo fH was ∼50% slower in 5N than in 15N fish, but 5H fish did not display hypoxic bradycardia. Atypically, cold acclimation in normoxia did not induce shortening of APD or alter resting membrane potential. Rather, QT interval and APD were ∼2.6-fold longer in 5N than in 15N fish because outward IK1 and IKr were not upregulated in 5N fish. By contrast, chronic hypoxic submergence elicited a shortening of QT interval and APD, driven by an upregulation of IKr The altered electrophysiology of 5H fish was accompanied by increased gene expression of kcnh6 (3.5-fold; Kv11.2 of IKr), kcnj12 (7.4-fold; Kir2.2 of IK1) and kcnj14 (2.9-fold; Kir2.4 of IK1). 5H fish also exhibited a unique gene expression pattern that suggests modification of ventricular Ca2+ cycling. Overall, the findings reveal that Alaska blackfish exposed to chronic hypoxic submergence prioritize the continuation of cardiac performance to support an active lifestyle over reducing cardiac ATP demand.
Collapse
Affiliation(s)
- Jonathan A W Stecyk
- Department of Biological Sciences, University of Alaska Anchorage, Anchorage, AK 99508, USA
| | - Christine S Couturier
- Department of Biological Sciences, University of Alaska Anchorage, Anchorage, AK 99508, USA
| | - Denis V Abramochkin
- Department of Human and Animal Physiology, Lomonosov Moscow State University, 1-12 Leninskiye Gory, 119991 Moscow, Russia
- Ural Federal University, 19 Mira Street, 620002 Ekaterinburg, Russia
- Laboratory of Cardiac Physiology, Institute of Physiology of Kоmi Science Centre of the Ural Branch of the Russian Academy of Sciences, FRC Komi SC UB RAS, 50 Pervomayskaya Str., 167982 Syktyvkar, Komi Republic, Russia
| | - Diarmid Hall
- Department of Biological Sciences, University of Alaska Anchorage, Anchorage, AK 99508, USA
| | - Asia Arrant-Howell
- Department of Biological Sciences, University of Alaska Anchorage, Anchorage, AK 99508, USA
| | - Kerry L Kubly
- Department of Biological Sciences, University of Alaska Anchorage, Anchorage, AK 99508, USA
| | - Shyanne Lockmann
- Department of Biological Sciences, University of Alaska Anchorage, Anchorage, AK 99508, USA
| | - Kyle Logue
- Department of Biological Sciences, University of Alaska Anchorage, Anchorage, AK 99508, USA
| | - Lenett Trueblood
- Department of Biological Sciences, University of Alaska Anchorage, Anchorage, AK 99508, USA
| | - Connor Swalling
- Department of Biological Sciences, University of Alaska Anchorage, Anchorage, AK 99508, USA
| | - Jessica Pinard
- Department of Biological Sciences, University of Alaska Anchorage, Anchorage, AK 99508, USA
| | - Angela Vogt
- Department of Biological Sciences, University of Alaska Anchorage, Anchorage, AK 99508, USA
| |
Collapse
|
11
|
Vornanen M. Feeling the heat: source–sink mismatch as a mechanism underlying the failure of thermal tolerance. J Exp Biol 2020; 223:223/16/jeb225680. [DOI: 10.1242/jeb.225680] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
ABSTRACT
A mechanistic explanation for the tolerance limits of animals at high temperatures is still missing, but one potential target for thermal failure is the electrical signaling off cells and tissues. With this in mind, here I review the effects of high temperature on the electrical excitability of heart, muscle and nerves, and refine a hypothesis regarding high temperature-induced failure of electrical excitation and signal transfer [the temperature-dependent deterioration of electrical excitability (TDEE) hypothesis]. A central tenet of the hypothesis is temperature-dependent mismatch between the depolarizing ion current (i.e. source) of the signaling cell and the repolarizing ion current (i.e. sink) of the receiving cell, which prevents the generation of action potentials (APs) in the latter. A source–sink mismatch can develop in heart, muscles and nerves at high temperatures owing to opposite effects of temperature on source and sink currents. AP propagation is more likely to fail at the sites of structural discontinuities, including electrically coupled cells, synapses and branching points of nerves and muscle, which impose an increased demand of inward current. At these sites, temperature-induced source–sink mismatch can reduce AP frequency, resulting in low-pass filtering or a complete block of signal transmission. In principle, this hypothesis can explain a number of heat-induced effects, including reduced heart rate, reduced synaptic transmission between neurons and reduced impulse transfer from neurons to muscles. The hypothesis is equally valid for ectothermic and endothermic animals, and for both aquatic and terrestrial species. Importantly, the hypothesis is strictly mechanistic and lends itself to experimental falsification.
