4
|
Karolak JA, Vincent M, Deutsch G, Gambin T, Cogné B, Pichon O, Vetrini F, Mefford HC, Dines JN, Golden-Grant K, Dipple K, Freed AS, Leppig KA, Dishop M, Mowat D, Bennetts B, Gifford AJ, Weber MA, Lee AF, Boerkoel CF, Bartell TM, Ward-Melver C, Besnard T, Petit F, Bache I, Tümer Z, Denis-Musquer M, Joubert M, Martinovic J, Bénéteau C, Molin A, Carles D, André G, Bieth E, Chassaing N, Devisme L, Chalabreysse L, Pasquier L, Secq V, Don M, Orsaria M, Missirian C, Mortreux J, Sanlaville D, Pons L, Küry S, Bézieau S, Liet JM, Joram N, Bihouée T, Scott DA, Brown CW, Scaglia F, Tsai ACH, Grange DK, Phillips JA, Pfotenhauer JP, Jhangiani SN, Gonzaga-Jauregui CG, Chung WK, Schauer GM, Lipson MH, Mercer CL, van Haeringen A, Liu Q, Popek E, Coban Akdemir ZH, Lupski JR, Szafranski P, Isidor B, Le Caignec C, Stankiewicz P. Complex Compound Inheritance of Lethal Lung Developmental Disorders Due to Disruption of the TBX-FGF Pathway. Am J Hum Genet 2019; 104:213-228. [PMID: 30639323 DOI: 10.1016/j.ajhg.2018.12.010] [Citation(s) in RCA: 77] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 12/13/2018] [Indexed: 12/24/2022] Open
Abstract
Primary defects in lung branching morphogenesis, resulting in neonatal lethal pulmonary hypoplasias, are incompletely understood. To elucidate the pathogenetics of human lung development, we studied a unique collection of samples obtained from deceased individuals with clinically and histopathologically diagnosed interstitial neonatal lung disorders: acinar dysplasia (n = 14), congenital alveolar dysplasia (n = 2), and other lethal lung hypoplasias (n = 10). We identified rare heterozygous copy-number variant deletions or single-nucleotide variants (SNVs) involving TBX4 (n = 8 and n = 2, respectively) or FGF10 (n = 2 and n = 2, respectively) in 16/26 (61%) individuals. In addition to TBX4, the overlapping ∼2 Mb recurrent and nonrecurrent deletions at 17q23.1q23.2 identified in seven individuals with lung hypoplasia also remove a lung-specific enhancer region. Individuals with coding variants involving either TBX4 or FGF10 also harbored at least one non-coding SNV in the predicted lung-specific enhancer region, which was absent in 13 control individuals with the overlapping deletions but without any structural lung anomalies. The occurrence of rare coding variants involving TBX4 or FGF10 with the putative hypomorphic non-coding SNVs implies a complex compound inheritance of these pulmonary hypoplasias. Moreover, they support the importance of TBX4-FGF10-FGFR2 epithelial-mesenchymal signaling in human lung organogenesis and help to explain the histopathological continuum observed in these rare lethal developmental disorders of the lung.
Collapse
MESH Headings
- DNA Copy Number Variations/genetics
- Female
- Fibroblast Growth Factor 10/genetics
- Fibroblast Growth Factor 10/metabolism
- Gene Expression Regulation
- Gestational Age
- Humans
- Infant, Newborn
- Infant, Newborn, Diseases/genetics
- Infant, Newborn, Diseases/metabolism
- Infant, Newborn, Diseases/mortality
- Infant, Newborn, Diseases/pathology
- Lung/embryology
- Lung/growth & development
- Lung Diseases/genetics
- Lung Diseases/metabolism
- Lung Diseases/mortality
- Lung Diseases/pathology
- Male
- Maternal Inheritance
- Organogenesis
- Paternal Inheritance
- Pedigree
- Polymorphism, Single Nucleotide/genetics
- Receptor, Fibroblast Growth Factor, Type 2/metabolism
- Signal Transduction/genetics
- T-Box Domain Proteins/genetics
- T-Box Domain Proteins/metabolism
Collapse
Affiliation(s)
- Justyna A Karolak
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Department of Genetics and Pharmaceutical Microbiology, Poznan University of Medical Sciences, 60-781 Poznan, Poland
| | - Marie Vincent
- Service de Génétique Médicale, CHU de Nantes, 44000 Nantes, France; Inserm, CNRS, Univ Nantes, l'institut du thorax, 44000 Nantes, France
| | - Gail Deutsch
- Department of Pathology, Seattle Children's Hospital, Seattle, WA 98105, USA
| | - Tomasz Gambin
- Department of Medical Genetics, Institute of Mother and Child, 01-211 Warsaw, Poland; Institute of Computer Science, Warsaw University of Technology, 00-665 Warsaw, Poland
| | - Benjamin Cogné
