1
|
Sopjani M, Millaku L, Nebija D, Emini M, Rifati-Nixha A, Dërmaku-Sopjani M. The Glycogen Synthase Kinase-3 in the Regulation of Ion Channels and Cellular Carriers. Curr Med Chem 2020; 26:6817-6829. [PMID: 30306852 DOI: 10.2174/0929867325666181009122452] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 09/19/2018] [Accepted: 09/21/2018] [Indexed: 01/19/2023]
Abstract
Glycogen synthase kinase-3 (GSK-3) is a highly evolutionarily conserved and ubiquitously expressed serine/threonine kinase, an enzyme protein profoundly specific for glycogen synthase (GS). GSK-3 is involved in various cellular functions and physiological processes, including cell proliferation, differentiation, motility, and survival as well as glycogen metabolism, protein synthesis, and apoptosis. There are two isoforms of human GSK-3 (named GSK-3α and GSK-3β) encoded by two distinct genes. Recently, GSK-3β has been reported to function as a powerful regulator of various transport processes across the cell membrane. This kinase, GSK-3β, either directly or indirectly, may stimulate or inhibit many different types of transporter proteins, including ion channel and cellular carriers. More specifically, GSK-3β-sensitive cellular transport regulation involves various calcium, chloride, sodium, and potassium ion channels, as well as a number of Na+-coupled cellular carriers including excitatory amino acid transporters EAAT2, 3 and 4, high-affinity Na+ coupled glucose carriers SGLT1, creatine transporter 1 CreaT1, and the type II sodium/phosphate cotransporter NaPi-IIa. The GSK-3β-dependent cellular transport regulations are a part of the kinase functions in numerous physiological and pathophysiological processes. Clearly, additional studies are required to examine the role of GSK-3β in many other types of cellular transporters as well as further elucidating the underlying mechanisms of GSK-3β-mediated cellular transport regulation.
Collapse
Affiliation(s)
- Mentor Sopjani
- Faculty of Medicine, University of Prishtina, 10000 Prishtine, Kosova
| | - Lulzim Millaku
- Faculty of Natural Sciences and Mathematics, University of Prishtina, 10000 Prishtine, Kosova
| | - Dashnor Nebija
- Faculty of Medicine, University of Prishtina, 10000 Prishtine, Kosova
| | - Merita Emini
- Faculty of Medicine, University of Prishtina, 10000 Prishtine, Kosova
| | - Arleta Rifati-Nixha
- Faculty of Natural Sciences and Mathematics, University of Prishtina, 10000 Prishtine, Kosova
| | | |
Collapse
|
2
|
Natural and synthetic peptides in the cardiovascular diseases: An update on diagnostic and therapeutic potentials. Arch Biochem Biophys 2018; 662:15-32. [PMID: 30481494 DOI: 10.1016/j.abb.2018.11.021] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2018] [Revised: 10/31/2018] [Accepted: 11/21/2018] [Indexed: 02/07/2023]
Abstract
Several peptides play an important role in physiological and pathological conditions into the cardiovascular system. In addition to well-known vasoactive agents such as angiotensin II, endothelin, serotonin or natriuretic peptides, the vasoconstrictor Urotensin-II (Uro-II) and the vasodilators Urocortins (UCNs) and Adrenomedullin (AM) have been implicated in the control of vascular tone and blood pressure as well as in cardiovascular disease states including congestive heart failure, atherosclerosis, coronary artery disease, and pulmonary and systemic hypertension. Therefore these peptides, together with their receptors, become important therapeutic targets in cardiovascular diseases (CVDs). Circulating levels of these agents in the blood are markedly modified in patients with specific CVDs compared with those in healthy patients, becoming also potential biomarkers for these pathologies. This review will provide an overview of current knowledge about the physiological roles of Uro-II, UCN and AM in the cardiovascular system and their implications in cardiovascular diseases. It will further focus on the structural modifications carried out on original peptide sequences in the search of analogues with improved physiochemical properties as well as in the delivery methods. Finally, we have overviewed the possible application of these peptides and/or their precursors as biomarkers of CVDs.