Collapse
Affiliation(s)
- Matti Vornanen
- Department of Environmental and Biological Sciences , University of Eastern Finland, 80101 Joensuu, Finland
| |
Collapse
|
12
|
Filatova TS, Abramochkin DV, Shiels HA. Thermal acclimation and seasonal acclimatization: a comparative study of cardiac response to prolonged temperature change in shorthorn sculpin. ACTA ACUST UNITED AC 2019; 222:jeb.202242. [PMID: 31315933 DOI: 10.1242/jeb.202242] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2019] [Accepted: 07/15/2019] [Indexed: 12/30/2022]
Abstract
Seasonal thermal remodelling (acclimatization) and laboratory thermal remodelling (acclimation) can induce different physiological changes in ectothermic animals. As global temperatures are changing at an increasing rate, there is urgency to understand the compensatory abilities of key organs such as the heart to adjust under natural conditions. Thus, the aim of the present study was to directly compare the acclimatization and acclimatory response within a single eurythermal fish species, the European shorthorn sculpin (Myoxocephalus scorpio). We used current- and voltage-clamp to measure ionic current densities in both isolated atrial and ventricular myocytes from three groups of fish: (1) summer-caught fish kept at 12°C ('summer-acclimated'); (2) summer-caught fish kept at 3°C ('cold acclimated'); and (3) fish caught in March ('winter-acclimatized'). At a common test temperature of 7.5°C, action potential (AP) was shortened by both winter acclimatization and cold acclimation compared with summer acclimation; however, winter acclimatization caused a greater shortening than did cold acclimation. Shortening of AP was achieved mostly by a significant increase in repolarizing current density (I Kr and I K1) following winter acclimatization, with cold acclimation having only minor effects. Compared with summer acclimation, the depolarizing L-type calcium current (I Ca) was larger following winter acclimatization, but again, there was no effect of cold acclimation on I Ca Interestingly, the other depolarizing current, I Na, was downregulated at low temperatures. Our further analysis shows that ionic current remodelling is primarily due to changes in ion channel density rather than current kinetics. In summary, acclimatization profoundly modified the electrical activity of the sculpin heart while acclimation to the same temperature for >1.5 months produced very limited remodelling effects.
Collapse
Affiliation(s)
- Tatiana S Filatova
- Department of Human and Animal Physiology, Lomonosov Moscow State University, Leninskiye gory, 1, 12, Moscow, Russia 119234 .,Department of Physiology, Russian National Research Medical University, Ostrovityanova str., 1, Moscow, Russia 117997
| | - Denis V Abramochkin
- Department of Human and Animal Physiology, Lomonosov Moscow State University, Leninskiye gory, 1, 12, Moscow, Russia 119234.,Department of Physiology, Russian National Research Medical University, Ostrovityanova str., 1, Moscow, Russia 117997.,Ural Federal University, Mira 19, Ekaterinburg, Russia 620002
| | - Holly A Shiels
- Faculty of Life Sciences, Core Technology Facility, 46 Grafton Street, University of Manchester, Manchester M13 9NT, UK
| |
Collapse
|
13
|
Abramochkin DV, Haverinen J, Mitenkov YA, Vornanen M. Temperature- and external K+-dependence of electrical excitation in ventricular myocytes of cod-like fishes. J Exp Biol 2019; 222:jeb.193607. [DOI: 10.1242/jeb.193607] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Accepted: 01/16/2019] [Indexed: 01/08/2023]
Abstract