- Service de Génétique Médicale, CHU de Nantes, 44000 Nantes, France; Inserm, CNRS, Univ Nantes, l'institut du thorax, 44000 Nantes, France
| | - Olivier Pichon
- Service de Génétique Médicale, CHU de Nantes, 44000 Nantes, France
| | | | - Heather C Mefford
- Department of Pediatrics, Division of Genetic Medicine, University of Washington, Seattle, WA 98195, USA
| | - Jennifer N Dines
- Department of Pediatrics, Division of Genetic Medicine, University of Washington, Seattle, WA 98195, USA; Department of Medicine, Division of Medical Genetics, University of Washington, Seattle, WA 98195, USA
| | - Katie Golden-Grant
- Division of Genetic Medicine, Seattle Children's Hospital, Seattle, WA 98105, USA
| | - Katrina Dipple
- Department of Pediatrics, Division of Genetic Medicine, University of Washington, Seattle, WA 98195, USA; Division of Genetic Medicine, Seattle Children's Hospital, Seattle, WA 98105, USA
| | - Amanda S Freed
- Department of Pediatrics, Division of Genetic Medicine, University of Washington, Seattle, WA 98195, USA; Department of Medicine, Division of Medical Genetics, University of Washington, Seattle, WA 98195, USA
| | - Kathleen A Leppig
- Genetic Services Kaiser Permanente of Washington, Seattle, WA 98112, USA
| | - Megan Dishop
- Pathology and Laboratory Medicine, Phoenix Children's Hospital, Phoenix, AZ 85016, USA
| | - David Mowat
- Centre for Clinical Genetics, Sydney Children's Hospital, Randwick Sydney, NSW 2031 Australia; School of Women's and Children's Health, The University of New South Wales, Sydney, NSW 2052, Australia
| | - Bruce Bennetts
- Discipline of Child & Adolescent Health, Sydney Medical School, University of Sydney, Sydney, NSW 2006, Australia; Molecular Genetics Department, Western Sydney Genetics Program, The Children's Hospital at Westmead, Sydney, NSW 2145, Australia; Discipline of Genetic Medicine, Sydney Medical School, University of Sydney, Sydney, NSW 2006, Australia
| | - Andrew J Gifford
- School of Women's and Children's Health, The University of New South Wales, Sydney, NSW 2052, Australia; Department of Anatomical Pathology, Prince of Wales Hospital, Randwick, NSW 2031, Australia
| | - Martin A Weber
- Department of Anatomical Pathology, Prince of Wales Hospital, Randwick, NSW 2031, Australia; School of Medical Sciences, University of New South Wales, Sydney, NSW 2052, Australia
| | - Anna F Lee
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 2B5, Canada
| | - Cornelius F Boerkoel
- Department of Medical Genetics, University of British Columbia, Vancouver, BC V6H 3N1, Canada
| | - Tina M Bartell
- Department of Genetics, Kaiser Permanente Sacramento Medical Center, Sacramento, CA 95815, USA
| | | | - Thomas Besnard
- Service de Génétique Médicale, CHU de Nantes, 44000 Nantes, France; Inserm, CNRS, Univ Nantes, l'institut du thorax, 44000 Nantes, France
| | - Florence Petit
- Service de Génétique Clinique, CHU Lille, 59000 Lille, France
| | - Iben Bache
- Department of Cellular and Molecular Medicine, University of Copenhagen, 2200 N Copenhagen, Denmark; Department of Clinical Genetics, Copenhagen University Hospital, Rigshospitalet, 2100 Ø Copenhagen, Denmark
| | - Zeynep Tümer
- Kennedy Center, Department of Clinical Genetics, Copenhagen University Hospital, Rigshospitalet, 2600 Glostrup, Copenhagen, Denmark; Deparment of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, 2200 N, Copenhagen, Denmark
| | | | | | - Jelena Martinovic
- Unit of Fetal Pathology, AP-HP, Antoine Beclere Hospital, 75000 Paris, France
| | - Claire Bénéteau
- Service de Génétique Médicale, CHU de Nantes, 44000 Nantes, France; Inserm, CNRS, Univ Nantes, l'institut du thorax, 44000 Nantes, France
| | - Arnaud Molin
- Service de Génétique Médicale, CHU Caen, 14000 Caen, France
| | - Dominique Carles
- Service d'anatomo-pathologie, CHU Bordeaux, 33000 Bordeaux, France
| | - Gwenaelle André
- Service d'anatomo-pathologie, CHU Bordeaux, 33000 Bordeaux, France
| | - Eric Bieth
- Service de génétique médicale, CHU Toulouse, France and UDEAR, UMR 1056 Inserm - Université de Toulouse, 31000 Toulouse, France
| | - Nicolas Chassaing
- Service de génétique médicale, CHU Toulouse, France and UDEAR, UMR 1056 Inserm - Université de Toulouse, 31000 Toulouse, France