Collapse
|
3
|
Chouridou E, Lambropoulou M, Koureta M, Zarouchlioti C, Balgouranidou I, Nena E, Papadopoulos N, Chatzaki E. Corticotropin-releasing factor (CRF) system localization in human fetal heart. Hormones (Athens) 2016; 15:54-64. [PMID: 30091054 DOI: 10.1007/bf03401403] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/11/2015] [Accepted: 12/22/2015] [Indexed: 11/30/2022]
Abstract
OBJECTIVE The corticotropin-releasing factor (CRF) family consists of the neuropeptides CRF, Ucn I, II and III and the binding sites CRFR1, CRFR2 and CRF-BP. It regulates stress response and the homeostasis of an organism. In this study, we examined the presence of the CRF system in the human hearts of normal and pathological fetuses. DESIGN Heart tissues from 40 archival human fetuses were divided into Group A (without pathology, 'normal'), Group B (with chromosomal abnormalities) and Group C (with congenital disorders). Immunohistochemistry was used to localize the CRF system. Results correlated to gestational trimester and pathology. RESULTS Immunoreactivity for all antigens was found in cardiac myocytes of all groups, in almost all samples, except Ucn III which was present in almost half of the fetuses of Groups B and C and was not detected at all in Group A. Ucn III was more often present during the earlier stage of development (<21 weeks) and in fetuses with congenital disorders. In a fetus diagnosed with heart pathology, all but Ucn III antigens were also present. CONCLUSIONS We localized a complete CRF system in the human fetal heart and correlated the presence of Ucn III to development and pathology. More studies are needed to verify and clarify the exact role of the CRF system in the human fetal heart.
Collapse
Affiliation(s)
- Efterpi Chouridou
- Laboratory of Pharmacology, Faculty of Medicine, Democritus University of Thrace, Dragana, Alexandroupolis, P.C. 68100, Greece
| | - Maria Lambropoulou
- Laboratory of Histology-Embryology, Faculty of Medicine, Democritus University of Thrace, Dragana, Alexandroupolis, Greece
| | - Maria Koureta
- Laboratory of Pharmacology, Faculty of Medicine, Democritus University of Thrace, Dragana, Alexandroupolis, P.C. 68100, Greece
| | - Christina Zarouchlioti
- Laboratory of Pharmacology, Faculty of Medicine, Democritus University of Thrace, Dragana, Alexandroupolis, P.C. 68100, Greece
| | - Ioanna Balgouranidou
- Laboratory of Pharmacology, Faculty of Medicine, Democritus University of Thrace, Dragana, Alexandroupolis, P.C. 68100, Greece
| | - Evangelia Nena
- Laboratory of Hygiene and Environmental Protection, Faculty of Medicine, Democritus University of Thrace, Dragana, Alexandroupolis, Greece
| | - Nikolaos Papadopoulos
- Laboratory of Histology-Embryology, Faculty of Medicine, Democritus University of Thrace, Dragana, Alexandroupolis, Greece
| | - Ekaterini Chatzaki
- Laboratory of Pharmacology, Faculty of Medicine, Democritus University of Thrace, Dragana, Alexandroupolis, P.C. 68100, Greece.
| |
Collapse
|
4
|
Mérour JY, Buron F, Plé K, Bonnet P, Routier S. The azaindole framework in the design of kinase inhibitors. Molecules 2014; 19:19935-79. [PMID: 25460315 PMCID: PMC6271083 DOI: 10.3390/molecules191219935] [Citation(s) in RCA: 120] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 11/10/2014] [Accepted: 11/18/2014] [Indexed: 01/05/2023] Open
Abstract
This review article illustrates the growing use of azaindole derivatives as kinase inhibitors and their contribution to drug discovery and innovation. The different protein kinases which have served as targets and the known molecules which have emerged from medicinal chemistry and Fragment-Based Drug Discovery (FBDD) programs are presented. The various synthetic routes used to access these compounds and the chemical pathways leading to their synthesis are also discussed. An analysis of their mode of binding based on X-ray crystallography data gives structural insights for the design of more potent and selective inhibitors.
Collapse
Affiliation(s)
- Jean-Yves Mérour
- Institut de Chimie Organique et Analytique (ICOA), Université d'Orléans, UMR CNRS 7311, Orléans F-45067, France.
| | - Frédéric Buron
- Institut de Chimie Organique et Analytique (ICOA), Université d'Orléans, UMR CNRS 7311, Orléans F-45067, France.
| | - Karen Plé
- Institut de Chimie Organique et Analytique (ICOA), Université d'Orléans, UMR CNRS 7311, Orléans F-45067, France.
| | - Pascal Bonnet
- Institut de Chimie Organique et Analytique (ICOA), Université d'Orléans, UMR CNRS 7311, Orléans F-45067, France.
| | - Sylvain Routier
- Institut de Chimie Organique et Analytique (ICOA), Université d'Orléans, UMR CNRS 7311, Orléans F-45067, France.
