1
|
Shan S, Li Q, Criswell T, Atala A, Zhang Y. Stem cell therapy combined with controlled release of growth factors for the treatment of sphincter dysfunction. Cell Biosci 2023; 13:56. [PMID: 36927578 PMCID: PMC10018873 DOI: 10.1186/s13578-023-01009-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Accepted: 03/06/2023] [Indexed: 03/18/2023] Open
Abstract
Sphincter dysfunction often occurs at the end of tubule organs such as the urethra, anus, or gastroesophageal sphincters. It is the primary consequence of neuromuscular impairment caused by trauma, inflammation, and aging. Despite intensive efforts to recover sphincter function, pharmacological treatments have not achieved significant improvement. Cell- or growth factor-based therapy is a promising approach for neuromuscular regeneration and the recovery of sphincter function. However, a decrease in cell retention and viability, or the short half-life and rapid degradation of growth factors after implantation, remain obstacles to the translation of these therapies to the clinic. Natural biomaterials provide unique tools for controlled growth factor delivery, which leads to better outcomes for sphincter function recovery in vivo when stem cells and growth factors are co-administrated, in comparison to the delivery of single therapies. In this review, we discuss the role of stem cells combined with the controlled release of growth factors, the methods used for delivery, their potential therapeutic role in neuromuscular repair, and the outcomes of preclinical studies using combination therapy, with the hope of providing new therapeutic strategies to treat incontinence or sphincter dysfunction of the urethra, anus, or gastroesophageal tissues, respectively.
Collapse
Affiliation(s)
- Shengzhou Shan
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China
| | - Qingfeng Li
- Department of Plastic and Reconstructive Surgery, Shanghai Ninth People's Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200011, China.
| | - Tracy Criswell
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Anthony Atala
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA
| | - Yuanyuan Zhang
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC, 27157, USA.
| |
Collapse
|
2
|
Sun L, Billups A, Rietsch A, Damaser MS, Zutshi M. Stromal cell derived factor 1 plasmid to regenerate the anal sphincters. J Tissue Eng Regen Med 2022; 16:355-366. [PMID: 35092171 DOI: 10.1002/term.3283] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 12/21/2021] [Accepted: 01/07/2022] [Indexed: 11/09/2022]
Abstract
The aim of this study was to evaluate regeneration of a chronic large anal sphincter defect in a pig model after treatment with a plasmid encoding Stromal Cell Derived Factor-1(SDF-1). METHODS Under ethics approved protocol 19 age/weight matched Sinclair mini-pigs were subjected to excision of the posterior 50% of anal sphincter muscle and left to recover for 6 weeks. They were randomly allocated to receive either saline treatment (Saline 1 ml, n = 5), 1 injection of SDF-1 plasmid 2 mg/ml (1 SDF-1, n = 9) or 2 injections of SDF-1, 2 mg/ml each at 2 weeks intervals (2 SDF-1, n = 5). Euthanasia occurred 8 weeks after the last treatment. In vivo outcomes included anal resting pressures done under anesthesia pre-injury, pre-injection and before euthanasia (8 weeks after treatment). Anal ultrasound was done pre injury and pre-euthanasia. Tissues were saved for histology and analyzed quantitatively. Two way ANOVA followed by Holm-Sidak test and one way ANOVA followed by the Tukey test were used for data analysis, p < 0.05 was regarded as significant. RESULTS Posterior anal pressures at the 3 time points were not significantly different in the saline group. In contrast, post-treatment pressures in the 1 SDF-1 group pressures were significantly higher than both pre-injury (p = 0.001) and pre-treatment time points (p = 0.003). At the post-treatment time point, both 1 SDF-1 (p = 0.01) and 2 SDF-1 (p = 0.01) groups had significantly higher mean pressures compared to the saline group. Histology showed distortion of normal anatomy with patchy regeneration in the control group while muscle was more organized in both treatment groups. CONCLUSIONS Eight weeks after a single or two doses of SDF-1injected into a chronic anal sphincter injury improved resting anal pressures and regenerated muscle in the entire defect. SDF-1 plasmid is effective in treating chronic defects of the anal sphincter in a large animal and could be clinically translated.
