1
|
Angelico G, Mazzucchelli M, Attanasio G, Tinnirello G, Farina J, Zanelli M, Palicelli A, Bisagni A, Barbagallo GMV, Certo F, Zizzo M, Koufopoulos N, Magro G, Caltabiano R, Broggi G. H3K27me3 Loss in Central Nervous System Tumors: Diagnostic, Prognostic, and Therapeutic Implications. Cancers (Basel) 2024; 16:3451. [PMID: 39456545 PMCID: PMC11506073 DOI: 10.3390/cancers16203451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 10/08/2024] [Accepted: 10/10/2024] [Indexed: 10/28/2024] Open
Abstract
Central nervous system (CNS) tumors represent a formidable clinical challenge due to their molecular complexity and varied prognostic outcomes. This review delves into the pivotal role of the epigenetic marker H3K27me3 in the development and treatment of CNS tumors. H3K27me3, specifically the trimethylation of lysine 27 on the histone H3 protein, plays a crucial role in regulating gene expression and maintaining chromatin architecture (e.g., in X-chromosome inactivation). Notably, a reduction in H3K27me3 levels, frequently tied to mutations in the H3 gene family such as H3F3A and HIST1H3B, is evident in diverse brain tumor variants, including the diffuse midline glioma characterized by the H3K27M mutation and certain pediatric high-grade gliomas. The loss of H3K27me3 has been linked to more aggressive behavior in meningiomas, with the trimethylation loss associated with significantly shorter recurrence-free survival (RFS) among grade 2 meningiomas, albeit not within grade 1 tumors. Pediatric posterior fossa ependymomas characterized by a lowered H3K27me3 and DNA hypomethylation exhibit poor prognosis, underscoring the prognostic significance of these epigenetic alterations in CNS tumors. Comprehending the role of H3K27me3 in CNS tumors is vital for advancing diagnostic tools and therapeutic interventions, with the goal of enhancing patient outcomes and quality of life. This review underscores the importance of ongoing investigations into H3K27me to refine and optimize management strategies for CNS tumors, paving the way for improved personalized medicine practices in oncology.
Collapse
Affiliation(s)
- Giuseppe Angelico
- Department of Medicine and Surgery, Kore University of Enna, 94100 Enna, Italy;
| | - Manuel Mazzucchelli
- Department of Medical and Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, Anatomic Pathology, University of Catania, 95123 Catania, Italy; (M.M.); (G.A.); (G.T.); (J.F.); (G.M.); (R.C.)
| | - Giulio Attanasio
- Department of Medical and Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, Anatomic Pathology, University of Catania, 95123 Catania, Italy; (M.M.); (G.A.); (G.T.); (J.F.); (G.M.); (R.C.)
| | - Giordana Tinnirello
- Department of Medical and Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, Anatomic Pathology, University of Catania, 95123 Catania, Italy; (M.M.); (G.A.); (G.T.); (J.F.); (G.M.); (R.C.)
| | - Jessica Farina
- Department of Medical and Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, Anatomic Pathology, University of Catania, 95123 Catania, Italy; (M.M.); (G.A.); (G.T.); (J.F.); (G.M.); (R.C.)
| | - Magda Zanelli
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (M.Z.); (A.P.); (A.B.)
| | - Andrea Palicelli
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (M.Z.); (A.P.); (A.B.)
| | - Alessandra Bisagni
- Pathology Unit, Azienda USL-IRCCS di Reggio Emilia, 42123 Reggio Emilia, Italy; (M.Z.); (A.P.); (A.B.)
| | | | - Francesco Certo
- Department of Neurological Surgery, Policlinico “G. Rodolico-S. Marco” University Hospital, 95121 Catania, Italy; (G.M.V.B.); (F.C.)
| | - Maurizio Zizzo
- Surgical Oncology Unit, Azienda USL-IRCCS di Reggio Emilia, 42122 Reggio Emilia, Italy;
| | - Nektarios Koufopoulos
- Second Department of Pathology, Medical School, National and Kapodistrian University of Athens, Attikon University Hospital, 15772 Athens, Greece;
| | - Gaetano Magro
- Department of Medical and Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, Anatomic Pathology, University of Catania, 95123 Catania, Italy; (M.M.); (G.A.); (G.T.); (J.F.); (G.M.); (R.C.)
| | - Rosario Caltabiano
- Department of Medical and Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, Anatomic Pathology, University of Catania, 95123 Catania, Italy; (M.M.); (G.A.); (G.T.); (J.F.); (G.M.); (R.C.)
| | - Giuseppe Broggi
- Department of Medical and Surgical Sciences and Advanced Technologies “G.F. Ingrassia”, Anatomic Pathology, University of Catania, 95123 Catania, Italy; (M.M.); (G.A.); (G.T.); (J.F.); (G.M.); (R.C.)