| |
Collapse
|
5
|
SGK1 Is Involved in Cardioprotection of Urocortin-1 Against Hypoxia/Reoxygenation in Cardiomyocytes. Can J Cardiol 2014; 30:687-95. [DOI: 10.1016/j.cjca.2014.03.024] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2013] [Revised: 02/17/2014] [Accepted: 03/10/2014] [Indexed: 12/26/2022] Open
|
6
|
Walther S, Awad S, Lonchyna VA, Blatter LA. NFAT transcription factor regulation by urocortin II in cardiac myocytes and heart failure. Am J Physiol Heart Circ Physiol 2014; 306:H856-66. [PMID: 24441548 DOI: 10.1152/ajpheart.00353.2013] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Urocortin II (UcnII), a cardioactive peptide with beneficial effects in normal and failing hearts, is also arrhythmogenic and prohypertrophic. We demonstrated that cardiac effects are mediated by a phosphatidylinositol-3 kinase (PI3K)/Akt kinase (Akt)/endothelial nitric oxide synthase (eNOS)/nitric oxide (NO) signaling pathways. Nuclear factor of activated T-cells (NFAT) transcription factors play a key role in the regulation of gene expression in cardiac development, maintenance of an adult differentiated cardiac phenotype, and remodeling processes in cardiac hypertrophy and heart failure (HF). We tested the hypothesis that UcnII differentially regulates NFAT activity in cardiac myocytes from both normal and failing hearts through the PI3K/Akt/eNOS/NO pathway. Isoforms NFATc1 and NFATc3 revealed different basal subcellular distribution in normal and HF rabbit ventricular myocytes with a nuclear NFATc1 and a cytosolic localization of NFATc3. However, in HF, the nuclear localization of NFATc1 was less pronounced, whereas the nuclear occupancy of NFATc3 was increased. In normal myocytes, UcnII induced nuclear export of NFATc1 and attenuated NFAT-dependent transcriptional activity but did not affect the distribution of NFATc3. In HF UcnII facilitated nuclear export of both isoforms and reduced transcriptional activity. NFAT regulation was mediated by a PI3K/Akt/eNOS/NO signaling cascade that converged on the activation of several kinases, including glycogen synthase kinase-3β (GSK3β), c-Jun NH2-terminal kinase (JNK), p38 mitogen-activated kinase (p38), and PKG, resulting in phosphorylation, deactivation, and nuclear export of NFAT. In conclusion, while NFATc1 and NFATc3 reveal distinct subcellular distribution patterns, both are regulated by the UcnII-PI3K/Akt/eNOS/NO pathway that converges on the activation of NFAT kinases and NFAT inactivation. The data reconcile cardioprotective and prohypertrophic UcnII effects mediated by different NFAT isoforms.
Collapse
Affiliation(s)
- Stefanie Walther
- Department of Molecular Biophysics and Physiology, Rush University Medical Center, Chicago, Illinois
| | | | | | | |
Collapse
|
7
|
Zhao SH, Gao HQ, Ji X, Wang Y, Liu XJ, You BA, Cui XP, Qiu J. Effect of ouabain on myocardial ultrastructure and cytoskeleton during the development of ventricular hypertrophy. Heart Vessels 2012; 28:101-13. [PMID: 22241736 DOI: 10.1007/s00380-011-0219-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2011] [Accepted: 12/08/2011] [Indexed: 02/03/2023]
Abstract
The aim of this work is to study cytoskeletal impairment during the development of ouabain-induced ventricular hypertrophy. Male Sprague-Dawley rats were treated with either ouabain or saline. Systolic blood pressure (SBP) was recorded weekly. At the end of the 3rd and 6th week, the rats were killed and cardiac mass index were measured. Hematoxylin-eosin and Sirius red staining were carried out and cardiac ultrastructure were studied using transmission electron microscopy. The mRNA level of Profilin-1, Desmin, PCNA, TGF-β(1) and ET-1 in the left ventricle were measured using real-time quantitative PCR while their protein levels were examined by Western blot or immunohistochemistry. After 3 weeks, there was no significant difference in the mean SBP, cardiac mass index, mRNA and protein expression of PCNA, TGF-β(1) and ET-1 between the two groups. However, ouabain-treated rats showed disorganized cardiac cytoskeleton with abnormal expression of Profilin-1 and Desmin. After 6 weeks, the cardiac mass index remained the same in the two groups while PCNA, TGF-β(1), and ET-1 have been upregulated in ouabain-treated rats. The cardiac cytoskeletal impairment was more severe in ouabain-treated rats with further changes of Profilin-1 and Desmin. Cytoskeletal abnormality is an ultra-early change during ouabain-induced ventricular hypertrophy, before the release of hypertrophic factors. Therapy for prevention of ouabain-induced hypertrophy should start at the early stage by preventing the cytoskeleton from disorganization.
