1
|
Saenz A, Piper RJ, Thompson D, Tahir MZ. Endoscopic third ventriculostomy for the management of children with cerebrospinal fluid disorders, ventriculomegaly, and associated Chiari I malformation. World Neurosurg X 2023; 19:100200. [PMID: 37181585 PMCID: PMC10172834 DOI: 10.1016/j.wnsx.2023.100200] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 04/19/2023] [Indexed: 05/16/2023] Open
Abstract
OBJECTIVES Our objective was to review the outcomes of children with CIM and associated cerebrospinal fluid (CSF) disorders and ventriculomegaly undergoing endoscopic third ventriculostomy (ETV) as a primary intervention. MATERIALS AND METHODS A retrospective, single-center, observational cohort study was conducted of consecutive children with CIM with associated CSF disorders and ventriculomegaly treated first by ETV between January 2014 and December 2020. RESULTS Raised intracranial pressure symptoms were the most frequent in ten patients, followed by posterior fossa and syrinx symptoms in three cases. One patient had a later stoma closure and required a shunt insertion. The success rate of the ETV in the cohort was 92% (11/12). There was no surgical mortality in our series. No other complications were reported. The median herniation of the tonsils was not statistically different in the pre vs. post-operative MRI (1.14 vs. 0.94, p=0.1). However, the median Evan's index (0.4 vs. 0.36, p<0.01) and the median diameter of the third ventricle (1.35 vs. 0.76, p<0.01) were statistically different between the two measurements. The preoperative length of the syrinx did not change significantly compared with the postoperative (5 vs. 1; p=0.052); nevertheless, the median transverse diameter of the syrinx did improve significantly after the surgery (0.75 vs. 0.32, p=0.03). CONCLUSIONS Our study supports ETV's safety and effectiveness for managing children with CSF disorders, ventriculomegaly, and associated CIM.
Collapse
Affiliation(s)
- Amparo Saenz
- Corresponding author. Dir.: Great Ormond Street, London, WC1N 3JH, UK.
| | | | | | | |
Collapse
|
2
|
Saletti V, Farinotti M, Peretta P, Massimi L, Ciaramitaro P, Motta S, Solari A, Valentini LG. The management of Chiari malformation type 1 and syringomyelia in children: a review of the literature. Neurol Sci 2021; 42:4965-4995. [PMID: 34591209 DOI: 10.1007/s10072-021-05565-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2021] [Accepted: 08/12/2021] [Indexed: 11/28/2022]
Abstract
In anticipation of the "Chiari and Syringomyelia Consensus Conference" held in Milan in 2019, we performed a systematic literature review on the management of Chiari malformation type 1 (CM1) and syringomyelia (Syr) in children.We aimed to summarize the available evidence and identify areas where consensus has not been reached and further research is needed.In accordance with PRISMA guidelines, we formulated seven questions in Patients-Interventions-Comparators-Outcomes (PICO) format. Six PICOs concerned CM1 children with/without additional structural anomalies (Syr, craniosynostosis, hydrocephalus, tethered cord, and cranio-vertebral junction anomalies), and one PICO Syr without CM1. We searched Medline, Embase, Cochrane, and NICE databases from January 1, 1999, to May 29, 2019. Cohort studies, controlled and randomized clinical trials (CCTs, RCTs), and systematic reviews were included, all pertinent only to patients ≤ 18 years of age.For CM1, 3787 records were found, 460 full texts were assessed and 49 studies (46 cohort studies, one RCT, and two systematic reviews) were finally included. For Syr, 376 records were found, 59 full texts were assessed, and five studies (one RCT and four cohort studies) were included. Data on each PICO were synthetized narratively due to heterogeneity in the inclusion criteria, outcome measures, and length of follow-up of the included studies.Despite decades of experience on CM1 and Syr management in children, the available evidence remains limited. Specifically, there is an urgent need for collaborative initiatives focusing on the adoption of shared inclusion criteria and outcome measures, as well as rigorous prospective designs, particularly RCTs.