| |
Collapse
|
2
|
Arfuso M, Kuril S, Shah H, Hanson D. Pediatric Neuroglial Tumors: A Review of Ependymoma and Dysembryoplastic Neuroepithelial Tumor. Pediatr Neurol 2024; 156:139-146. [PMID: 38781722 DOI: 10.1016/j.pediatrneurol.2024.04.022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 03/22/2024] [Accepted: 04/24/2024] [Indexed: 05/25/2024]
Affiliation(s)
- Melissa Arfuso
- Joseph M. Sanzari Children's Hospital, Hackensack University Medical Center, Hackensack, New Jersey
| | | | - Harshal Shah
- Hackensack Meridian School of Medicine, Nutley, New Jersey
| | - Derek Hanson
- Joseph M. Sanzari Children's Hospital, Hackensack University Medical Center, Hackensack, New Jersey; Hackensack Meridian School of Medicine, Nutley, New Jersey.
| |
Collapse
|
3
|
Patel T, Singh G, Goswami P. Recent updates in pediatric diffuse glioma classification: insights and conclusions from the WHO 5 th edition. J Med Life 2024; 17:665-670. [PMID: 39440342 PMCID: PMC11493159 DOI: 10.25122/jml-2023-0515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Accepted: 05/10/2024] [Indexed: 10/25/2024] Open
Abstract
The World Health Organization (WHO) Central Nervous System (CNS) Tumors Classification 5th edition (2021) integrates both molecular and histopathological criteria for diagnosing glial tumors. This updated classification highlights significant differences between pediatric and adult gliomas in terms of molecular characteristics and prognostic implications. The 5th edition comprises a new category of pediatric-type diffuse low-grade glioma (PDLGG) and pediatric-type diffuse high-grade glioma (PDHGG), classified mainly based on genetic alterations and histopathological features. We reviewed the microscopy, diagnostic molecular pathology, and prognosis of various tumors under the categories PDLGG and PDHGG. The review also addresses the need for clarification concerning overlapping diagnostic features. PDLGG are characterized by diffuse growth, low-grade morphology, and MYB/MYBL1(MYB Proto-Oncogene Like 1) gene fusion or mitogen-activated protein kinase (MAPK) pathway alterations. In contrast, PDHGG is described by diffuse growth, high-grade morphology, and increased mitosis and often shows alterations of histone gene resulting in epigenetic alterations, which contrasts with common isocitrate dehydrogenase (IDH) mutation and epidermal growth factor receptor (EGFR) amplification seen in adult-type high-grade glioma.
Collapse
Affiliation(s)
- Tarang Patel
- Department of Pathology, All India Institute of Medical Sciences, Rajkot, Gujarat, India
| | - Gyanendra Singh
- Department of Pathology, All India Institute of Medical Sciences, Rajkot, Gujarat, India
| | - Parth Goswami
- Department of Pathology, All India Institute of Medical Sciences, Rajkot, Gujarat, India
| |
Collapse
|
4
|
Jünger ST, Zschernack V, Messing-Jünger M, Timmermann B, Pietsch T. Ependymoma from Benign to Highly Aggressive Diseases: A Review. Adv Tech Stand Neurosurg 2024; 50:31-62. [PMID: 38592527 DOI: 10.1007/978-3-031-53578-9_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/10/2024]
Abstract
Ependymomas comprise biologically distinct tumor types with respect to age distribution, (epi)genetics, localization, and prognosis. Multimodal risk-stratification, including histopathological and molecular features, is essential in these biologically defined tumor types. Gross total resection (GTR), achieved with intraoperative monitoring and neuronavigation, and if necessary, second-look surgery, is the most effective treatment. Adjuvant radiation therapy is mandatory in high-risk tumors and in case of residual tumor. There is yet growing evidence that some ependymal tumors may be cured by surgery alone. To date, the role of chemotherapy is unclear and subject of current studies.Even though standard therapy can achieve reasonable survival rates for the majority of ependymoma patients, long-term follow-up still reveals a high probability of relapse in certain biological entities.With increasing knowledge of biologically distinct tumor types, risk-adapted adjuvant therapy gains importance. Beyond initial tumor control, and avoidance of therapy-induced morbidity for low-risk patients, intensified treatment for high-risk patients comprises another challenge. With identification of specific risk features regarding molecular alterations, targeted therapy may represent an option for individualized treatment modalities in the future.
Collapse
Affiliation(s)
- Stephanie T Jünger
- Department of Neuropathology, DGNN Brain Tumor Reference Center, University of Bonn Medical Center, Bonn, Germany.
- Center for Neurosurgery, Department of General Neurosurgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.