Collapse
Affiliation(s)
- Shao-hua Zhao
- Department of Geriatric Cardiology, Qilu Hospital of Shandong University, 107 Wenhua Xi Road, Jinan, People's Republic of China
| | | | | | | | | | | | | | | |
Collapse
|
8
|
Sgk1 sensitivity of Na(+)/H(+) exchanger activity and cardiac remodeling following pressure overload. Basic Res Cardiol 2012; 107:236. [PMID: 22212557 DOI: 10.1007/s00395-011-0236-2] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/19/2011] [Revised: 11/15/2011] [Accepted: 12/04/2011] [Indexed: 01/08/2023]
Abstract
Sustained increase of cardiac workload is known to trigger cardiac remodeling with eventual development of cardiac failure. Compelling evidence points to a critical role of enhanced cardiac Na(+)/H(+) exchanger (NHE1) activity in the underlying pathophysiology. The signaling triggering up-regulation of NHE1 remained, however, ill defined. The present study explored the involvement of the serum- and glucocorticoid-inducible kinase Sgk1 in cardiac remodeling due to transverse aortic constriction (TAC). To this end, experiments were performed in gene targeted mice lacking functional Sgk1 (sgk1 (-/-)) and their wild-type controls (sgk1 (+/+)). Transcript levels have been determined by RT-PCR, cytosolic pH (pH( i )) utilizing 2',7'-bis-(2-carboxyethyl)-5-(and-6)-carboxyfluorescein (BCECF) fluorescence, Na(+)/H(+) exchanger activity by the Na(+)-dependent realkalinization after an ammonium pulse, ejection fraction (%) utilizing cardiac cine magnetic resonance imaging and cardiac glucose uptake by PET imaging. As a result, TAC increased the mRNA expression of Sgk1 in sgk1 (+/+) mice, paralleled by an increase in Nhe1 transcript levels as well as Na(+)/H(+) exchanger activity, all effects virtually abrogated in sgk1 (-/-) mice. In sgk1 (+/+) mice, TAC induced a decrease in Pgc1a mRNA expression, while Spp1 mRNA expression was increased, both effects diminished in the sgk1 (-/-) mice. TAC was followed by a significant increase of heart and lung weight in sgk1 (+/+) mice, an effect significantly blunted in sgk1 (-/-) mice. TAC increased the transcript levels of Anp and Bnp, effects again significantly blunted in sgk1 (-/-) mice. TAC increased transcript levels of Collagen I and III as well as Ctgf mRNA and CTGF protein abundance, effects significantly blunted in sgk1 (-/-) mice. TAC further decreased the ejection fraction in sgk1 (+/+) mice, an effect again attenuated in sgk1 (-/-) mice. Also, cardiac FDG-glucose uptake was increased to a larger extent in sgk1 (+/+) mice than in sgk1 (-/-) mice after TAC. These observations point to an important role for SGK1 in cardiac remodeling and development of heart failure following an excessive work load.
Collapse
|
9
|
Kageyama K, Teui K, Tamasawa N, Suda T. Regulation and roles of urocortins in the vascular system. Int J Endocrinol 2012; 2012:873723. [PMID: 22654906 PMCID: PMC3359671 DOI: 10.1155/2012/873723] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/08/2012] [Revised: 03/06/2012] [Accepted: 03/06/2012] [Indexed: 12/04/2022] Open
Abstract
Urocortins (Ucns) are members of the corticotropin-releasing factor (CRF) family of peptides. Ucns would have potent effects on the cardiovascular system via the CRF receptor type 2 (CRF(2) receptor). Regulation and roles of each Ucn have been determined in the vascular system. Ucns have more potent vasodilatory effects than CRF. Human umbilical vein endothelial cells (HUVECs) express Ucns1-3 mRNAs, and the receptor, CRF(2a) receptor mRNA. Ucns1-3 mRNA levels are differentially regulated in HUVECs. Differential regulation of Ucns may suggest differential roles of those in HUVECs. Ucn1 and Ucn2 have strong effects on interleukin (IL)-6 gene expression and secretion in rat aortic smooth muscle A7r5 cells. The increase that we observed in IL-6 levels following Ucn treatment of A7r5 cells suggests that smooth muscle cells may be a source of IL-6 secretion under physiological stress conditions. Ucns are important and unique modulators of vascular smooth muscle cells and act directly or indirectly as autocrine and paracrine factors in the vascular system.
Collapse
Affiliation(s)
- Kazunori Kageyama
- Department of Endocrinology and Metabolism, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori 036-8562, Japan
- *Kazunori Kageyama:
| | - Ken Teui
- Department of Endocrinology and Metabolism, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori 036-8562, Japan
| | - Naoki Tamasawa
- Department of Endocrinology and Metabolism, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori 036-8562, Japan
| | - Toshihiro Suda
- Department of Endocrinology and Metabolism, Hirosaki University Graduate School of Medicine, 5 Zaifu-cho, Hirosaki, Aomori 036-8562, Japan
| |
Collapse
|