Collapse
Affiliation(s)
- Veronica Saletti
- Developmental Neurology Unit, Mariani Foundation Center for Complex Disabilities, Fondazione IRCCS Istituto Neurologico Carlo Besta, Via Giovanni Celoria, 11, 20133, Milan, Italy.
| | - Mariangela Farinotti
- Unit of Neuroepidemiology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Paola Peretta
- Pediatric Neurosurgery Unit, Ospedale Infantile Regina Margherita, Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino, Turin, Italy
| | - Luca Massimi
- Pediatric Neurosurgery Unit, Fondazione Policlinico Universitario Agostino Gemelli IRCCS, Università Cattolica Sacro Cuore, Rome, Italy
| | - Palma Ciaramitaro
- Clinical Neurophysiology, Department of Neuroscience, Presidio CTO, Azienda Ospedaliero-Universitaria Città della Salute e della Scienza di Torino, Turin, Italy
| | - Saba Motta
- Scientific Library, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Alessandra Solari
- Unit of Neuroepidemiology, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Laura Grazia Valentini
- Department of Neurosurgery, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| |
Collapse
|
3
|
Piper RJ, Afshari FT, Soon WC, Kolias AG, Dyson EW, Watkins L, Laing R, Lo WB, Jayamohan J. UK Chiari 1 Study: protocol for a prospective, observational, multicentre study. BMJ Open 2021; 11:e043712. [PMID: 33846149 PMCID: PMC8048021 DOI: 10.1136/bmjopen-2020-043712] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/07/2022] Open
Abstract
INTRODUCTION Chiari 1 malformation (CM1) is a structural abnormality of the hindbrain characterised by the descent of the cerebellar tonsils through the foramen magnum. The management of patients with CM1 remains contentious since there are currently no UK or international guidelines for clinicians. We therefore propose a collaborative, prospective, multicentre study on the investigation, management and outcome of CM1 in the UK: the UK Chiari 1 Study (UKC1S). Our primary objective is to determine the health-related quality of life (HRQoL) in patients with a new diagnosis of CM1 managed either conservatively or surgically at 12 months of follow-up. We also aim to: (A) determine HRQoL 12 months following surgery; (B) measure complications 12 months following surgery; (C) determine the natural history of patients with CM1 treated conservatively without surgery; (D) determine the radiological correlates of presenting symptoms, signs and outcomes; and (E) determine the scope and variation within UK practice in referral patterns, patient pathways, investigations and surgical decisions. METHODS AND ANALYSIS The UKC1S will be a prospective, multicentre and observational study that will follow the British Neurosurgical Trainee Research Collaborative model of collaborative research. Patients will be recruited after attending their first neurosurgical outpatient clinic appointment. Follow-up data will be collected from all patients at 12 months from baseline regardless of whether they are treated surgically or not. A further 12-month postoperative follow-up timepoint will be added for patients treated with decompressive surgery. The study is expected to last three years. ETHICS AND DISSEMINATION The UKC1S received a favourable ethical opinion from the East Midlands Leicester South Research Ethics Committee (REC reference: 20/EM/0053; IRAS 269739) and the Health Research Authority. The results of the study will be published in peer-reviewed medical journals, presented at scientific conferences, shared with collaborating sites and shared with participant patients if they so wish.