Collapse
Affiliation(s)
- Li Sun
- Department of Biomedical Engineering, Cleveland Clinic, Cleveland, Ohio, USA
| | - Alanna Billups
- Department of Biomedical Engineering, Cleveland Clinic, Cleveland, Ohio, USA
| | - Anna Rietsch
- Department of Biomedical Engineering, Cleveland Clinic, Cleveland, Ohio, USA
| | - Margot S Damaser
- Department of Biomedical Engineering, Cleveland Clinic, Cleveland, Ohio, USA.,Glickman Urological & Kidney Institute, Cleveland Clinic, Cleveland, Ohio, USA.,Louis Stokes Cleveland Department of Veterans Affairs Medical Center, Advanced Platform Technology Center, Cleveland, Ohio, USA
| | - Massarat Zutshi
- Department of Biomedical Engineering, Cleveland Clinic, Cleveland, Ohio, USA.,Department of Colorectal Surgery, Cleveland Clinic, Cleveland, Ohio, USA
| |
Collapse
|
3
|
Balaphas A, Meyer J, Meier RPH, Liot E, Buchs NC, Roche B, Toso C, Bühler LH, Gonelle-Gispert C, Ris F. Cell Therapy for Anal Sphincter Incontinence: Where Do We Stand? Cells 2021; 10:2086. [PMID: 34440855 PMCID: PMC8394955 DOI: 10.3390/cells10082086] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/05/2021] [Accepted: 08/06/2021] [Indexed: 12/12/2022] Open
Abstract
Anal sphincter incontinence is a chronic disease, which dramatically impairs quality of life and induces high costs for the society. Surgery, considered as the best curative option, shows a disappointing success rate. Stem/progenitor cell therapy is pledging, for anal sphincter incontinence, a substitute to surgery with higher efficacy. However, the published literature is disparate. Our aim was to perform a review on the development of cell therapy for anal sphincter incontinence with critical analyses of its pitfalls. Animal models for anal sphincter incontinence were varied and tried to reproduce distinct clinical situations (acute injury or healed injury with or without surgical reconstruction) but were limited by anatomical considerations. Cell preparations used for treatment, originated, in order of frequency, from skeletal muscle, bone marrow or fat tissue. The characterization of these preparations was often incomplete and stemness not always addressed. Despite a lack of understanding of sphincter healing processes and the exact mechanism of action of cell preparations, this treatment was evaluated in 83 incontinent patients, reporting encouraging results. However, further development is necessary to establish the correct indications, to determine the most-suited cell type, to standardize the cell preparation method and to validate the route and number of cell delivery.
Collapse
Affiliation(s)
- Alexandre Balaphas
- Division of Digestive Surgery, University Hospitals of Geneva, 1205 Geneva, Switzerland; (J.M.); (E.L.); (N.C.B.); (B.R.); (C.T.); (F.R.)
- Department of Surgery, Geneva Medical School, University of Geneva, 1205 Geneva, Switzerland
| | - Jeremy Meyer
- Division of Digestive Surgery, University Hospitals of Geneva, 1205 Geneva, Switzerland; (J.M.); (E.L.); (N.C.B.); (B.R.); (C.T.); (F.R.)
| | - Raphael P. H. Meier
- Department of Surgery, University of Maryland School of Medicine, Baltimore, MD 21201, USA;
| | - Emilie Liot
- Division of Digestive Surgery, University Hospitals of Geneva, 1205 Geneva, Switzerland; (J.M.); (E.L.); (N.C.B.); (B.R.); (C.T.); (F.R.)
| | - Nicolas C. Buchs
- Division of Digestive Surgery, University Hospitals of Geneva, 1205 Geneva, Switzerland; (J.M.); (E.L.); (N.C.B.); (B.R.); (C.T.); (F.R.)
| | - Bruno Roche
- Division of Digestive Surgery, University Hospitals of Geneva, 1205 Geneva, Switzerland; (J.M.); (E.L.); (N.C.B.); (B.R.); (C.T.); (F.R.)
| | - Christian Toso
- Division of Digestive Surgery, University Hospitals of Geneva, 1205 Geneva, Switzerland; (J.M.); (E.L.); (N.C.B.); (B.R.); (C.T.); (F.R.)
| | - Leo H. Bühler
- Faculty of Science and Medicine, University of Fribourg, 1700 Fribourg, Switzerland; (L.H.B.); (C.G.-G.)
| | - Carmen Gonelle-Gispert
- Faculty of Science and Medicine, University of Fribourg, 1700 Fribourg, Switzerland; (L.H.B.); (C.G.-G.)
| | - Frédéric Ris
- Division of Digestive Surgery, University Hospitals of Geneva, 1205 Geneva, Switzerland; (J.M.); (E.L.); (N.C.B.); (B.R.); (C.T.); (F.R.)