| | | | | | | | - Véronique Secq
- Aix Marseille Univ, APHM, Hôpital Nord, Service d'anatomo-pathologie, 13000 Marseille, France
| | - Massimiliano Don
- Sant'Antonio General Hospital, Pediatric Care Unit, San Daniele del Friuli, 33100 Udine, Italy
| | - Maria Orsaria
- Department of Medical and Biological Sciences, Pathology Unit, University of Udine, Udine, Italy
| | - Chantal Missirian
- Aix Marseille Univ, APHM, INSERM, MMG, Marseille, Timone Hospital, 13000 Marseille, France
| | - Jérémie Mortreux
- Aix Marseille Univ, APHM, INSERM, MMG, Marseille, Timone Hospital, 13000 Marseille, France
| | - Damien Sanlaville
- Hospices Civils de Lyon, GHE, Genetics department, and Lyon University, 69000 Lyon, France
| | - Linda Pons
- Hospices Civils de Lyon, GHE, Genetics department, and Lyon University, 69000 Lyon, France
| | - Sébastien Küry
- Service de Génétique Médicale, CHU de Nantes, 44000 Nantes, France; Inserm, CNRS, Univ Nantes, l'institut du thorax, 44000 Nantes, France
| | - Stéphane Bézieau
- Service de Génétique Médicale, CHU de Nantes, 44000 Nantes, France; Inserm, CNRS, Univ Nantes, l'institut du thorax, 44000 Nantes, France
| | - Jean-Michel Liet
- Service de réanimation pédiatrique, CHU Nantes, 44000 Nantes, France
| | - Nicolas Joram
- Service de réanimation pédiatrique, CHU Nantes, 44000 Nantes, France
| | | | - Daryl A Scott
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Texas Children's Hospital, Houston, TX 77030, USA; Department of Molecular Physiology and Biophysics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Chester W Brown
- Department of Pediatrics, Genetics Division, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| | - Fernando Scaglia
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Texas Children's Hospital, Houston, TX 77030, USA; Joint BCM-CUHK Center of Medical Genetics, Prince of Wales Hospital, ShaTin, New Territories, Hong Kong SAR
| | - Anne Chun-Hui Tsai
- Department of Pediatrics, The Children's Hospital, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Dorothy K Grange
- Department of Pediatrics, Division of Genetics and Genomic Medicine, Washington University School of Medicine, St. Louis Children's Hospital, St. Louis, MO 63110, USA
| | - John A Phillips
- Department of Pediatrics, Division of Medical Genetics and Genomic Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Jean P Pfotenhauer
- Department of Pediatrics, Division of Medical Genetics and Genomic Medicine, Vanderbilt University Medical Center, Nashville, TN 37232, USA
| | - Shalini N Jhangiani
- Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA
| | | | - Wendy K Chung
- Departments of Pediatrics and Medicine, Columbia University, New York, NY 10032, USA
| | - Galen M Schauer
- Department of Pathology, Kaiser Permanente Oakland Medical Center, Oakland, CA 94611, USA
| | - Mark H Lipson
- Department of Genetics, Kaiser Permanente Sacramento Medical Center, Sacramento, CA 95815, USA
| | - Catherine L Mercer
- Wessex Clinical Genetics Service, University Hospital Southampton NHS Foundation Trust, Princess Anne Hospital, Southampton SO16 5YA, UK
| | - Arie van Haeringen
- Department of Clinical Genetics, Leiden University Medical Center, 2333 ZA Leiden, the Netherlands
| | - Qian Liu
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Edwina Popek
- Department of Pathology and Immunology, Baylor College of Medicine, Houston, TX 77030, USA
| | - Zeynep H Coban Akdemir
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - James R Lupski
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Texas Children's Hospital, Houston, TX 77030, USA; Human Genome Sequencing Center, Baylor College of Medicine, Houston, TX 77030, USA; Department of Pediatrics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Przemyslaw Szafranski
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Bertrand Isidor
- Service de Génétique Médicale, CHU de Nantes, 44000 Nantes, France; Inserm, CNRS, Univ Nantes, l'institut du thorax, 44000 Nantes, France
| | | | - Paweł Stankiewicz
- Department of Molecular & Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA; Baylor Genetics, Houston, TX 77021, USA; Institute of Mother and Child, 01-211 Warsaw, Poland.