Collapse
Affiliation(s)
- Rory J Piper
- Department of Neurosurgery, John Radcliffe Hospital, Oxford, UK
| | - Fardad T Afshari
- Department of Neurosurgery, Queen Elizabeth Hospital, Birmingham, UK
| | - Wai Cheong Soon
- Department of Neurosurgery, Queen Elizabeth Hospital, Birmingham, UK
| | - Angelos G Kolias
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
- Division of Neurosurgery, Addenbrooke's Hospital, Cambridge, UK
| | - Edward W Dyson
- Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, London, UK
| | - Laurence Watkins
- Department of Neurosurgery, National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, London, UK
| | - Rodney Laing
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
- Division of Neurosurgery, Addenbrooke's Hospital, Cambridge, UK
| | - William B Lo
- Department of Neurosurgery, Birmingham Children's Hospital NHS Foundation Trust, Birmingham, UK
| | | |
Collapse
|
4
|
Sadler B, Wilborn J, Antunes L, Kuensting T, Hale AT, Gannon SR, McCall K, Cruchaga C, Harms M, Voisin N, Reymond A, Cappuccio G, Brunetti-Pierri N, Tartaglia M, Niceta M, Leoni C, Zampino G, Ashley-Koch A, Urbizu A, Garrett ME, Soldano K, Macaya A, Conrad D, Strahle J, Dobbs MB, Turner TN, Shannon CN, Brockmeyer D, Limbrick DD, Gurnett CA, Haller G. Rare and de novo coding variants in chromodomain genes in Chiari I malformation. Am J Hum Genet 2021; 108:100-114. [PMID: 33352116 PMCID: PMC7820723 DOI: 10.1016/j.ajhg.2020.12.001] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Accepted: 11/24/2020] [Indexed: 12/16/2022] Open
Abstract
Chiari I malformation (CM1), the displacement of the cerebellum through the foramen magnum into the spinal canal, is one of the most common pediatric neurological conditions. Individuals with CM1 can present with neurological symptoms, including severe headaches and sensory or motor deficits, often as a consequence of brainstem compression or syringomyelia (SM). We conducted whole-exome sequencing (WES) on 668 CM1 probands and 232 family members and performed gene-burden and de novo enrichment analyses. A significant enrichment of rare and de novo non-synonymous variants in chromodomain (CHD) genes was observed among individuals with CM1 (combined p = 2.4 × 10-10), including 3 de novo loss-of-function variants in CHD8 (LOF enrichment p = 1.9 × 10-10) and a significant burden of rare transmitted variants in CHD3 (p = 1.8 × 10-6). Overall, individuals with CM1 were found to have significantly increased head circumference (p = 2.6 × 10-9), with many harboring CHD rare variants having macrocephaly. Finally, haploinsufficiency for chd8 in zebrafish led to macrocephaly and posterior hindbrain displacement reminiscent of CM1. These results implicate chromodomain genes and excessive brain growth in CM1 pathogenesis.
Collapse
Affiliation(s)
- Brooke Sadler
- Department of Pediatrics, Washington University, St. Louis, MO 63110, USA
| | - Jackson Wilborn
- Department of Neurosurgery, Washington University, St. Louis, MO 63110, USA
| | - Lilian Antunes
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO 63110, USA
| | - Timothy Kuensting
- Department of Neurosurgery, Washington University, St. Louis, MO 63110, USA
| | - Andrew T Hale
- Division of Genetic Medicine, Vanderbilt University Medical Center & Medical Scientist Training Program, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Stephen R Gannon
- Division of Pediatric Neurosurgery and Surgical Outcomes Center for Kids, Monroe Carell Jr. Children's Hospital of Vanderbilt University, Nashville, TN 37232, USA
| | - Kevin McCall
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO 63110, USA
| | - Carlos Cruchaga
- Department of Psychiatry, Washington University, St. Louis, MO 63110, USA
| | - Matthew Harms
- Department of Neurology, Columbia University, New York, NY 10027, USA
| | - Norine Voisin
- Center for Integrative Genomics (CIG), University of Lausanne, Lausanne 1015, Switzerland
| | - Alexandre Reymond
- Center for Integrative Genomics (CIG), University of Lausanne, Lausanne 1015, Switzerland
| | - Gerarda Cappuccio
- Department of Translational Medicine, Section of Pediatrics, Federico II University, Naples 80138, Italy; Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli 80078, Italy
| | - Nicola Brunetti-Pierri
- Department of Translational Medicine, Section of Pediatrics, Federico II University, Naples 80138, Italy; Telethon Institute of Genetics and Medicine (TIGEM), Pozzuoli 80078, Italy
| | - Marco Tartaglia
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome 00165, Italy
| | - Marcello Niceta
- Genetics and Rare Diseases Research Division, Ospedale Pediatrico Bambino Gesù, IRCCS, Rome 00165, Italy
