1
|
Su L, Wang J, Liu B, Liu H, Chen Q, Liu J, Li S, Yuan L, An L, Lin H, Feng L, Zheng J, Ren J, Liang L, Li S. Construction of a Near-Infrared Fluorescent Probe for Dynamic Monitoring and Early Diagnosis of Heart Failure. ACS Sens 2024; 9:3075-3084. [PMID: 38807573 DOI: 10.1021/acssensors.4c00258] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/30/2024]
Abstract
Cardiac hypertrophy characterized by abnormal cardiomyocyte viscosity is a typical sign of heart failure (HF) with vital importance for early diagnosis. However, current biochemical and imaging diagnostic methods are unable to detect this subclinical manifestation. In this work, we developed a series of NIR-I fluorescence probes for detecting myocardial viscosity based on the pyridazinone scaffold. The probes showed weak fluorescence due to free intramolecular rotation under low-viscosity conditions, while they displayed strong fluorescence with limited intramolecular rotation in response to a high-viscosity environment. Among them, CarVis2 exhibited higher stability and photobleaching resistance than commercial dyes. Its specific response to viscosity was not influenced by the pH and biological species. Furthermore, CarVis2 showed rapid and accurate responses to the viscosity of isoproterenol (ISO)-treated H9C2 cardiomyocytes with good biocompatibility. More importantly, CarVis2 demonstrated excellent sensitivity in monitoring myocardial viscosity variation in HF mice in vivo, potentially enabling earlier noninvasive identification of myocardial abnormalities compared to traditional clinical imaging and biomarkers. These findings revealed that CarVis2 can serve as a powerful tool to monitor myocardial viscosity, providing the potential to advance insights into a pathophysiological mechanism and offering a new reference strategy for early visual diagnosis of HF.
Collapse
Affiliation(s)
- Lina Su
- Heart Failure Center, Department of Cardiology, China-Japan Friendship Hospital, Beijing 100029, China
- Department of Cardiology, Beijing Key Laboratory of Early Prediction and Intervention of Acute Myocardial Infarction, Center for Cardiovascular Translational Research, Peking University People's Hospital, Beijing 100044, China
| | - Junda Wang
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Bowei Liu
- Heart Failure Center, Department of Cardiology, China-Japan Friendship Hospital, Beijing 100029, China
| | - Hui Liu
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Qixin Chen
- Department of Cardiology, Beijing Key Laboratory of Early Prediction and Intervention of Acute Myocardial Infarction, Center for Cardiovascular Translational Research, Peking University People's Hospital, Beijing 100044, China
| | - Jiang Liu
- Heart Failure Center, Department of Cardiology, China-Japan Friendship Hospital, Beijing 100029, China
| | - Shuolei Li
- Laboratory Animal Unit, Peking University People's Hospital, Beijing 100044, China
| | - Lan Yuan
- Medical and Healthy Analytical Center, Peking University, Beijing 100191, China
| | - Lihua An
- Medical and Healthy Analytical Center, Peking University, Beijing 100191, China
| | - Hang Lin
- Department of Cardiology, Beijing Key Laboratory of Early Prediction and Intervention of Acute Myocardial Infarction, Center for Cardiovascular Translational Research, Peking University People's Hospital, Beijing 100044, China
| | - Lina Feng
- Heart Failure Center, Department of Cardiology, China-Japan Friendship Hospital, Beijing 100029, China
| | - Jingang Zheng
- Heart Failure Center, Department of Cardiology, China-Japan Friendship Hospital, Beijing 100029, China
| | - Jingyi Ren
- Heart Failure Center, Department of Cardiology, China-Japan Friendship Hospital, Beijing 100029, China
| | - Lei Liang
- Department of Medicinal Chemistry, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China
| | - Sufang Li
- Department of Cardiology, Beijing Key Laboratory of Early Prediction and Intervention of Acute Myocardial Infarction, Center for Cardiovascular Translational Research, Peking University People's Hospital, Beijing 100044, China
| |
Collapse
|
2
|
Hancock EN, Palmer BM, Caporizzo MA. Microtubule destabilization with colchicine increases the work output of myocardial slices. JOURNAL OF MOLECULAR AND CELLULAR CARDIOLOGY PLUS 2024; 7:100066. [PMID: 38584975 PMCID: PMC10997380 DOI: 10.1016/j.jmccpl.2024.100066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 04/09/2024]
Abstract
Cardiac microtubules have recently been implicated in mechanical dysfunction during heart failure. However, systemic intolerance and non-cardiac effects of microtubule-depolymerizing compounds have made it challenging to determine the effect of microtubules on myocardial performance. Herein, we leverage recent advancements in living myocardial slices to develop a stable working preparation that recapitulates the complexity of diastole by including early and late phases of diastolic filling. To determine the effect of cardiac microtubule depolymerization on diastolic performance, myocardial slices were perfused with oxygenated media to maintain constant isometric twitch forces for more than 90 min. Force-length work loops were collected before and after 90 min of treatment with either DMSO (vehicle) or colchicine (microtubule depolymerizer). A trapezoidal stretch was added prior to the beginning of ventricular systole to mimic late-stage-diastolic filling driven by atrial systole. Force-length work loops were obtained at fixed preload and afterload, and tissue velocity was obtained during diastole as an analog to trans-mitral Doppler. In isometric twitches, microtubule destabilization accelerated force development, relaxation kinetics, and decreased end diastolic stiffness. In work loops, microtubule destabilization increased stroke length, myocardial output, accelerated isometric contraction and relaxation, and increased the amplitude of early filling. Taken together, these results indicate that the microtubule destabilizer colchicine can improve diastolic performance by accelerating isovolumic relaxation and early filling leading to increase in myocardial work output.
