1
|
Martel RD, Hoyos NA, Tapia-Laliena MÁ, Herrmann I, Herrmann M, Khasanov R, Schäfer KH. Intra-arterial delivery of neurospheres into isolated perfused porcine colons: a proof of concept. Biol Methods Protoc 2024; 9:bpae022. [PMID: 38628556 PMCID: PMC11018533 DOI: 10.1093/biomethods/bpae022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Revised: 03/21/2024] [Accepted: 03/30/2024] [Indexed: 04/19/2024] Open
Abstract
Cell replacement in aganglionic intestines is a promising, yet merely experimental tool for the therapy of congenital dysganglionosis of the enteric nervous system like Hirschsprung disease. While the injection of single cells or neurospheres to a defined and very restricted location is trivial, the translation to the clinical application, where large aganglionic or hypoganglionic areas need to be colonized (hundreds of square centimetres), afford a homogeneous distribution of multiple neurospheres all over the affected tissue areas. Reaching the entire aganglionic area in vivo is critical for the restoration of peristaltic function. The latter mainly depends on an intact nervous system that extends throughout the organ. Intra-arterial injection is a common method in cell therapy and may be the key to delivering cells or neurospheres into the capillary bed of the colon with area-wide distribution. We describe an experimental method for monitoring the distribution of a defined number of neurospheres into porcine recta ex vivo, immediately after intra-arterial injection. We designed this method to localize grafting sites of single neurospheres in precise biopsies which can further be examined in explant cultures. The isolated perfused porcine rectum allowed us to continuously monitor the perfusion pressure. A blockage of too many capillaries would lead to an ischaemic situation and an increase of perfusion pressure. Since we could demonstrate that the area-wide delivery of neurospheres did not alter the overall vascular resistance, we showed that the delivery does not significantly impair the local circulation.
Collapse
Affiliation(s)
- Richard D Martel
- Department of Pediatric Surgery, Medical Faculty Mannheim, University Medical Center Mannheim, Heidelberg University, Heidelberg, Germany
- Department of Neurophysiology, Mannheim Center for Translational Neurosciences (MCTN), Medical Faculty Mannheim, Heidelberg University, Heidelberg, Germany
| | - Nicolas A Hoyos
- Department of Pediatric Surgery, Medical Faculty Mannheim, University Medical Center Mannheim, Heidelberg University, Heidelberg, Germany
| | - María Ángeles Tapia-Laliena
- Department of Pediatric Surgery, Medical Faculty Mannheim, University Medical Center Mannheim, Heidelberg University, Heidelberg, Germany
| | - Irmgard Herrmann
- Department of Medicine 3, Universitäts-Klinikum Erlangen, Erlangen, Germany
| | - Martin Herrmann
- Department of Pediatric Surgery, Medical Faculty Mannheim, University Medical Center Mannheim, Heidelberg University, Heidelberg, Germany
- Department of Medicine 3, Universitäts-Klinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum Immuntherapie DZI, Universitätsklinikum Erlangen, Erlangen, Germany
| | - Rasul Khasanov
- Department of Pediatric Surgery, Medical Faculty Mannheim, University Medical Center Mannheim, Heidelberg University, Heidelberg, Germany
| | - Karl-Herbert Schäfer
- Enteric Nervous System Group, University of Applied Sciences Kaiserslautern, Zweibrücken, Germany
| |
Collapse
|
2
|
Ohkura T, Burns AJ, Hotta R. Updates and Challenges in ENS Cell Therapy for the Treatment of Neurointestinal Diseases. Biomolecules 2024; 14:229. [PMID: 38397466 PMCID: PMC10887039 DOI: 10.3390/biom14020229] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2024] [Revised: 02/07/2024] [Accepted: 02/14/2024] [Indexed: 02/25/2024] Open
Abstract
Neurointestinal diseases represent a significant challenge in clinical management with current palliative approaches failing to overcome disease and treatment-related morbidity. The recent progress with cell therapy to restore missing or defective components of the gut neuromusculature offers new hope for potential cures. This review discusses the progress that has been made in the sourcing of putative stem cells and the studies into their biology and therapeutic potential. We also explore some of the practical challenges that must be overcome before cell-based therapies can be applied in the clinical setting. Although a number of obstacles remain, the rapid advances made in the enteric neural stem cell field suggest that such therapies are on the near horizon.
Collapse
Affiliation(s)
- Takahiro Ohkura
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (T.O.); (A.J.B.)
| | - Alan J. Burns
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (T.O.); (A.J.B.)
- Stem Cells and Regenerative Medicine, Great Ormond Street Institute of Child Health, University College London, London WC1N 1EH, UK
| | - Ryo Hotta
- Department of Pediatric Surgery, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA; (T.O.); (A.J.B.)