| | - Chiara Leoni
- Center for Rare Diseases and Birth Defects, Department of Woman and Child Health and Public Health, Fondazione-Policlinico-Universitario-A. Gemelli-IRCCS, Rome 00168, Italy
| | - Giuseppe Zampino
- Center for Rare Diseases and Birth Defects, Department of Woman and Child Health and Public Health, Fondazione-Policlinico-Universitario-A. Gemelli-IRCCS, Rome 00168, Italy
| | - Allison Ashley-Koch
- Duke Molecular Physiology Institute, Department of Medicine, Duke University, Durham, NC 27708, USA
| | - Aintzane Urbizu
- Duke Molecular Physiology Institute, Department of Medicine, Duke University, Durham, NC 27708, USA
| | - Melanie E Garrett
- Duke Molecular Physiology Institute, Department of Medicine, Duke University, Durham, NC 27708, USA
| | - Karen Soldano
- Duke Molecular Physiology Institute, Department of Medicine, Duke University, Durham, NC 27708, USA
| | - Alfons Macaya
- Pediatric Neurology Research group, University Hospital Vall d'Hebron, Barcelona 08035, Spain
| | - Donald Conrad
- Oregon National Primate Research Center, Oregon Health and Science University, Beaverton, OR 97006, USA
| | - Jennifer Strahle
- Department of Neurosurgery, Washington University, St. Louis, MO 63110, USA
| | - Matthew B Dobbs
- Department of Orthopaedic Surgery, Washington University, St. Louis, MO 63110, USA; Shriners Hospital for Children, St. Louis, MO 63110, USA
| | - Tychele N Turner
- Department of Genetics, Washington University, St. Louis, MO 63110, USA
| | - Chevis N Shannon
- Division of Genetic Medicine, Vanderbilt University Medical Center & Medical Scientist Training Program, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | - Douglas Brockmeyer
- Department of Neurological Surgery, University of Utah, Primary Children's Hospital, Salt Lake City, UT 84113, USA
| | - David D Limbrick
- Department of Neurosurgery, Washington University, St. Louis, MO 63110, USA
| | - Christina A Gurnett
- Department of Pediatrics, Washington University, St. Louis, MO 63110, USA; Department of Orthopaedic Surgery, Washington University, St. Louis, MO 63110, USA; Department of Neurology, Washington University, St. Louis, MO 63110, USA
| | - Gabe Haller
- Department of Neurosurgery, Washington University, St. Louis, MO 63110, USA; Department of Neurology, Washington University, St. Louis, MO 63110, USA; Department of Genetics, Washington University, St. Louis, MO 63110, USA.
| |
Collapse
|
5
|
Provenzano A, La Barbera A, Scagnet M, Pagliazzi A, Traficante G, Pantaleo M, Tiberi L, Vergani D, Kurtas NE, Guarducci S, Bargiacchi S, Forzano G, Artuso R, Palazzo V, Kura A, Giordano F, di Feo D, Mortilla M, De Filippi C, Mattei G, Garavelli L, Giusti B, Genitori L, Zuffardi O, Giglio S. Chiari 1 malformation and exome sequencing in 51 trios: the emerging role of rare missense variants in chromatin-remodeling genes. Hum Genet 2020; 140:625-647. [PMID: 33337535 PMCID: PMC7981314 DOI: 10.1007/s00439-020-02231-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Accepted: 10/20/2020] [Indexed: 02/07/2023]
Abstract
Type 1 Chiari malformation (C1M) is characterized by cerebellar tonsillar herniation of 3–5 mm or more, the frequency of which is presumably much higher than one in 1000 births, as previously believed. Its etiology remains undefined, although a genetic basis is strongly supported by C1M presence in numerous genetic syndromes associated with different genes. Whole-exome sequencing (WES) in 51 between isolated and syndromic pediatric cases and their relatives was performed after confirmation of the defect by brain magnetic resonance image (MRI). Moreover, in all the cases showing an inherited candidate variant, brain MRI was performed in both parents and not only in the carrier one to investigate whether the defect segregated with the variant. More than half of the variants were Missense and belonged to the same chromatin-remodeling genes whose protein truncation variants are associated with severe neurodevelopmental syndromes. In the remaining cases, variants have been detected in genes with a role in cranial bone sutures, microcephaly, neural tube defects, and RASopathy. This study shows that the frequency of C1M is widely underestimated, in fact many of the variants, in particular those in the chromatin-remodeling genes, were inherited from a parent with C1M, either asymptomatic or with mild symptoms. In addition, C1M is a Mendelian trait, in most cases inherited as dominant. Finally, we demonstrate that modifications of the genes that regulate chromatin architecture can cause localized anatomical alterations, with symptoms of varying degrees.