| | - Valentina Zschernack
- Department of Neuropathology, DGNN Brain Tumor Reference Center, University of Bonn Medical Center, Bonn, Germany
| | | | - Beate Timmermann
- Department of Particle Therapy, University Hospital Essen, West German Proton Therapy Center Essen (WPE), West German Cancer Center (WTZ), Germany, German Cancer Consortium, Essen, Germany
| | - Torsten Pietsch
- Department of Neuropathology, DGNN Brain Tumor Reference Center, University of Bonn Medical Center, Bonn, Germany
| |
Collapse
|
5
|
Hashimoto N, Suzuki T, Ishizawa K, Nobusawa S, Yokoo H, Nishikawa R, Yasuda M, Sasaki A. A clinicopathological analysis of supratentorial ependymoma, ZFTA fusion-positive: utility of immunohistochemical detection of CDKN2A alterations and characteristics of the immune microenvironment. Brain Tumor Pathol 2023:10.1007/s10014-023-00464-7. [PMID: 37322295 DOI: 10.1007/s10014-023-00464-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 05/23/2023] [Indexed: 06/17/2023]
Abstract
EPN-ZFTA is a rare brain tumor where prognostic factors remain unclear and no effective immunotherapy or chemotherapy is currently available. Therefore, this study investigated its clinicopathological features, evaluated the utility of MTAP and p16 IHC as surrogate markers of CDKN2A alterations, and characterized the immune microenvironment of EPN-ZFTA. Thirty surgically removed brain tumors, including 10 EPN-ZFTA, were subjected to IHC. MLPA was performed for CDKN2A HD in 20 ependymal tumors, including EPN-ZFTA. The 5-years OS and PFS of EPN-ZFTA were 90% and 60%, respectively. CDKN2A HD was detected in two cases of EPN-ZFTA; these cases were immunohistochemically negative for both MTAP and p16 and recurred earlier after surgery. As for the immune microenvironment of EPN-ZFTA, B7-H3, but not PD-L1, was positive in all cases of EPN-ZFTA; Iba-1-positive or CD204-positive macrophages were large, while infiltrating lymphocytes were small, in number in EPN-ZFTA. Collectively, these results indicate the potential of MTAP and p16 IHC as useful surrogate markers of CDKN2A HD in EPN-ZFTA, and tumor-associated macrophages, including the M2 type, may contribute to its immune microenvironment. Furthermore, the expression of B7-H3 in EPN-ZFTA may indicate the usefulness of B7-H3 as a target of immune checkpoint chemotherapy for EPN-ZFTA via B7-H3 pathway.
Collapse
Affiliation(s)
- Naohito Hashimoto
- Department of Pathology, Saitama Medical University Hospital, 38 Morohongou, Moroyama, Saitama, 350-0495, Japan
| | - Tomonari Suzuki
- Department of Neuro-Oncology/Neurosurgery, Saitama Medical University International Medical Center, Hidaka, Saitama, Japan
| | - Keisuke Ishizawa
- Department of Pathology, Saitama Medical University Hospital, 38 Morohongou, Moroyama, Saitama, 350-0495, Japan
| | - Sumihito Nobusawa
- Department of Human Pathology, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Hideaki Yokoo
- Department of Human Pathology, Gunma University Graduate School of Medicine, Maebashi, Gunma, Japan
| | - Ryo Nishikawa
- Department of Neuro-Oncology/Neurosurgery, Saitama Medical University International Medical Center, Hidaka, Saitama, Japan
| | - Masanori Yasuda
- Department of Pathology, Saitama Medical University International Medical Center, Hidaka, Saitama, Japan
| | - Atsushi Sasaki
- Department of Pathology, Saitama Medical University Hospital, 38 Morohongou, Moroyama, Saitama, 350-0495, Japan.
| |
Collapse
|
6
|
Paulson VA, Liu YJ, Fang H, Browd SR, Hauptman JS, Wright J, Lockwood CM, Leary SES, Cole BL. Infantile ZFTA Fusion-Positive Tumor of the Posterior Fossa: Molecular Tumor Board. JCO Precis Oncol 2023; 7:e2200226. [PMID: 36862968 DOI: 10.1200/po.22.00226] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/04/2023] Open
Affiliation(s)
- Vera A Paulson
- Department of Laboratory Medicine and Pathology, Genetics and Solid Tumor Laboratory, University of Washington, Seattle, WA.,Brotman Baty Institute for Precision Medicine, Seattle, WA
| | - Yajuan J Liu
- Department of Laboratory Medicine and Pathology, Clinical Genomics Laboratory, University of Washington School of Medicine, Seattle, WA.,Brotman Baty Institute for Precision Medicine, Seattle, WA
| | - He Fang
- Department of Laboratory Medicine and Pathology, Clinical Genomics Laboratory, University of Washington School of Medicine, Seattle, WA
| | - Sam R Browd
- Division of Neurosurgery, Department of Neurological Surgery, University of Washington, Seattle Children's Hospital, Seattle, WA
| | - Jason S Hauptman
- Division of Neurosurgery, Department of Neurological Surgery, University of Washington, Seattle Children's Hospital, Seattle, WA
| | - Jason Wright
- Radiology, Seattle Children's Hospital, University of Washington; Seattle, WA
| | - Christina M Lockwood
- Department of Laboratory Medicine and Pathology, Genetics and Solid Tumor Laboratory, University of Washington, Seattle, WA.,Brotman Baty Institute for Precision Medicine, Seattle, WA
| | - Sarah E S Leary
- Cancer and Blood Disorders Center, Seattle Children's Hospital; Department of Pediatrics, University of Washington; Center for Clinical and Translational Research, Seattle Children's Research Institute, Seattle, WA.,Fred Hutchinson Cancer Research Center, Seattle, WA.,Brotman Baty Institute for Precision Medicine, Seattle, WA
| | - Bonnie L Cole
- Department of Laboratory Medicine and Pathology, Clinical Genomics Laboratory, University of Washington School of Medicine, Seattle, WA.,Department of Laboratories, Seattle Children's Hospital, University of Washington; Seattle, WA.,Brotman Baty Institute for Precision Medicine, Seattle, WA