| |
Collapse
|
3
|
Nakazawa-Tanaka N, Fujiwara N, Miyahara K, Akazawa C, Urao M, Yamataka A. The impact of the recipient intestinal site on the differentiation of transplanted enteric neural crest cells. Pediatr Surg Int 2023; 39:297. [PMID: 37982909 DOI: 10.1007/s00383-023-05587-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/30/2023] [Indexed: 11/21/2023]
Abstract
PURPOSE It has long been established that the failure of enteric neural crest cells (ENCCs) to colonize the entire gut results in aganglionosis at the distal colon in Hirschsprung disease (HD). However, it is still unclear how the intestinal microenvironment of the distal aganglionic gut differs from that of the proximal ganglionic gut in HD versus normal gut. We have recently succeeded in transplanting ENCC into aganglionic gut in endothelin receptor B (Ednrb) knockout (KO) mice. to advance the development of cell therapy for HD, it is essential to determine if the transplanted ENCCs differentiate normally in aganglionic gut. Therefore, we designed this study to investigate the impact of the environment of the recipient intestinal tract, at various sites of aganglionic gut, on the differentiation of transplanted ENCCs. METHODS ENCCs were isolated from Sox10 Venus transgenic (Tg) mouse gut on embryonic day 18.5 (E18.5) and neurospheres (NS) were generated. Then, NS were transplanted into aganglionic KO and wildtype (WT) gut that had been transected just distal to the ENCC wavefront (KO-wf: n = 6, WT: n = 7), and into distal KO gut transected at a site equivalent to that of the WT (KO-d: n = 6) on E12.5. ENCC differentiation was evaluated using whole-mount immunohistochemistry with Tuj-1 (neuronal marker) and GFAP (glial marker) antibodies. RESULTS The transplanted ENCCs migrated to form the myenteric and submucosal plexus in all groups. The ratio of the area of Tuj-1-positive cells/GFAP-positive cells in migrated cells in the recipient gut was found to be significantly lower in KO-d compared to KO-wf and WT, while there was no significant difference between KO-wf and WT groups. This suggests that neuronal/glial differentiation was decreased in KO-d compared to that in KO-wf and WT groups. CONCLUSION Our study highlights the differences in ENCC differentiation depending on the site of transplantation. To further develop cell therapy for HD, it is important to consider the impact of the recipient intestinal environment on transplanted ENCCs.
Collapse
Affiliation(s)
- Nana Nakazawa-Tanaka
- Department of Pediatric Surgery, Juntendo University Nerima Hospital, 3-1-10 Takanodai Nerima-ku, Tokyo, 177-8521, Japan.
| | - Naho Fujiwara
- Department of Pediatric Surgery, Juntendo University School of Medicine, Tokyo, Japan
| | - Katsumi Miyahara
- Laboratory of Morphology and Image Analysis, Biomedical Research Core Facilities, Juntendo University Graduate School of Medicine, Tokyo, Japan
| | - Chihiro Akazawa
- Intractable Disease Research Center, Juntendo University School of Medicine, Tokyo, Japan
| | - Masahiko Urao
- Department of Pediatric Surgery, Juntendo University Nerima Hospital, 3-1-10 Takanodai Nerima-ku, Tokyo, 177-8521, Japan
| | - Atsuyuki Yamataka
- Department of Pediatric Surgery, Juntendo University School of Medicine, Tokyo, Japan
| |
Collapse
|
4
|
Montalva L, Cheng LS, Kapur R, Langer JC, Berrebi D, Kyrklund K, Pakarinen M, de Blaauw I, Bonnard A, Gosain A. Hirschsprung disease. Nat Rev Dis Primers 2023; 9:54. [PMID: 37828049 DOI: 10.1038/s41572-023-00465-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 09/12/2023] [Indexed: 10/14/2023]
Abstract
Hirschsprung disease (HSCR) is a rare congenital intestinal disease that occurs in 1 in 5,000 live births. HSCR is characterized by the absence of ganglion cells in the myenteric and submucosal plexuses of the intestine. Most patients present during the neonatal period with the first meconium passage delayed beyond 24 h, abdominal distension and vomiting. Syndromes associated with HSCR include trisomy 21, Mowat-Wilson syndrome, congenital central hypoventilation syndrome, Shah-Waardenburg syndrome and cartilage-hair hypoplasia. Multiple putative genes are involved in familial and isolated HSCR, of which the most common are the RET proto-oncogene and EDNRB. Diagnosis consists of visualization of a transition zone on contrast enema and confirmation via rectal biopsy. HSCR is typically managed by surgical removal of the aganglionic bowel and reconstruction of the intestinal tract by connecting the normally innervated bowel down to the anus while preserving normal sphincter function. Several procedures, namely Swenson, Soave and Duhamel procedures, can be undertaken and may include a laparoscopically assisted approach. Short-term and long-term comorbidities include persistent obstructive symptoms, enterocolitis and soiling. Continued research and innovation to better understand disease mechanisms holds promise for developing novel techniques for diagnosis and therapy, and improving outcomes in patients.
Collapse
Affiliation(s)
- Louise Montalva
- Department of Paediatric Surgery, Robert-Debré Children's University Hospital, Paris, France.
- Faculty of Health, Paris-Cité University, Paris, France.
- NeuroDiderot, INSERM UMR1141, Paris, France.
| | - Lily S Cheng
- Division of Paediatric Surgery, Texas Children's Hospital, Houston, TX, USA
- Division of Paediatric Surgery, University of Virginia, Charlottesville, VA, USA
| | - Raj Kapur
- Department of Pathology, Seattle Children's Hospital, Seattle, WA, USA
| | - Jacob C Langer
- Division of Paediatric Surgery, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Dominique Berrebi
- Department of Pathology, Robert-Debré and Necker Children's University Hospital, Paris, France
| | - Kristiina Kyrklund
- Department of Paediatric Surgery, Helsinki University Central Hospital, Helsinki, Finland
| | - Mikko Pakarinen
- Department of Paediatric Surgery, Helsinki University Central Hospital, Helsinki, Finland
| | - Ivo de Blaauw
- Department of Surgery, Division of Paediatric Surgery, Radboudumc-Amalia Children's Hospital, Nijmegen, Netherlands
| | - Arnaud Bonnard
- Department of Paediatric Surgery, Robert-Debré Children's University Hospital, Paris, France
- Faculty of Health, Paris-Cité University, Paris, France
- NeuroDiderot, INSERM UMR1141, Paris, France
| | - Ankush Gosain
- Department of Paediatric Surgery, Children's Hospital Colorado, Aurora, CO, USA.
| |
Collapse
|