| |
Collapse
|
4
|
de la Portilla F, Guerrero JL, Maestre MV, Leyva L, Mera S, García-Olmo D, Rodríguez A, Mata R, Lora F. Treatment of faecal incontinence with autologous expanded mesenchymal stem cells: results of a pilot study. Colorectal Dis 2021; 23:698-709. [PMID: 32986295 DOI: 10.1111/codi.15382] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2020] [Revised: 09/09/2020] [Accepted: 09/15/2020] [Indexed: 02/08/2023]
Abstract
AIM Management of faecal incontinence (FI) remains challenging because no definitive optimal treatment for this condition has yet been determined. Regenerative medicine could be an attractive therapeutic alternative for treating FI. Here, we aimed to determine the safety and feasibility of autologous expanded mesenchymal stem cells derived from adipose tissue (AdMSCs) in the treatment of patients diagnosed with structural FI. METHOD This was a randomized, multicentre, triple-blinded, placebo-controlled pilot study conducted at four sites in Spain with 16 adults with FI and a sphincter defect. Autologous AdMSCs were obtained from patients from surgically excised adipose tissue. These patients were intralesionally infused with a single dose of 4 × 107 AdMSCs or a placebo while under anaesthesia. We assessed the safety and feasibility of the treatment as the cumulative incidence of adverse events and the treatment efficacy using the Cleveland Clinic Faecal Incontinence Score, Faecal Incontinence Quality of Life score and Starck criteria to classify sphincter defects and anorectal physiology outcomes. RESULTS Adipose tissue extraction, cell isolation and intralesional infusion procedures were successful in all the patients. There was only one adverse event connected to adipose tissue extraction (a haematoma), and none was associated with the injection procedure. There were no significant differences in any of the assessed clinical, manometric or ultrasonographic parameters. CONCLUSION This study indicates that this infusion procedure in the anal sphincter is feasible and safe. However, it failed to demonstrate efficacy to treat patients with structural FI.
Collapse
Affiliation(s)
- Fernando de la Portilla
- Coloproctology Clinical Management Unit, General and Gastrointestinal Surgery Division, Biomedical Research Institute (IBIS), Hospital Universitario Virgen del Rocio/CSIC University of Seville, Seville, Spain
| | - José Luis Guerrero
- Coloproctology Clinical Management Unit, General and Gastrointestinal Surgery Division, Biomedical Research Institute (IBIS), Hospital Universitario Virgen del Rocio/CSIC University of Seville, Seville, Spain
| | - Maria Victoria Maestre
- Coloproctology Clinical Management Unit, General and Gastrointestinal Surgery Division, Biomedical Research Institute (IBIS), Hospital Universitario Virgen del Rocio/CSIC University of Seville, Seville, Spain
| | - Laura Leyva
- GMP Cell Manufacturing Unit, Biomedical Research Institute of Malaga (IBIMA), Hospital Regional Universitario de Malaga, Málaga, Spain
| | - Santiago Mera
- Coloproctology Unit Clinical Management, Unit of General Surgery Division, Hospital Regional Universitario de Málaga, Málaga, Spain
| | - Damián García-Olmo
- Department of Surgery, University Hospital Fundación Jiménez Díaz, Madrid, Spain
| | - Antonio Rodríguez
- GMP Cell Manufacturing Unit, Biomedical Research Institute of Malaga (IBIMA), Hospital Regional Universitario de Malaga, Málaga, Spain
| | - Rosario Mata
- Andalusian Network for Design and Translation of Advanced Therapies, Seville, Spain
| | - Fabiola Lora
- Andalusian Network for Design and Translation of Advanced Therapies, Seville, Spain
| |
Collapse
|
5
|
De Ligny WR, Kerkhof MH, Ruiz-Zapata AM. Regenerative medicine as a therapeutic option for fecal incontinence: a systematic review of preclinical and clinical studies. Am J Obstet Gynecol 2019; 220:142-154.e2. [PMID: 30267651 DOI: 10.1016/j.ajog.2018.09.009] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2018] [Revised: 08/28/2018] [Accepted: 09/10/2018] [Indexed: 12/18/2022]
Abstract
BACKGROUND Fecal incontinence is the uncontrollable loss of stool and has a prevalence of around 7-15%. This condition has serious implications for patients' quality of life. Current treatment options show unsatisfactory results. A novel treatment option is therefore needed. OBJECTIVE This systematic review aims to perform a quality assessment and to give a critical overview of the current research available on regenerative medicine as a treatment for fecal incontinence. STUDY DESIGN A systematic search strategy was applied in PubMed, Cochrane Library, EMBASE, MEDLINE, Web of Science, and Cinahl from inception until March of 2018. Studies were found relevant when the animals or patients in the studied group had objectively determined or induced fecal incontinence, and the intervention must have used any kind of cells, stem cells, or biocompatible material, with or without the use of trophic factors. Studies were screened on title and consecutively on abstract for relevance by 2 independent investigators. The risk of bias of preclinical studies was assessed using the SYstematic Review Centre for Laboratory animal Experimentation risk of bias tool for animal studies, and for clinical studies the Cochrane risk of bias tool for randomized trials was used. RESULTS In all, 34 preclinical studies and 5 clinical studies were included. Animal species, type of anal sphincter injury, intervention, and outcome parameters were heterogenous. Therefore, a meta-analysis could not be performed. The overall risk of bias of the included studies was high. CONCLUSION The efficacy of regenerative medicine to treat fecal incontinence could not be determined due to the high risk of bias and heterogenicity of the available preclinical and clinical studies. The findings of this systematic review may result in improved study design of future studies, which could help the translation of regenerative medicine to the clinic as an alternative to current treatments for fecal incontinence.