| |
Collapse
|
6
|
Yin C, Li K, Yu Y, Huang H, Yu Y, Wang Z, Yan J, Pu Y, Li Z, Li D, Chen P, Chen F. Genome-wide association study identifies loci and candidate genes for non-idiopathic pulmonary hypertension in Eastern Chinese Han population. BMC Pulm Med 2018; 18:158. [PMID: 30290780 PMCID: PMC6173928 DOI: 10.1186/s12890-018-0719-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2018] [Accepted: 09/06/2018] [Indexed: 01/17/2023] Open
Abstract
BACKGROUND Pulmonary hypertension (PH) is a rare disease characterized by proliferation and occlusion of small pulmonary arterioles, which has been associated with a high mortality rate. The pathogenesis of PH is complex and incompletely understood, which includes both genetic and environmental factors that alter vascular structure and function. METHODS Thus we aimed to reveal the potential genetic etiology of PH by targeting 143 tag SNPs of 14 candidate genes. Totally 208 individuals from Chinese Han population were enrolled in the present study, including 109 non-idiopathic PH patients and 99 healthy controls. RESULTS The data revealed that 2 SNPs were associated with PH overall susceptibility at p < 3×10- 4 after Bonferroni correction. The top hit was rs6557421 (p = 4.5×10- 9), located within Nox3 gene on chromosome 6. Another SNP rs3744439 located in Tbx4 gene, also showed evidence of association with PH susceptibility (p = 1.2×10- 6). The distribution of genotype frequencies of rs6557421 and rs3744439 have dramatic differences between PH patients and controls. Individuals with rs6557421 TT genotype had a 10.72-fold/14.20-fold increased risk to develop PH when compared with GG or GG/GT carriers in codominant or recessive model, respectively (TT versus GG: 95%CI = 4.79-24.00; TT versus GG/GT: 95%CI = 6.65-30.33). As for rs3744439, AG genotype only occurred in healthy controls but has not been observed in PH patients. We further validated the result by using 26 different populations from five regions around the globe, including African (AFR), American (AMR), East Asian (EAS), European (EUR), and South Asian (SAS). In consistent with the present case-control study's results, significantly different genotype frequencies of the observed SNPs existed between PH patients and healthy individuals from all over the world. CONCLUSIONS The results suggested that rs6557421 variant in Nox3 and rs3744439 variant in Tbx4 might have potential effect on individual susceptibility to pulmonary hypertension, which could lead to therapeutic or diagnosis approaches in PH.
Collapse
Affiliation(s)
- Caiyong Yin
- Department of Forensic Medicine, Nanjing Medical University, Nanjing, Jiangsu, 211166, People's Republic of China.,MOE Key Laboratory of Contemporary Anthropology, Department of Anthropology and Human Genetics, School of Life Sciences, Fudan University, Shanghai, 200438, People's Republic of China
| | - Kai Li
- Department of Forensic Medicine, Nanjing Medical University, Nanjing, Jiangsu, 211166, People's Republic of China
| | - Yanfang Yu
- Department of Forensic Medicine, Nanjing Medical University, Nanjing, Jiangsu, 211166, People's Republic of China
| | - Huijie Huang
- Department of Forensic Medicine, Nanjing Medical University, Nanjing, Jiangsu, 211166, People's Republic of China
| | - Youjia Yu
- Department of Forensic Medicine, Nanjing Medical University, Nanjing, Jiangsu, 211166, People's Republic of China
| | - Zhongqun Wang
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212001, People's Republic of China
| | - Jinchuan Yan
- Department of Cardiology, Affiliated Hospital of Jiangsu University, Zhenjiang, Jiangsu, 212001, People's Republic of China
| | - Yan Pu
- School of Medicine, Southeast University, Nanjing, Jiangsu, 210009, People's Republic of China
| | - Zheng Li
- Department of Forensic Medicine, Nanjing Medical University, Nanjing, Jiangsu, 211166, People's Republic of China
| | - Ding Li
- Department of Forensic Medicine, Nanjing Medical University, Nanjing, Jiangsu, 211166, People's Republic of China
| | - Peng Chen
- Department of Forensic Medicine, Nanjing Medical University, Nanjing, Jiangsu, 211166, People's Republic of China.
| | - Feng Chen
- Department of Forensic Medicine, Nanjing Medical University, Nanjing, Jiangsu, 211166, People's Republic of China. .,Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing, Jiangsu, 211166, People's Republic of China.
| |
Collapse
|