Electrical excitability (EE) is vital for cardiac function and strongly modulated by temperature and external K+ concentration ([K+]o) as formulated in the hypothesis of temperature-dependent deterioration of electrical excitability (TDEE). Since little is known about EE of arctic stenothermic fishes, we tested the TDEE hypothesis on ventricular myocytes of polar cod (Boreogadus saida) and navaga cod (Eleginus navaga) of the Arctic Ocean and those of temperate freshwater burbot (Lota lota). Ventricular action potentials (APs) were elicited in current-clamp experiments at 3, 9 and 15°C, and AP characteristics and the current needed to elicit AP were examined. At 3°C, ventricular APs of polar and navaga cod were similar but differed from that of burbot in having lower rate of AP upstroke and higher rate of repolarization. EE of ventricular myocytes - defined as the ease with which all-or-none APs are triggered - was little affected by acute temperature changes between 3 and 15°C in any species. However, AP duration (APD50) was drastically reduced at higher temperatures. Elevation of [K+]o from 3 to 5.4 and further to 8 mM at 3, 9 and 15°C strongly affected EE and AP characteristics in polar and navaga cod, but less in burbot. In all species, ventricular excitation was resistant to acute temperature elevations, while small increases in [K+]o severely compromised EE, in particular in the marine stenotherms. This suggests that EE of the heart in these Gadiformes species is well equipped against acute warming, but less so against the simultaneous temperature and exercise stresses.
Collapse
Affiliation(s)
- Denis V. Abramochkin
- Department of human and animal physiology, Lomonosov Moscow State University, Leninskiye Gory, 1, 12, Moscow, Russia
- Department of Physiology, Pirogov Russian National Research Medical University, Moscow, Russia
- Laboratory of Cardiac Physiology, Institute of Physiology, Komi Science Center, Ural Branch, Russian Academy of Sciences, Syktyvkar, Russia
| | - Jaakko Haverinen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Joensuu, Finland
| | - Yuri A. Mitenkov
- VNIRO Russian Federal Research Institute of Fisheries and Oceanography, Moscow, Russia
| | - Matti Vornanen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Joensuu, Finland
| |
Collapse
|
14
|
Abramochkin DV, Hassinen M, Vornanen M. Transcripts of Kv7.1 and MinK channels and slow delayed rectifier K + current (I Ks) are expressed in zebrafish (Danio rerio) heart. Pflugers Arch 2018; 470:1753-1764. [PMID: 30116893 DOI: 10.1007/s00424-018-2193-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 07/24/2018] [Accepted: 08/06/2018] [Indexed: 12/18/2022]
Abstract
Zebrafish are increasingly used as a model for human cardiac electrophysiology, arrhythmias, and drug screening. However, K+ ion channels of the zebrafish heart, which determine the rate of repolarization and duration of cardiac action potential (AP) are still incompletely known and characterized. Here, we provide the first evidence for the presence of the slow component of the delayed rectifier K+channels in the zebrafish heart and characterize electrophysiological properties of the slow component of the delayed rectifier K+current, IKs. Zebrafish atrium and ventricle showed strong transcript expression of the kcnq1 gene, which encodes the Kv7.1 α-subunit of the slow delayed rectifier K+ channel. In contrast, the kcne1 gene, encoding the MinK β-subunit of the delayed rectifier, was expressed at 21 and 17 times lower level in ventricle and atrium, respectively, in comparison to the kcnq1. IKs was observed in 62% of ventricular myocytes with mean (± SEM) density of 1.23 ± 0.37 pA/pF at + 30 mV. Activation rate of IKs was 38% faster (τ50 = 1248 ± 215 ms) than kcnq1:kcne1 channels (1725 ± 792 ms) expressed in 3:1 ratio in Chinese hamster ovary cells. Microelectrode experiments demonstrated the functional relevance of IKs in the zebrafish heart, since 100 μM chromanol 293B produced a significant prolongation of AP in zebrafish ventricle. We conclude that AP repolarization in zebrafish ventricle is contributed by IKs, which is mainly generated by homotetrameric Kv7.1 channels not coupled to MinK ancillary β-subunits. This is a clear difference to the human heart, where MinK is an essential component of the slow delayed rectifier K+channel.