Collapse
|
6
|
Gräs S, Tolstrup CK, Lose G. Regenerative medicine provides alternative strategies for the treatment of anal incontinence. Int Urogynecol J 2016; 28:341-350. [PMID: 27311602 DOI: 10.1007/s00192-016-3064-y] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2016] [Accepted: 06/06/2016] [Indexed: 12/17/2022]
Abstract
INTRODUCTION AND HYPOTHESIS Anal incontinence is a common disorder but current treatment modalities are not ideal and the development of new treatments is needed. The aim of this review was to identify the existing knowledge of regenerative medicine strategies in the form of cellular therapies or bioengineering as a treatment for anal incontinence caused by anal sphincter defects. METHODS PubMed was searched for preclinical and clinical studies in English published from January 2005 to January 2016. RESULTS Animal studies have demonstrated that cellular therapy in the form of local injections of culture-expanded skeletal myogenic cells stimulates repair of both acute and 2 - 4-week-old anal sphincter injuries. The results from a small clinical trial with ten patients and a case report support the preclinical findings. Animal studies have also demonstrated that local injections of mesenchymal stem cells stimulate repair of sphincter injuries, and a complex bioengineering strategy for creation and implantation of an intrinsically innervated internal anal sphincter construct has been successfully developed in a series of animal studies. CONCLUSION Cellular therapies with myogenic cells and mesenchymal stem cells and the use of bioengineering technology to create an anal sphincter are new potential strategies to treat anal incontinence caused by anal sphincter defects, but the clinical evidence is extremely limited. The use of culture-expanded autologous skeletal myogenic cells has been most intensively investigated and several clinical trials were ongoing at the time of this report. The cost-effectiveness of such a therapy is an issue and muscle fragmentation is suggested as a simple alternative.
Collapse
Affiliation(s)
- Søren Gräs
- Department of Obstetrics and Gynecology, Copenhagen University Hospital Herlev, Herlev Ringvej 75, DK-2730, Herlev, Denmark.
| | - Cæcilie Krogsgaard Tolstrup
- Department of Obstetrics and Gynecology, Copenhagen University Hospital Herlev, Herlev Ringvej 75, DK-2730, Herlev, Denmark
| | - Gunnar Lose
- Department of Obstetrics and Gynecology, Copenhagen University Hospital Herlev, Herlev Ringvej 75, DK-2730, Herlev, Denmark
| |
Collapse
|
7
|
Functional and histological evidence for the targeted therapy using biocompatible polycaprolactone beads and autologous myoblasts in a dog model of fecal incontinence. Dis Colon Rectum 2015; 58:517-25. [PMID: 25850839 DOI: 10.1097/dcr.0000000000000346] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
BACKGROUND Injection of bulking agents into the anal canal is limited by several factors, including biological resorption, particle migration, and ongoing degradation of the injected bulking agent. OBJECTIVE We investigated whether an injection of polycaprolactone beads containing autologous myoblasts could improve sphincter function in a dog model of fecal incontinence. DESIGN The control sham surgery group underwent skin incision around the anal sphincter (n = 5). Fecal incontinence was induced by resecting 25% of the posterior internal/external anal sphincter in another 10 dogs. After 1 month of sphincter injury, dogs were then treated with (n = 5) or without (n = 5) polycaprolactone beads containing PKH-26-labeled autologous myoblasts. SETTING This study was conducted at the department of surgery in collaboration with the department of advanced materials. OUTCOME MEASURES Three months after injection treatment, the resting and contractile pressure differences of the anal sphincter were compared, and histopathological studies were performed. RESULTS The anal pressures in untreated dogs were significantly lower than those in the sham surgery group (p < 0.05). The resting and contractile pressure differences were higher in treated dogs than in untreated dogs (resting pressure difference: 0.7 ± 0.5 vs -0.6 ± 0.8 mmHg; coefficient of the difference in recovery rate, 0.38; 95% CI, 0.15-0.61, p = 0.001; contractile pressure difference: 1.1 ± 4.2 vs -3.9 ± 2.6 mmHg; coefficient, 1.63; 95% CI, 0.55-2.71, p = 0.003). Immunofluorescent staining confirmed that the myoblasts had differentiated and synthesized myosin heavy chain, as observed in vitro. LIMITATIONS This study was limited by the lack of comparison of injecting beads containing autologous myoblasts with injecting myoblasts alone. CONCLUSION This study shows that an injection of polycaprolactone beads containing autologous myoblasts may improve anal sphincter function in an animal model of fecal incontinence.