| |
Collapse
|
7
|
Gianno F, Giovannoni I, Cafferata B, Diomedi-Camassei F, Minasi S, Barresi S, Buttarelli FR, Alesi V, Cardoni A, Antonelli M, Puggioni C, Colafati GS, Carai A, Vinci M, Mastronuzzi A, Miele E, Alaggio R, Giangaspero F, Rossi S. Paediatric-type diffuse high-grade gliomas in the 5th CNS WHO Classification. Pathologica 2022; 114:422-435. [PMID: 36534421 PMCID: PMC9763979 DOI: 10.32074/1591-951x-830] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 11/12/2022] [Indexed: 12/23/2022] Open
Abstract
As a relevant element of novelty, the fifth CNS WHO Classification highlights the distinctive pathobiology underlying gliomas arising primarily in children by recognizing for the first time the families of paediatric-type diffuse gliomas, both high-grade and low-grade. This review will focus on the family of paediatric-type diffuse high-grade gliomas, which includes four tumour types: 1) Diffuse midline glioma H3 K27-altered; 2) Diffuse hemispheric glioma H3 G34-mutant; 3) Diffuse paediatric-type high-grade glioma H3-wildtype and IDH-wildtype; and 4) Infant-type hemispheric glioma. The essential and desirable diagnostic criteria as well as the entities entering in the differential will be discussed for each tumour type. A special focus will be given on the issues encountered in the daily practice, especially regarding the diagnosis of the diffuse paediatric-type high-grade glioma H3-wildtype and IDH-wildtype. The advantages and the limits of the multiple molecular tests which may be utilised to define the entities of this tumour family will be evaluated in each diagnostic context.
Collapse
Affiliation(s)
- Francesca Gianno
- Department of Radiological, Oncological and Anatomic Pathology, Sapienza University, Rome, Italy
| | - Isabella Giovannoni
- Pathology Unit, Department of Laboratories, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | | | | | - Simone Minasi
- Department of Radiological, Oncological and Anatomic Pathology, Sapienza University, Rome, Italy
| | - Sabina Barresi
- Pathology Unit, Department of Laboratories, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | | | - Viola Alesi
- Laboratory of Medical Genetics, Translational Cytogenomics Research Unit, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy
| | - Antonello Cardoni
- Pathology Unit, Department of Laboratories, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Manila Antonelli
- Department of Radiological, Oncological and Anatomic Pathology, Sapienza University, Rome, Italy
| | - Chiara Puggioni
- Pathology Unit, Department of Laboratories, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | | | - Andrea Carai
- Department of Neuroscience and Neurorehabilitation, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Maria Vinci
- Department of Oncology/Hematology, Gene and Cell Therapy and Hemopoietic Transplant, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Angela Mastronuzzi
- Department of Oncology/Hematology, Gene and Cell Therapy and Hemopoietic Transplant, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Evelina Miele
- Department of Oncology/Hematology, Gene and Cell Therapy and Hemopoietic Transplant, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Rita Alaggio
- Pathology Unit, Department of Laboratories, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Felice Giangaspero
- Department of Radiological, Oncological and Anatomic Pathology, Sapienza University, Rome, Italy
- IRCCS Neuromed, Pozzilli, Isernia, Italy
| | - Sabrina Rossi
- Pathology Unit, Department of Laboratories, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| |
Collapse
|
8
|
Lindsay HB, Massimino M, Avula S, Stivaros S, Grundy R, Metrock K, Bhatia A, Fernández-Teijeiro A, Chiapparini L, Bennett J, Wright K, Hoffman LM, Smith A, Pajtler KW, Poussaint TY, Warren KE, Foreman NK, Mirsky DM. Response assessment in paediatric intracranial ependymoma: recommendations from the Response Assessment in Pediatric Neuro-Oncology (RAPNO) working group. Lancet Oncol 2022; 23:e393-e401. [DOI: 10.1016/s1470-2045(22)00222-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2022] [Revised: 03/31/2022] [Accepted: 04/05/2022] [Indexed: 10/16/2022]
|
9
|
Molecular Markers of Pediatric Solid Tumors—Diagnosis, Optimizing Treatments, and Determining Susceptibility: Current State and Future Directions. Cells 2022; 11:cells11071238. [PMID: 35406801 PMCID: PMC8997439 DOI: 10.3390/cells11071238] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2022] [Revised: 03/26/2022] [Accepted: 03/29/2022] [Indexed: 02/04/2023] Open
Abstract
Advances in molecular technologies, from genomics and transcriptomics to epigenetics, are providing unprecedented insight into the molecular landscape of pediatric tumors. Multi-omics approaches provide an opportunity to identify a wide spectrum of molecular alterations that account for the initiation of the neoplastic process in children, response to treatment and disease progression. The detection of molecular markers is crucial to assist clinicians in accurate tumor diagnosis, risk stratification, disease subtyping, prediction of treatment response, and surveillance, allowing also for personalized cancer management. This review summarizes the most recent developments in genomics research and their relevance to the field of pediatric oncology with the aim of generating an overview of the most important, from the clinical perspective, molecular markers for pediatric solid tumors. We present an overview of the molecular markers selected based on therapeutic protocols, guidelines from international committees and scientific societies, and published data.
