1
|
Budkowska M, Ostrycharz E, Serwin NM, Nazarewski Ł, Cecerska-Heryć E, Poręcka M, Rykowski P, Pietrzak R, Zieniewicz K, Siennicka A, Hukowska-Szematowicz B, Dołęgowska B. Biomarkers of the Complement System Activation (C3a, C5a, sC5b-9) in Serum of Patients before and after Liver Transplantation. Biomedicines 2023; 11:2070. [PMID: 37509709 PMCID: PMC10377212 DOI: 10.3390/biomedicines11072070] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 07/17/2023] [Accepted: 07/21/2023] [Indexed: 07/30/2023] Open
Abstract
The liver has a huge impact on the functioning of our body and the preservation of homeostasis. It is exposed to many serious diseases, which may lead to the chronic failure of this organ, which is becoming a global health problem today. Currently, the final form of treatment in patients with end-stage (acute and chronic) organ failure is transplantation. The proper function of transplanted organs depends on many cellular processes and immune and individual factors. An enormous role in the process of acceptance or rejection of a transplanted organ is attributed to, among others, the activation of the complement system. The aim of this study was the evaluation of the concentration of selected biomarkers' complement system activation (C3a, C5a, and sC5b-9 (terminal complement complex)) in the serum of patients before and after liver transplantation (24 h, two weeks). The study was conducted on a group of 100 patients undergoing liver transplantation. There were no complications during surgery and no transplant rejection in any of the patients. All patients were discharged home 2-3 weeks after the surgery. The levels of all analyzed components of the complement system were measured using the ELISA method. Additionally, the correlations of the basic laboratory parameters-C-reactive protein (CRP), hemoglobin (Hb), total bilirubin, alkaline phosphatase (ALP), alanine aminotransferase (ALT), aspartate aminotransferase (AST), gamma-glutamyl transpeptidase (GGTP), and albumin-with the parameters of the complement system (C3a, C5a, and sC5b-9) were determined. In our study, changes in the concentrations of all examined complement system components before and after liver transplantation were observed, with the lowest values before liver transplantation and the highest concentration two weeks after. The direct increase in components of the complement system (C3a, C5a, and sC5b-9) 24 h after transplantation likely affects liver damage after ischemia-reperfusion injury (IRI), while their increase two weeks after transplantation may contribute to transplant tolerance. Increasingly, attention is being paid to the role of C3a and CRP as biomarkers of damage and failure of various organs. From the point of view of liver transplantation, the most interesting correlation in our own research was found exactly between CRP and C3a, 24 h after the transplantation. This study shows that changes in complement activation biomarkers and the correlation with CRP in blood could be a prognostic signature of liver allograft survival or rejection.
Collapse
Affiliation(s)
- Marta Budkowska
- Department of Medical Analytics, Pomeranian Medical University, Al. Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland
| | - Ewa Ostrycharz
- Institute of Biology, University of Szczecin, 71-412 Szczecin, Poland
- Doctoral School, University of Szczecin, 70-383 Szczecin, Poland
- Molecular Biology and Biotechnology Center, University of Szczecin, 71-412 Szczecin, Poland
| | - Natalia Maria Serwin
- Department of Laboratory Medicine, Pomeranian Medical University, Al. Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland
| | - Łukasz Nazarewski
- Department of General, Transplant and Liver Surgery, Medical University of Warsaw, ul Banacha 1a, 02-097 Warsaw, Poland
| | - Elżbieta Cecerska-Heryć
- Department of Laboratory Medicine, Pomeranian Medical University, Al. Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland
| | - Marta Poręcka
- Department of General, Transplant and Liver Surgery, Medical University of Warsaw, ul Banacha 1a, 02-097 Warsaw, Poland
| | - Paweł Rykowski
- Department of General, Transplant and Liver Surgery, Medical University of Warsaw, ul Banacha 1a, 02-097 Warsaw, Poland
| | - Radosław Pietrzak
- Department of General, Transplant and Liver Surgery, Medical University of Warsaw, ul Banacha 1a, 02-097 Warsaw, Poland
| | - Krzysztof Zieniewicz
- Department of General, Transplant and Liver Surgery, Medical University of Warsaw, ul Banacha 1a, 02-097 Warsaw, Poland
| | - Aldona Siennicka
- Department of Medical Analytics, Pomeranian Medical University, Al. Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland
| | - Beata Hukowska-Szematowicz
- Institute of Biology, University of Szczecin, 71-412 Szczecin, Poland
- Molecular Biology and Biotechnology Center, University of Szczecin, 71-412 Szczecin, Poland
| | - Barbara Dołęgowska
- Department of Laboratory Medicine, Pomeranian Medical University, Al. Powstańców Wielkopolskich 72, 70-111 Szczecin, Poland
| |
Collapse
|
2
|
Holt MF, Michelsen AE, Shahini N, Bjørkelund E, Bendz CH, Massey RJ, Schjalm C, Halvorsen B, Broch K, Ueland T, Gullestad L, Nilsson PH, Aukrust P, Mollnes TE, Louwe MC. The Alternative Complement Pathway Is Activated Without a Corresponding Terminal Pathway Activation in Patients With Heart Failure. Front Immunol 2021; 12:800978. [PMID: 35003128 PMCID: PMC8738166 DOI: 10.3389/fimmu.2021.800978] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 12/08/2021] [Indexed: 01/15/2023] Open
Abstract
Objective Dysregulation of the complement system has been described in patients with heart failure (HF). However, data on the alternative pathway are scarce and it is unknown if levels of factor B (FB) and the C3 convertase C3bBbP are elevated in these patients. We hypothesized that plasma levels of FB and C3bBbP would be associated with disease severity and survival in patients with HF. Methods We analyzed plasma levels of FB, C3bBbP, and terminal C5b-9 complement complex (TCC) in 343 HF patients and 27 healthy controls. Results Compared with controls, patients with HF had elevated levels of circulating FB (1.6-fold, p < 0.001) and C3bBbP (1.3-fold, p < 0.001). In contrast, TCC, reflecting the terminal pathway, was not significantly increased (p = 0.15 vs controls). FB was associated with NT-proBNP, troponin, eGFR, and i.e., C-reactive protein. FB, C3bBbP and TCC were not associated with mortality in HF during a mean follow up of 4.3 years. Conclusion Our findings suggest that in patients with HF, the alternative pathway is activated. However, this is not accompanied by activation of the terminal pathway.