Collapse
Affiliation(s)
- Emmaleigh N. Hancock
- Department of Molecular Physiology and Biophysics, University of Vermont Larner College of Medicine, Burlington, VT, USA
| | - Bradley M. Palmer
- Department of Molecular Physiology and Biophysics, University of Vermont Larner College of Medicine, Burlington, VT, USA
| | - Matthew A. Caporizzo
- Department of Molecular Physiology and Biophysics, University of Vermont Larner College of Medicine, Burlington, VT, USA
| |
Collapse
|
3
|
Hilderink S, Schuldt M, Goebel M, Jansen VJ, Manders E, Moorman S, Dorsch LM, van Steenbeek FG, van der Velden J, Kuster DWD. Characterization of heterozygous and homozygous mouse models with the most common hypertrophic cardiomyopathy mutation MYBPC3 c.2373InsG in the Netherlands. J Mol Cell Cardiol 2023; 185:65-76. [PMID: 37844837 DOI: 10.1016/j.yjmcc.2023.10.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2023] [Revised: 09/25/2023] [Accepted: 10/11/2023] [Indexed: 10/18/2023]
Abstract
Hypertrophic cardiomyopathy (HCM) is frequently caused by mutations in the cardiac myosin binding protein-C (cMyBP-C) encoding gene MYBPC3. In the Netherlands, approximately 25% of patients carry the MYBPC3c.2373InsG founder mutation. Most patients are heterozygous (MYBPC3+/InsG) and have highly variable phenotypic expression, whereas homozygous (MYBPC3InsG/InsG) patients have severe HCM at a young age. To improve understanding of disease progression and genotype-phenotype relationship based on the hallmarks of human HCM, we characterized mice with CRISPR/Cas9-induced heterozygous and homozygous mutations. At 18-28 weeks of age, we assessed the cardiac phenotype of Mybpc3+/InsG and Mybpc3InsG/InsG mice with echocardiography, and performed histological analyses. Cytoskeletal proteins and cardiomyocyte contractility of 3-4 week old and 18-28 week old Mybpc3c.2373InsG mice were compared to wild-type (WT) mice. Expectedly, knock-in of Mybpc3c.2373InsG resulted in the absence of cMyBP-C and our 18-28 week old homozygous Mybpc3c.2373InsG model developed cardiac hypertrophy and severe left ventricular systolic and diastolic dysfunction, whereas HCM was not evident in Mybpc3+/InsG mice. Mybpc3InsG/InsG cardiomyocytes also presented with slowed contraction-relaxation kinetics, to a greater extent in 18-28 week old mice, partially due to increased levels of detyrosinated tubulin and desmin, and reduced cardiac troponin I (cTnI) phosphorylation. Impaired cardiomyocyte contraction-relaxation kinetics were successfully normalized in 18-28 week old Mybpc3InsG/InsG cardiomyocytes by combining detyrosination inhibitor parthenolide and β-adrenergic receptor agonist isoproterenol. Both the 3-4 week old and 18-28 week old Mybpc3InsG/InsG models recapitulate HCM, with a severe phenotype present in the 18-28 week old model.
Collapse
Affiliation(s)
- Sarah Hilderink
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Physiology, De Boelelaan 1118, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Heart Failure & Arrhythmias, Amsterdam, the Netherlands
| | - Maike Schuldt
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Physiology, De Boelelaan 1118, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Heart Failure & Arrhythmias, Amsterdam, the Netherlands
| | - Max Goebel
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Physiology, De Boelelaan 1118, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Heart Failure & Arrhythmias, Amsterdam, the Netherlands
| | - Valentijn J Jansen
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Physiology, De Boelelaan 1118, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Heart Failure & Arrhythmias, Amsterdam, the Netherlands
| | - Emmy Manders
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Physiology, De Boelelaan 1118, Amsterdam, the Netherlands
| | - Stan Moorman
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Physiology, De Boelelaan 1118, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Heart Failure & Arrhythmias, Amsterdam, the Netherlands
| | - Larissa M Dorsch
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Physiology, De Boelelaan 1118, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Heart Failure & Arrhythmias, Amsterdam, the Netherlands
| | - Frank G van Steenbeek
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Utrecht University, 3584 CL Utrecht, the Netherlands; Department of Cardiology, Division Heart & Lungs, University Medical Center Utrecht, Utrecht University, 3508 GA Utrecht, the Netherlands; Regenerative Medicine Center Utrecht, University Medical Center Utrecht, Utrecht University, 3584 CT Utrecht, the Netherlands
| | - Jolanda van der Velden
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Physiology, De Boelelaan 1118, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Heart Failure & Arrhythmias, Amsterdam, the Netherlands
| | - Diederik W D Kuster
- Amsterdam UMC Location Vrije Universiteit Amsterdam, Physiology, De Boelelaan 1118, Amsterdam, the Netherlands; Amsterdam Cardiovascular Sciences, Heart Failure & Arrhythmias, Amsterdam, the Netherlands.
| |
Collapse
|