Collapse
|
10
|
Lutz K, Jünger ST, Messing-Jünger M. Essential Management of Pediatric Brain Tumors. CHILDREN 2022; 9:children9040498. [PMID: 35455542 PMCID: PMC9031600 DOI: 10.3390/children9040498] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/15/2022] [Revised: 03/25/2022] [Accepted: 03/25/2022] [Indexed: 02/02/2023]
Abstract
Brain tumors are the most common solid tumors in children and are associated with high mortality. The most common childhood brain tumors are grouped as low-grade gliomas (LGG), high grade gliomas (HGG), ependymomas, and embryonal tumors, according to the World Health Organization (WHO). Advances in molecular genetics have led to a shift from pure histopathological diagnosis to integrated diagnosis. For the first time, these new criteria were included in the WHO classification published in 2016 and has been further updated in the 2021 edition. Integrated diagnosis is based on molecular genomic similarities of the tumor subclasses, and it can better explain the differences in clinical courses of previously histopathologically identical entities. Important advances have also been made in pediatric neuro-oncology. A growing understanding of the molecular-genetic background of tumorigenesis has improved the diagnostic accuracy. Re-stratification of treatment protocols and the development of targeted therapies will significantly affect overall survival and quality of life. For some pediatric tumors, these advances have significantly improved therapeutic management and prognosis in certain tumor subgroups. Some therapeutic approaches also have serious long-term consequences. Therefore, optimized treatments are greatly needed. Here, we discuss the importance of multidisciplinary collaboration and the role of (pediatric) neurosurgery by briefly describing the most common childhood brain tumors and their currently recognized molecular subgroups.
Collapse
Affiliation(s)
- Katharina Lutz
- Neurosurgery Department, Inselspital, 3010 Bern, Switzerland
- Pediatric Neurosurgery, Asklepios Children’s Hospital, 53757 Sankt Augustin, Germany;
- Correspondence:
| | - Stephanie T. Jünger
- Center for Neurosurgery, Department of General Neurosurgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, 50937 Cologne, Germany;
| | | |
Collapse
|
11
|
Hart M, Anderson-Mellies A, Beltrami A, Gilani A, Green AL. Population-based analysis of CNS tumor diagnoses, treatment, and survival in congenital and infant age groups. J Neurooncol 2022; 157:333-344. [PMID: 35175546 DOI: 10.1007/s11060-022-03967-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2021] [Accepted: 02/03/2022] [Indexed: 11/29/2022]
Abstract
BACKGROUND Congenital (< 3 months) and infant (3 to 11 months) brain tumors are biologically different from tumors in older children, but their epidemiology has not been studied comprehensively. Insight into epidemiological differences could help tailor treatment recommendations by age and increase overall survival (OS). METHODS Population-based data from SEER were obtained for 14,493 0-19-year-olds diagnosed with CNS tumors 1990-2015. Congenital and infant age groups were compared to patients aged 1-19 years based on incidence, treatment, and survival using Chi-square and Kaplan-Meier analyses. Hazard ratios were estimated from univariate and multivariable Cox proportional hazards survival analyses. RESULTS Between the < 3-month, 3-5-month, 6-11 month, and 1-19-year age groups, tumor type distribution differed significantly (p < 0.001). 5-year OS for all tumors was 36.7% (< 3 months), 56.0% (< 3-5 months), 63.8% (6-11 months), and 74.7% (1-19 years) (p < 0.001). Comparing between age groups by tumor type, OS was worst for < 3-month-olds with low-grade glioma, medulloblastoma, and other embryonal tumors; OS was worst for 3-5-month-olds with ependymoma, < 1-year-olds collectively with atypical teratoid-rhabdoid tumor, and 1-19-year-olds with high-grade glioma (HGG) (log rank p < 0.02 for all tumor types). Under 3-month-olds were least likely to receive any treatment for each tumor type and least likely to undergo surgery for all except HGG. Under 1-year-olds were far less likely than 1-19-year-olds to undergo both radiation and chemotherapy for embryonal tumors. CONCLUSIONS Subtype distribution, treatment patterns, and prognosis of congenital/infant CNS tumors differ from those in older children. Better, more standardized treatment guidelines may improve poorer outcomes seen in these youngest patients.
Collapse
Affiliation(s)
- Muriel Hart
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, Aurora, CO, USA.,Biomedical Sciences Program, University of Denver, Denver, CO, USA
| | | | - Alina Beltrami
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, Aurora, CO, USA.,Biomedical Sciences Program, University of Denver, Denver, CO, USA
| | - Ahmed Gilani
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, Aurora, CO, USA.,Department of Pathology, University of Colorado School of Medicine and Children's Hospital Colorado, Aurora, CO, USA
| | - Adam L Green
- Morgan Adams Foundation Pediatric Brain Tumor Research Program, Aurora, CO, USA. .,University of Colorado Cancer Center, Aurora, CO, USA. .,Department of Pediatrics, University of Colorado School of Medicine and Children's Hospital Colorado, University of Colorado Anschutz Medical Campus, 12800 E. 19th Ave., Mail Stop 8302, Aurora, CO, 80045, USA.