Collapse
|
8
|
Oh HK, Lee HS, Lee JH, Oh SH, Lim JY, Ahn S, Kang SB. Coadministration of basic fibroblast growth factor-loaded polycaprolactone beads and autologous myoblasts in a dog model of fecal incontinence. Int J Colorectal Dis 2015; 30:549-57. [PMID: 25592048 DOI: 10.1007/s00384-015-2121-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/01/2015] [Indexed: 02/04/2023]
Abstract
PURPOSE Basic fibroblastic growth factor (bFGF), a member of the heparin-binding growth factor family, regulates muscle differentiation. We investigated whether coadministration of autologous myoblasts and bFGF-loaded polycaprolactone beads could improve sphincter recovery in a dog model of fecal incontinence (FI). METHODS FI was induced by resecting 25% of the posterior anal sphincter in ten mongrel dogs. One month later, the dogs were randomized to receive either PKH-26-labeled autologous myoblasts alone (M group, five dogs) or autologous myoblasts and bFGF-loaded polycaprolactone beads (MBG group, five dogs). The outcomes included anal manometry, compound muscle action potentials (CMAPs) of the pudendal nerve, and histology. RESULTS The increase in anal contractile pressure over 3 months was significantly greater in the MBG group (from 4.85 to 6.83 mmHg) than that in the M group (from 4.94 to 4.25 mmHg), with a coefficient for the difference in recovery rate of 2.672 (95% confidence interval [CI] 0.962 to 4.373, p = 0.002). The change in the CMAP amplitude was also significantly greater in the MBG group (from 0.59 to 1.56 mV) than that in the M group (from 0.81 to 0.67 mV) (coefficient 1.114, 95% CI 0.43 to 1.80, p = 0.001). Labeled cells were detected in 2/5 (40%) and 5/5 (100%) dogs in the M and MBG groups, respectively. CONCLUSION Coadministration of bFGF-loaded PCL beads and autologous myoblasts improved the recovery of sphincter function in a dog model of FI and had better outcomes than cell-based therapy alone.
Collapse
Affiliation(s)
- Heung-Kwon Oh
- Department of Surgery, Seoul National University College of Medicine, Seoul National University Bundang Hospital, 300 Gumi-dong Bundang-gu, Seongnam-si, Gyeonggi-do, 463-707, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
9
|
Smooth muscle strips for intestinal tissue engineering. PLoS One 2014; 9:e114850. [PMID: 25486279 PMCID: PMC4259486 DOI: 10.1371/journal.pone.0114850] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Accepted: 11/14/2014] [Indexed: 01/04/2023] Open
Abstract
Functionally contracting smooth muscle is an essential part of the engineered intestine that has not been replicated in vitro. The purpose of this study is to produce contracting smooth muscle in culture by maintaining the native smooth muscle organization. We employed intact smooth muscle strips and compared them to dissociated smooth muscle cells in culture for 14 days. Cells isolated by enzymatic digestion quickly lost maturity markers for smooth muscle cells and contained few enteric neural and glial cells. Cultured smooth muscle strips exhibited periodic contraction and maintained neural and glial markers. Smooth muscle strips cultured for 14 days also exhibited regular fluctuation of intracellular calcium, whereas cultured smooth muscle cells did not. After implantation in omentum for 14 days on polycaprolactone scaffolds, smooth muscle strip constructs expressed high levels of smooth muscle maturity markers as well as enteric neural and glial cells. Intact smooth muscle strips may be a useful component for engineered intestinal smooth muscle.
Collapse
|
10
|
Bitar KN, Raghavan S, Zakhem E. Tissue engineering in the gut: developments in neuromusculature. Gastroenterology 2014; 146:1614-24. [PMID: 24681129 PMCID: PMC4035447 DOI: 10.1053/j.gastro.2014.03.044] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 03/17/2014] [Accepted: 03/20/2014] [Indexed: 12/13/2022]
Abstract
The complexity of the gastrointestinal (GI) tract lies in its anatomy as well as in its physiology. Several different cell types populate the GI tract, adding to the complexity of cell sourcing for regenerative medicine. Each cell layer has a specialized function in mediating digestion, absorption, secretion, motility, and excretion. Tissue engineering and regenerative medicine aim to regenerate the specific layers mimicking architecture and recapitulating function. Gastrointestinal motility is the underlying program that mediates the diverse functions of the intestines, as an organ. Hence, the first logical step in GI regenerative medicine is the reconstruction of the tubular smooth musculature along with the drivers of their input, the enteric nervous system. Recent advances in the field of GI tissue engineering have focused on the use of scaffolding biomaterials in combination with cells and bioactive factors. The ability to innervate the bioengineered muscle is a critical step to ensure proper functionality. Finally, in vivo studies are essential to evaluate implant integration with host tissue, survival, and functionality. In this review, we focus on the tubular structure of the GI tract, tools for innervation, and, finally, evaluation of in vivo strategies for GI replacements.