Collapse
Affiliation(s)
- Aldesia Provenzano
- Medical Genetics Unit, Department of Clinical and Experimental Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy.
| | - Andrea La Barbera
- Medical Genetics Unit, Department of Clinical and Experimental Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Mirko Scagnet
- Department of Neurosurgery, "A. Meyer" Children Hospital of Florence, Florence, Italy
| | - Angelica Pagliazzi
- Medical Genetics Unit, Department of Clinical and Experimental Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Giovanna Traficante
- Medical Genetics Unit, "A. Meyer" Children Hospital of Florence, Florence, Italy
| | - Marilena Pantaleo
- Medical Genetics Unit, "A. Meyer" Children Hospital of Florence, Florence, Italy
| | - Lucia Tiberi
- Medical Genetics Unit, Department of Clinical and Experimental Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Debora Vergani
- Medical Genetics Unit, "A. Meyer" Children Hospital of Florence, Florence, Italy
| | - Nehir Edibe Kurtas
- Medical Genetics Unit, "A. Meyer" Children Hospital of Florence, Florence, Italy
| | - Silvia Guarducci
- Medical Genetics Unit, "A. Meyer" Children Hospital of Florence, Florence, Italy
| | - Sara Bargiacchi
- Medical Genetics Unit, "A. Meyer" Children Hospital of Florence, Florence, Italy
| | - Giulia Forzano
- Medical Genetics Unit, Department of Clinical and Experimental Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy
| | - Rosangela Artuso
- Medical Genetics Unit, "A. Meyer" Children Hospital of Florence, Florence, Italy
| | - Viviana Palazzo
- Medical Genetics Unit, "A. Meyer" Children Hospital of Florence, Florence, Italy
| | - Ada Kura
- Department of Experimental and Clinical Medicine, Atherothrombotic Diseases Center, University of Florence, Careggi Hospital, Florence, Italy
| | - Flavio Giordano
- Department of Neurosurgery, "A. Meyer" Children Hospital of Florence, Florence, Italy
| | - Daniele di Feo
- Department of Radiology, "A. Meyer" Children Hospital of Florence, Florence, Italy
| | - Marzia Mortilla
- Department of Radiology, "A. Meyer" Children Hospital of Florence, Florence, Italy
| | - Claudio De Filippi
- Department of Radiology, "A. Meyer" Children Hospital of Florence, Florence, Italy
| | - Gianluca Mattei
- Department of Information Engineering, University of Florence, Florence, Italy
| | - Livia Garavelli
- Medical Genetics Unit, Department of Mother and Child, Azienda Unità Sanitaria Locale-IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Betti Giusti
- Department of Experimental and Clinical Medicine, Atherothrombotic Diseases Center, University of Florence, Careggi Hospital, Florence, Italy
| | - Lorenzo Genitori
- Department of Neurosurgery, "A. Meyer" Children Hospital of Florence, Florence, Italy
| | - Orsetta Zuffardi
- Unit of Medical Genetics, Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Sabrina Giglio
- Medical Genetics Unit, Department of Clinical and Experimental Biomedical Sciences "Mario Serio", University of Florence, Florence, Italy.,Medical Genetics Unit, "A. Meyer" Children Hospital of Florence, Florence, Italy
| |
Collapse
|