| |
Collapse
|
12
|
Peters S, Merta J, Schmidt L, Jazmati D, Kramer PH, Blase C, Tippelt S, Fleischhack G, Stock A, Bison B, Rutkowski S, Pietsch T, Kortmann RD, Timmermann B. Evaluation of dose, volume and outcome in children with localized, intracranial ependymoma treated with proton therapy within the prospective KiProReg Study. Neuro Oncol 2021; 24:1193-1202. [PMID: 34964901 PMCID: PMC9248402 DOI: 10.1093/neuonc/noab301] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
Abstract
Background Radiotherapy (RT) of ependymoma in children is an important part of the
interdisciplinary treatment concept. However, feasibility and dose concepts are still
under investigation, particularly in very young children. The aim of this study was to
evaluate the standard dose and volume of proton therapy (PT) in children with
ependymoma. Methods In this analysis, 105 patients with localized, intracranial ependymoma under the age of
18 years treated with PT between 2013 and 2018 were included. Patient characteristics,
treatment, outcome, and follow-up data were analyzed using descriptive statistics,
Kaplan-Meier, and Cox regression analysis. Results The median age of patients at PT was 2.8 years (0.9-17.0 years). The molecular subgroup
analysis was performed in a subset of 50 patients (37 EP-PFA, 2 EP-PFB, 7 EP-RELA, 2
EP-YAP, 2 NEC [not elsewhere classified]). The median total dose was 59.4 Gy (54.0-62.0
Gy). The median follow-up time was 1.9 years. The estimated 3-year overall survival
(OS), local control (LC), and progression-free survival (PFS) rates were 93.7%, 74.1%,
and 55.6%, respectively. Within univariable analysis, female gender and lower dose had a
positive impact on OS, whereas age ≥4 years had a negative impact on OS and PT given
after progression had a negative impact on PFS. In the multivariable analysis, multiple
tumor surgeries were associated with lower PFS. New ≥3° late toxicities occurred in 11
patients. Conclusion For children with localized ependymoma, PT was effective and well tolerable. Multiple
surgeries showed a negative impact on PFS.
Collapse
Affiliation(s)
- S Peters
- West German Proton Therapy Center Essen (WPE), University Hospital Essen, Essen, Germany.,Clinic for Particle Therapy, University Hospital Essen, Essen, Germany
| | - J Merta
- West German Proton Therapy Center Essen (WPE), University Hospital Essen, Essen, Germany
| | - L Schmidt
- Clinic for Particle Therapy, University Hospital Essen, Essen, Germany
| | - D Jazmati
- West German Proton Therapy Center Essen (WPE), University Hospital Essen, Essen, Germany.,Clinic for Particle Therapy, University Hospital Essen, Essen, Germany
| | - P H Kramer
- Clinic for Particle Therapy, University Hospital Essen, Essen, Germany
| | - C Blase
- AnästhesieNetz Rhein-Ruhr, Westenfelder, Bochum, Germany
| | - S Tippelt
- Pediatrics III, University Hospital Essen, Essen, Germany
| | - G Fleischhack
- Pediatrics III, University Hospital Essen, Essen, Germany
| | - A Stock
- Department of Neuroradiology, University Hospital Wuerzburg, Wuerzburg, Germany
| | - B Bison
- Department of Diagnostic and Interventional Neuroradiology, University Hospital Augsburg, Augsburg, Germany
| | - S Rutkowski
- Department of Pediatric Hematology and Oncology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - T Pietsch
- Institute of Neuropathology, DGNN Brain Tumor Reference Center, University of Bonn Medical Center, Bonn, Germany
| | - R D Kortmann
- Department of Radiotherapy and Radio-oncology, University Hospital Leipzig, Leipzig, Germany
| | - B Timmermann
- West German Proton Therapy Center Essen (WPE), University Hospital Essen, Essen, Germany.,Clinic for Particle Therapy, University Hospital Essen, Essen, Germany.,West German Cancer Center (WTZ). University Hospital Essen, Essen, Germany.,German Cancer Consortium (DKTK), Germany
| |
Collapse
|
13
|
An Insight into Pathophysiological Features and Therapeutic Advances on Ependymoma. Cancers (Basel) 2021; 13:cancers13133221. [PMID: 34203272 PMCID: PMC8269186 DOI: 10.3390/cancers13133221] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/21/2021] [Accepted: 06/23/2021] [Indexed: 12/21/2022] Open
Abstract
Simple Summary Although biological information and the molecular classification of ependymoma have been studied, the treatment systems for ependymoma are still insufficient. In addition, because the disease occurs infrequently, it is difficult to obtain sufficient data to conduct large-scale or randomized clinical trials. Therefore, this study is intended to emphasize the importance of understanding its pathological characteristics and prognosis as well as developing treatments for ependymoma through multilateral studies. Abstract Glial cells comprise the non-sensory parts of the central nervous system as well as the peripheral nervous system. Glial cells, also known as neuroglia, constitute a significant portion of the mammalian nervous system and can be viewed simply as a matrix of neural cells. Despite being the “Nervenkitt” or “glue of the nerves”, they aptly serve multiple roles, including neuron repair, myelin sheath formation, and cerebrospinal fluid circulation. Ependymal cells are one of four kinds of glial cells that exert distinct functions. Tumorigenesis of a glial cell is termed a glioma, and in the case of an ependymal cell, it is called an ependymoma. Among the various gliomas, an ependymoma in children is one of the more challenging brain tumors to cure. Children are afflicted more severely by ependymal tumors than adults. It has appeared from several surveys that ependymoma comprises approximately six to ten percent of all tumors in children. Presently, the surgical removal of the tumor is considered a standard treatment for ependymomas. It has been conspicuously evident that a combination of irradiation therapy and surgery is much more efficacious in treating ependymomas. The main purpose of this review is to present the importance of both a deep understanding and ongoing research into histopathological features and prognoses of ependymomas to ensure that effective diagnostic methods and treatments can be developed.