Collapse
Affiliation(s)
- Khalil N. Bitar
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem NC 27101,Virginia Tech-Wake Forest School of Biomedical Engineering and Sciences, Winston-Salem NC 27101
| | - Shreya Raghavan
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem NC 27101,Virginia Tech-Wake Forest School of Biomedical Engineering and Sciences, Winston-Salem NC 27101
| | - Elie Zakhem
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem NC 27101,Virginia Tech-Wake Forest School of Biomedical Engineering and Sciences, Winston-Salem NC 27101
| |
Collapse
|
11
|
Walthers CM, Nazemi AK, Patel SL, Wu BM, Dunn JCY. The effect of scaffold macroporosity on angiogenesis and cell survival in tissue-engineered smooth muscle. Biomaterials 2014; 35:5129-37. [PMID: 24695092 DOI: 10.1016/j.biomaterials.2014.03.025] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2014] [Accepted: 03/12/2014] [Indexed: 11/19/2022]
Abstract
Angiogenesis and survival of cells within thick scaffolds is a major concern in tissue engineering. The purpose of this study is to increase the survival of intestinal smooth muscle cells (SMCs) in implanted tissue-engineered constructs. We incorporated 250-μm pores in multi-layered, electrospun scaffolds with a macroporosity ranging from 15% to 25% to facilitate angiogenesis. The survival of green fluorescent protein (GFP)-expressing SMCs was evaluated after 2 weeks of implantation. Whereas host cellular infiltration was similar in scaffolds with different macroporosities, blood vessel development increased with increasing macroporosity. Scaffolds with 25% macropores had the most GFP-expressing SMCs, which correlated with the highest degree of angiogenesis over 1 mm away from the outermost layer. The 25% macroporous group exceeded a critical threshold of macropore connectivity, accelerating angiogenesis and improving implanted cell survival in a tissue-engineered smooth muscle construct.
Collapse
Affiliation(s)
| | - Alireza K Nazemi
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA
| | - Shilpy L Patel
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA
| | - Benjamin M Wu
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA; Department of Advanced Prosthodontics, Biomaterials, and Hospital Dentistry, University of California, Los Angeles, CA, USA
| | - James C Y Dunn
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA; Department of Surgery, University of California, Los Angeles, CA, USA.
| |
Collapse
|
12
|
Raghavan S, Miyasaka EA, Gilmont RR, Somara S, Teitelbaum DH, Bitar KN. Perianal implantation of bioengineered human internal anal sphincter constructs intrinsically innervated with human neural progenitor cells. Surgery 2013; 155:668-74. [PMID: 24582493 DOI: 10.1016/j.surg.2013.12.023] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2013] [Accepted: 12/19/2013] [Indexed: 12/14/2022]
Abstract
BACKGROUND The internal anal sphincter (IAS) is a major contributing factor to pressure within the anal canal and is required for maintenance of rectoanal continence. IAS damage or weakening results in fecal incontinence. We have demonstrated that bioengineered, intrinsically innervated, human IAS tissue replacements possess key aspects of IAS physiology, such as the generation of spontaneous basal tone and contraction/relaxation in response to neurotransmitters. The objective of this study is to demonstrate the feasibility of implantation of bioengineered IAS constructs in the perianal region of athymic rats. METHODS Human IAS tissue constructs were bioengineered from isolated human IAS circular smooth muscle cells and human enteric neuronal progenitor cells. After maturation of the bioengineered constructs in culture, they were implanted operatively into the perianal region of athymic rats. Platelet-derived growth factor was delivered to the implanted constructs through a microosmotic pump. Implanted constructs were retrieved from the animals 4 weeks postimplantation. RESULTS Animals tolerated the implantation well, and there were no early postoperative complications. Normal stooling was observed during the implantation period. At harvest, implanted constructs were adherent to the perirectal rat tissue and appeared healthy and pink. Immunohistochemical analysis revealed neovascularization. Implanted smooth muscle cells maintained contractile phenotype. Bioengineered constructs responded in vitro in a tissue chamber to neuronally evoked relaxation in response to electrical field stimulation and vasoactive intestinal peptide, indicating the preservation of neuronal networks. CONCLUSION Our results indicate that bioengineered innervated IAS constructs can be used to augment IAS function in an animal model. This is a regenerative medicine based therapy for fecal incontinence that would directly address the dysfunction of the IAS muscle.