Collapse
Affiliation(s)
- Denis V Abramochkin
- Department of Human and Animal Physiology, Biological faculty, Lomonosov Moscow State University, Leninskiye Gory, 1, 12, Moscow, Russia.
- Department of Physiology, Pirogov Russian National Research Medical University, Moscow, Russia.
- Laboratory of Cardiac Physiology, Institute of Physiology, Komi Science Center, Ural Branch, Russian Academy of Sciences, Syktyvkar, Russia.
| | - Minna Hassinen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Joensuu, Finland
| | - Matti Vornanen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Joensuu, Finland
| |
Collapse
|
15
|
Electrophysiological differences in cholinergic signaling between the hearts of summer and winter frogs (Rana temporaria). J Comp Physiol B 2018; 188:649-656. [DOI: 10.1007/s00360-018-1147-4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 12/20/2017] [Accepted: 01/17/2018] [Indexed: 10/18/2022]
|
16
|
Badr A, Korajoki H, Abu-Amra ES, El-Sayed MF, Vornanen M. Effects of seasonal acclimatization on thermal tolerance of inward currents in roach (Rutilus rutilus) cardiac myocytes. J Comp Physiol B 2017; 188:255-269. [DOI: 10.1007/s00360-017-1126-1] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2017] [Revised: 08/23/2017] [Accepted: 09/15/2017] [Indexed: 02/06/2023]
|
17
|
Hassinen M, Haverinen J, Vornanen M. Small functional If current in sinoatrial pacemaker cells of the brown trout ( Salmo trutta fario) heart despite strong expression of HCN channel transcripts. Am J Physiol Regul Integr Comp Physiol 2017; 313:R711-R722. [PMID: 28855177 DOI: 10.1152/ajpregu.00227.2017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2017] [Revised: 08/21/2017] [Accepted: 08/24/2017] [Indexed: 01/26/2023]
Abstract
Funny current (If), formed by hyperpolarization-activated cyclic nucleotide-gated channels (HCN channels), is supposed to be crucial for the membrane clock regulating the cardiac pacemaker mechanism. We examined the presence and activity of HCN channels in the brown trout (Salmo trutta fario) sinoatrial (SA) pacemaker cells and their putative role in heart rate (fH) regulation. Six HCN transcripts (HCN1, HCN2a, HCN2ba, HCN2bb, HCN3, and HCN4) were expressed in the brown trout heart. The total HCN transcript abundance was 4.0 and 4.9 times higher in SA pacemaker tissue than in atrium and ventricle, respectively. In the SA pacemaker, HCN3 and HCN4 were the main isoforms representing 35.8 ± 2.7 and 25.0 ± 1.5%, respectively, of the total HCN transcripts. Only a small If with a mean current density of -1.2 ± 0.37 pA/pF at -140 mV was found in 4 pacemaker cells out of 16 spontaneously beating cells examined, despite the optimization of recording conditions for If activity. If was not found in any of the 24 atrial myocytes and 21 ventricular myocytes examined. HCN4 coexpressed with the MinK-related peptide 1 (MiRP1) β-subunit in CHO cells generated large If currents. In contrast, HCN3 (+MiRP1) failed to produce If in the same expression system. Cs+ (2 mM), which blocked 84 ± 12% of the native If, reversibly reduced fH 19.2 ± 3.6% of the excised multicellular pacemaker tissue from 53 ± 5 to 44 ± 5 beats/min (P < 0.05). However, this effect was probably due to the reduction of IKr, which was also inhibited (63.5 ± 4.6%) by Cs+ These results strongly suggest that fH regulation in the brown trout heart is largely independent on If.
Collapse
Affiliation(s)
- Minna Hassinen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Joensuu, Finland
| | - Jaakko Haverinen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Joensuu, Finland
| | - Matti Vornanen
- Department of Environmental and Biological Sciences, University of Eastern Finland, Joensuu, Finland
| |
Collapse
|
18
|
Vornanen M. Electrical Excitability of the Fish Heart and Its Autonomic Regulation. FISH PHYSIOLOGY 2017. [DOI: 10.1016/bs.fp.2017.04.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|