Collapse
|
14
|
Simone V, Rizzo D, Cocciolo A, Caroleo AM, Carai A, Mastronuzzi A, Tornesello A. Infantile Brain Tumors: A Review of Literature and Future Perspectives. Diagnostics (Basel) 2021; 11:diagnostics11040670. [PMID: 33917833 PMCID: PMC8068230 DOI: 10.3390/diagnostics11040670] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/01/2021] [Accepted: 04/05/2021] [Indexed: 01/08/2023] Open
Abstract
Brain tumors in infants including those diagnosed in fetal age, newborns and under a year old represent less than 10% of pediatric nervous system tumors and present differently when compared with older children in terms of clinical traits, location and histology. The most frequent clinical finding is a macrocephaly but non-specific symptoms can also be associated. The prognosis is usually poor and depends on several factors. Surgery continues to be the main option in terms of therapeutic strategies whereas the role of chemotherapy is not yet well defined and radiotherapy is exceptionally undertaken. In view of this situation, a molecular characterization could assist in providing therapeutic options for these tumors. This review highlights the recent advances in the diagnosis and treatment of brain tumors in infants with a particular focus on the molecular landscape and future clinical applications.
Collapse
Affiliation(s)
- Valeria Simone
- Pediatric Oncology Unit, Ospedale Vito Fazzi, Piazza Filippo Muratore, 1, 73100 Lecce, Italy; (D.R.); (A.C.)
- Correspondence: (V.S.); (A.T.)
| | - Daniela Rizzo
- Pediatric Oncology Unit, Ospedale Vito Fazzi, Piazza Filippo Muratore, 1, 73100 Lecce, Italy; (D.R.); (A.C.)
| | - Alessandro Cocciolo
- Pediatric Oncology Unit, Ospedale Vito Fazzi, Piazza Filippo Muratore, 1, 73100 Lecce, Italy; (D.R.); (A.C.)
| | - Anna Maria Caroleo
- Department of Onco-Hematology and Cell and Gene Therapy, Bambino Gesù Children’s Hospital (IRCCS), Piazza Sant’Onofrio 4, 00146 Rome, Italy; (A.M.C.); (A.M.)
| | - Andrea Carai
- Neurosurgery Unit, Department of Neurological and Psychiatric Sciences, Bambino Gesù Children’s Hospital (IRCCS), Piazza Sant’Onofrio 4, 00146 Rome, Italy;
| | - Angela Mastronuzzi
- Department of Onco-Hematology and Cell and Gene Therapy, Bambino Gesù Children’s Hospital (IRCCS), Piazza Sant’Onofrio 4, 00146 Rome, Italy; (A.M.C.); (A.M.)
| | - Assunta Tornesello
- Pediatric Oncology Unit, Ospedale Vito Fazzi, Piazza Filippo Muratore, 1, 73100 Lecce, Italy; (D.R.); (A.C.)
- Correspondence: (V.S.); (A.T.)
| |
Collapse
|
15
|
Seavey CN, Pobbati AV, Hallett A, Ma S, Reynolds JP, Kanai R, Lamar JM, Rubin BP. WWTR1(TAZ)- CAMTA1 gene fusion is sufficient to dysregulate YAP/TAZ signaling and drive epithelioid hemangioendothelioma tumorigenesis. Genes Dev 2021; 35:512-527. [PMID: 33766982 PMCID: PMC8015722 DOI: 10.1101/gad.348220.120] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Accepted: 02/26/2021] [Indexed: 12/11/2022]
Abstract
Epithelioid hemangioendothelioma (EHE) is a genetically homogenous vascular sarcoma that is a paradigm for TAZ dysregulation in cancer. EHE harbors a WWTR1(TAZ)-CAMTA1 gene fusion in >90% of cases, 45% of which have no other genetic alterations. In this study, we used a first of its kind approach to target the Wwtr1-Camta1 gene fusion to the Wwtr1 locus, to develop a conditional EHE mouse model whereby Wwtr1-Camta1 is controlled by the endogenous transcriptional regulators upon Cre activation. These mice develop EHE tumors that are indistinguishable from human EHE clinically, histologically, immunohistochemically, and genetically. Overall, these results demonstrate unequivocally that TAZ-CAMTA1 is sufficient to drive EHE formation with exquisite specificity, as no other tumor types were observed. Furthermore, we fully credential this unique EHE mouse model as a valid preclinical model for understanding the role of TAZ dysregulation in cancer formation and for testing therapies directed at TAZ-CAMTA1, TAZ, and YAP/TAZ signaling.