Collapse
Affiliation(s)
- Shreya Raghavan
- Virginia Tech-Wake Forest University School of Biomedical Engineering and Sciences, Winston-Salem, NC; Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC
| | - Eiichi A Miyasaka
- Department of Surgery, University of Michigan Medical School, Ann Arbor, MI
| | - Robert R Gilmont
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC
| | - Sita Somara
- Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC
| | | | - Khalil N Bitar
- Virginia Tech-Wake Forest University School of Biomedical Engineering and Sciences, Winston-Salem, NC; Wake Forest Institute for Regenerative Medicine, Wake Forest School of Medicine, Winston-Salem, NC.
| |
Collapse
|
13
|
Bae SH. Recent achievements in stem cell therapy for pediatric gastrointestinal tract disease. Pediatr Gastroenterol Hepatol Nutr 2013; 16:10-6. [PMID: 24010100 PMCID: PMC3746046 DOI: 10.5223/pghn.2013.16.1.10] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Revised: 03/12/2013] [Accepted: 03/14/2013] [Indexed: 12/24/2022] Open
Abstract
The field of stem cell research has been rapidly expanding. Although the clinical usefulness of research remains to be ascertained through human trials, the use of stem cells as a therapeutic option for currently disabling diseases holds fascinating potential. Many pediatric gastrointestinal tract diseases have defect in enterocytes, enteric nervous system cells, smooth muscles, and interstitial cells of Cajal. Various kinds of therapeutic trials using stem cells could be applied to these diseases. This review article focuses on the recent achievements in stem cell applications for pediatric gastrointestinal tract diseases.
Collapse
Affiliation(s)
- Sun Hwan Bae
- Department of Pediatrics, School of Medicine, Konkuk University, Seoul, Korea
| |
Collapse
|
14
|
Orlando G, García-Arrarás JE, Soker T, Booth C, Sanders B, Ross CL, De Coppi P, Farney AC, Rogers J, Stratta RJ. Regeneration and bioengineering of the gastrointestinal tract: current status and future perspectives. Dig Liver Dis 2012; 44:714-20. [PMID: 22622201 DOI: 10.1016/j.dld.2012.04.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/17/2012] [Accepted: 04/10/2012] [Indexed: 12/11/2022]
Abstract
The present review aims to illustrate the strategies that are being implemented in regenerative medicine to treat diseases that affect the digestive tract. Possible avenues are twofold: organ bioengineering, where cells are seeded on biological or synthetic scaffolding materials ex vivo and allowed to either mature in bioreactors or be implanted without undergoing any maturation; and regeneration per se, where the diseased tissue or organ is regenerated by recapitulation of its multi-step ontogenesis. This latter avenue may be induced either in vivo or ex vivo. While bioengineering technology has already manufactured segments of the digestive tract and sphincters, pure regeneration of any segment of the digestive tract has not yet been described. However, models of regeneration extrapolated from simple organisms are elucidating the complex yet fascinating mechanisms that regulate the ontogenesis of the digestive tract and are paving the way for the development of new regenerative technologies and methods.
Collapse
Affiliation(s)
- Giuseppe Orlando
- Department of General Surgery, Section of Transplantation, Wake Forest University School of Medicine, Winston Salem, NC, USA.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
15
|
Abstract
PURPOSE OF REVIEW The purpose of this review is to describe recent advancements in tissue-engineering of the gastrointestinal system. For some patients, a congenital or acquired defect in the alimentary system results in digestive or nutritional deficiencies requiring intervention. Unfortunately, these treatments are associated with morbid complications. Advances in the growth of tissue-engineered esophagus, stomach, small intestine, colon and anus have been made in recent years. The progress reviewed here hopefully will someday benefit patients with gastrointestinal organ loss by providing a tissue replacement with morphology and function similar to native tissue. RECENT FINDINGS In native gastrointestinal tissue, epithelial homeostasis is governed largely by the interaction of the stem cell and its surrounding cellular niche. In particular, the small intestinal stem cell populations identified as the crypt base columnar cell (CBCC) and at cell position 4 (cp4) are responsible for mucosal maintenance and response to injury. This work influences efforts to generate bioengineered tissues for both in-vitro mucosal models and full-thickness in-vivo tissue-engineered esophagus, stomach, intestine and colon. SUMMARY Gastrointestinal organ loss is a challenge to manage. Current therapy can be life-saving, but is associated with morbid complications. Tissue-engineering will someday restore normal gastrointestinal function and eliminate the need for nutritional supplementation or transplant.