Collapse
Affiliation(s)
- Caleb N Seavey
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA
- Department of General Surgery, Digestive Disease and Surgery Institute, Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA
- Department of Molecular Medicine, PRISM Program, Cleveland Clinic Lerner College of Medicine, Case Western Reserve University, Cleveland, Ohio 44195, USA
| | - Ajaybabu V Pobbati
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA
| | - Andrea Hallett
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA
| | - Shuang Ma
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA
| | - Jordan P Reynolds
- Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA
| | - Ryan Kanai
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York 12208, USA
| | - John M Lamar
- Department of Molecular and Cellular Physiology, Albany Medical College, Albany, New York 12208, USA
| | - Brian P Rubin
- Department of Cancer Biology, Lerner Research Institute, Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA
- Robert J. Tomsich Pathology and Laboratory Medicine Institute, Cleveland Clinic Foundation, Cleveland, Ohio 44195, USA
| |
Collapse
|
16
|
Supratentorial ependymoma in childhood: more than just RELA or YAP. Acta Neuropathol 2021; 141:455-466. [PMID: 33481105 PMCID: PMC7882569 DOI: 10.1007/s00401-020-02260-5] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 12/24/2020] [Accepted: 12/24/2020] [Indexed: 12/31/2022]
Abstract
Two distinct genetically defined entities of ependymoma arising in the supratentorial compartment are characterized by the presence of either a C11orf95-RELA or a YAP-MAMLD1 fusion, respectively. There is growing evidence that supratentorial ependymomas without these genetic features exist. In this study, we report on 18 pediatric non-RELA/non-YAP supratentorial ependymomas that were systematically characterized by means of their histology, immunophenotype, genetics, and epigenomics. Comprehensive molecular analyses included high-resolution copy number analysis, methylation profiling, analysis of fusion transcripts by Nanostring technology, and RNA sequencing. Based upon histological and immunohistochemical features two main patterns were identified—RELA-like (n = 9) and tanycytic ependymomas (n = 6). In the RELA-like group histologically assigned to WHO grade III and resembling RELA-fused ependymomas, tumors lacked nuclear expression of p65-RelA as a surrogate marker for a pathological activation of the NF-κB pathway. Three tumors showed alternative C11orf95 fusions to MAML2 or NCOA1. A methylation-based brain tumor classifier assigned two RELA-like tumors to the methylation class “EP, RELA-fusion”; the others demonstrated no significant similarity score. Of the tanycytic group, 5/6 tumors were assigned a WHO grade II. No gene fusions were detected. Methylation profiling did not show any association with an established methylation class. We additionally identified two astroblastoma-like tumors that both presented with chromothripsis of chromosome 22 but lacked MN1 breaks according to FISH analysis. They revealed novel fusion events involving genes in chromosome 22. One further tumor with polyploid cytogenetics was interpreted as PFB ependymoma by the brain tumor methylation classifier but had no relation to the posterior fossa. Clinical follow-up was available for 16/18 patients. Patients with tanycytic and astroblastoma-like tumors had no relapse, while 2 patients with RELA-like ependymomas died. Our data indicate that in addition to ependymomas discovered so far, at least two more supratentorial ependymoma types (RELA-like and tanycytic) exist.
Collapse
|
17
|
Jünger ST, Timmermann B, Pietsch T. Pediatric ependymoma: an overview of a complex disease. Childs Nerv Syst 2021; 37:2451-2463. [PMID: 34008056 PMCID: PMC8342354 DOI: 10.1007/s00381-021-05207-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Accepted: 05/05/2021] [Indexed: 12/15/2022]
Abstract
Pediatric ependymomas comprise biologically distinct tumor entities with different (epi)genetics, age distribution and localization, as well as a different prognosis. Regarding risk stratification within these biologically defined entities, histopathological features still seem to be relevant. The mainstay of treatment is gross total resection (GTR) if possible, achieved with intraoperative monitoring and neuronavigation-and if necessary second surgery-followed by adjuvant radiation therapy. However, there is growing evidence that some ependymal tumors may be cured by surgery alone, while others relapse despite adjuvant treatment. To date, the role of chemotherapy is not clear. Current therapy achieves reasonable survival rates for the majority of ependymoma patients. The next challenge is to go beyond initial tumor control and use risk-adapted therapy to reduce secondary effect and therapy-induced morbidity for low-risk patients and to intensify treatment for high-risk patients. With identification of specific alterations, targeted therapy may represent an option for individualized treatment modalities in the future.
Collapse
Affiliation(s)
- Stephanie Theresa Jünger
- Department of Neuropathology, DGNN Brain Tumor Reference Centre, University of Bonn Medical Centre, Bonn, Germany. .,Centre for Neurosurgery, Department of General Neurosurgery, Faculty of Medicine and University Hospital Cologne, University of Cologne, Cologne, Germany.
| | - Beate Timmermann
- grid.410718.b0000 0001 0262 7331Department of Particle Therapy, University Hospital Essen, West German Proton Therapy Centre Essen (WPE), West German Cancer Center (WTZ), German Cancer Consortium (DKTK), Essen, Germany
| | - Torsten Pietsch
- grid.15090.3d0000 0000 8786 803XDepartment of Neuropathology, DGNN Brain Tumor Reference Centre, University of Bonn Medical Centre, Bonn, Germany
| |
Collapse
|