Collapse
|
16
|
Orlando G, Wood KJ, De Coppi P, Baptista PM, Binder KW, Bitar KN, Breuer C, Burnett L, Christ G, Farney A, Figliuzzi M, Holmes JH, Koch K, Macchiarini P, Mirmalek Sani SH, Opara E, Remuzzi A, Rogers J, Saul JM, Seliktar D, Shapira-Schweitzer K, Smith T, Solomon D, Van Dyke M, Yoo JJ, Zhang Y, Atala A, Stratta RJ, Soker S. Regenerative medicine as applied to general surgery. Ann Surg 2012; 255:867-80. [PMID: 22330032 PMCID: PMC3327776 DOI: 10.1097/sla.0b013e318243a4db] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The present review illustrates the state of the art of regenerative medicine (RM) as applied to surgical diseases and demonstrates that this field has the potential to address some of the unmet needs in surgery. RM is a multidisciplinary field whose purpose is to regenerate in vivo or ex vivo human cells, tissues, or organs to restore or establish normal function through exploitation of the potential to regenerate, which is intrinsic to human cells, tissues, and organs. RM uses cells and/or specially designed biomaterials to reach its goals and RM-based therapies are already in use in several clinical trials in most fields of surgery. The main challenges for investigators are threefold: Creation of an appropriate microenvironment ex vivo that is able to sustain cell physiology and function in order to generate the desired cells or body parts; identification and appropriate manipulation of cells that have the potential to generate parenchymal, stromal and vascular components on demand, both in vivo and ex vivo; and production of smart materials that are able to drive cell fate.
Collapse
Affiliation(s)
- Giuseppe Orlando
- Wake Forest Institute for Regenerative Medicine, Winston Salem, NC, USA.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Howell JC, Wells JM. Generating intestinal tissue from stem cells: potential for research and therapy. Regen Med 2012; 6:743-55. [PMID: 22050526 DOI: 10.2217/rme.11.90] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Intestinal resection and malformations in adult and pediatric patients result in devastating consequences. Unfortunately, allogeneic transplantation of intestinal tissue into patients has not been met with the same measure of success as the transplantation of other organs. Attempts to engineer intestinal tissue in vitro include disaggregation of adult rat intestine into subunits called organoids, harvesting native adult stem cells from mouse intestine and spontaneous generation of intestinal tissue from embryoid bodies. Recently, by utilizing principles gained from the study of developmental biology, human pluripotent stem cells have been demonstrated to be capable of directed differentiation into intestinal tissue in vitro. Pluripotent stem cells offer a unique and promising means to generate intestinal tissue for the purposes of modeling intestinal disease, understanding embryonic development and providing a source of material for therapeutic transplantation.
Collapse
Affiliation(s)
- Jonathan C Howell
- Division of Endocrinology, Cincinnati Children's Hospital Medical Center, Cincinnati, OH 45229-3039, USA
| | | |
Collapse
|
18
|
Kulkarni S, Becker L, Pasricha PJ. Stem cell transplantation in neurodegenerative disorders of the gastrointestinal tract: future or fiction? Gut 2012; 61:613-21. [PMID: 21816959 PMCID: PMC4119942 DOI: 10.1136/gut.2010.235614] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Current advances in our understanding of stem and precursor cell biology and in the protocols of stem cell isolation and transplantation have opened up the possibility of transplanting neural stem cells for the treatment of gastrointestinal motility disorders. This review summarises the current status of research in this field, identifies the major gaps in our knowledge and discusses the potential opportunities and hurdles for clinical application.
Collapse
Affiliation(s)
- Subhash Kulkarni
- Division of Gastroenterology and Hepatology, Stanford University, School of Medicine, Stanford, CA 94305, USA
| | | | | |
Collapse
|
19
|
Bitar KN, Raghavan S. Intestinal tissue engineering: current concepts and future vision of regenerative medicine in the gut. Neurogastroenterol Motil 2012; 24:7-19. [PMID: 22188325 PMCID: PMC3248673 DOI: 10.1111/j.1365-2982.2011.01843.x] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Functional tissue engineering of the gastrointestinal (GI) tract is a complex process aiming to aid the regeneration of structural layers of smooth muscle, intrinsic enteric neuronal plexuses, specialized mucosa, and epithelial cells as well as interstitial cells. The final tissue-engineered construct is intended to mimic the native GI tract anatomically and physiologically. Physiological functionality of tissue-engineered constructs is of utmost importance while considering clinical translation. The construct comprises of cellular components as well as biomaterial scaffolding components. Together, these determine the immune response a tissue-engineered construct would elicit from a host upon implantation. Over the last decade, significant advances have been made to mitigate adverse host reactions. These include a quest for identifying autologous cell sources like embryonic and adult stem cells, bone marrow-derived cells, neural crest-derived cells, and muscle derived-stem cells. Scaffolding biomaterials have been fabricated with increasing biocompatibility and biodegradability. Manufacturing processes have advanced to allow for precise spatial architecture of scaffolds to mimic in vivo milieu closely and achieve neovascularization. This review will focus on the current concepts and the future vision of functional tissue engineering of the diverse neuromuscular structures of the GI tract from the esophagus to the internal anal sphincter.
Collapse
Affiliation(s)
- Khalil N. Bitar
- Address Correspondence to: Khalil N. Bitar, PhD., AGAF, Wake Forest Institute for Regenerative Medicine, 391 Technology Way, Winston-Salem NC 27101, Phone: (336) 713-1470, FAX: (336) 713-7290,
| | | |
Collapse
|