Collapse
Affiliation(s)
- Margrethe Flesvig Holt
- Research Institute of Internal Medicine, Oslo University Hospital, Oslo, Norway
- Department of Cardiology, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Annika E. Michelsen
- Research Institute of Internal Medicine, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Negar Shahini
- Research Institute of Internal Medicine, Oslo University Hospital, Oslo, Norway
| | - Elisabeth Bjørkelund
- Department of Cardiology, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Christina Holt Bendz
- Department of Cardiology, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Richard J. Massey
- Department of Cardiology, Oslo University Hospital, Rikshospitalet, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Camilla Schjalm
- Department of Immunology, Oslo University Hospital Rikshospitalet and University of Oslo, Oslo, Norway
| | - Bente Halvorsen
- Research Institute of Internal Medicine, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Kaspar Broch
- Department of Cardiology, Oslo University Hospital, Rikshospitalet, Oslo, Norway
- K.G. Jebsen Cardiac Research Center, Center for Heart Failure Research, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Thor Ueland
- Research Institute of Internal Medicine, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Faculty of Health Sciences, K. G. Jebsen Thrombosis Research Center, University of Tromsø – The Arctic University of Norway, Tromsø, Norway
| | - Lars Gullestad
- Department of Cardiology, Oslo University Hospital, Rikshospitalet, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- K.G. Jebsen Cardiac Research Center, Center for Heart Failure Research, Faculty of Medicine, University of Oslo, Oslo, Norway
| | - Per H. Nilsson
- Department of Immunology, Oslo University Hospital Rikshospitalet and University of Oslo, Oslo, Norway
- Linnaeus Centre for Biomaterials Chemistry, Linnaeus University, Kalmar, Sweden
| | - Pål Aukrust
- Research Institute of Internal Medicine, Oslo University Hospital, Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Oslo, Norway
- Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital Rikshospitalet, Oslo, Norway
| | - Tom Eirik Mollnes
- Department of Immunology, Oslo University Hospital Rikshospitalet and University of Oslo, Oslo, Norway
- Faculty of Health Sciences, K. G. Jebsen Thrombosis Research Center, University of Tromsø – The Arctic University of Norway, Tromsø, Norway
- Research Laboratory, Nordland Hospital, Bodø, Norway
- Centre of Molecular Inflammation Research, Norwegian University of Science and Technology, Trondheim, Norway
| | - Mieke C. Louwe
- Research Institute of Internal Medicine, Oslo University Hospital, Oslo, Norway
| |
Collapse
|
3
|
Lidani KCF, Andrade FA, Beltrame MH, Chakravarti I, Tizzot MR, Cavalcanti EO, Sandri TL, Luz PR, Messias-Reason IJ. Ficolin-3 in chronic Chagas disease: Low serum levels associated with the risk of cardiac insufficiency. Parasite Immunol 2021; 43:e12829. [PMID: 33686686 DOI: 10.1111/pim.12829] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 03/01/2021] [Accepted: 03/04/2021] [Indexed: 11/30/2022]
Abstract
AIMS To investigate whether FCN3 polymorphisms and circulating ficolin-3 levels were associated with clinical forms of chronic Chagas disease (CD) and to assess their potential use as biomarkers for the disease or its severity. METHODS AND RESULTS FCN3 polymorphisms (g.1637delC (rs532781899) in exon 5; g.3524_3532insTATTTGGCC (rs28362807) in intron 5 and g.4473C > A) (rs4494157) in intron 7) were determined in 178 chronic CD patients (65 asymptomatic, 68 cardiac, 21 digestive and 24 cardiodigestive), and 285 healthy controls by sequence-specific PCR. Ficolin-3 serum levels, measured by ELISA in 80 patients and 80 controls, did not differ between groups. On the other hand, ficolin-3 levels were positively correlated with left ventricular ejection fraction (P = .002; r = .5), with lower levels associated with increased risk of cardiac insufficiency (P = .033; OR 7.21, 95%IC 1.17-44.4). Ficolin-3 levels were positively correlated with ficolin-2 (P = .021; r = .63), and negatively with MBL (P = .002; r = -.36) and pentraxin-3 (P = .04; r = -.32) levels. No significant results were observed for the investigated FCN3 polymorphisms and CD. The g.1637del/1637C heterozygotes presented lower ficolin-3 levels than g.1637C/1637C homozygotes in the control group (P = .023). CONCLUSION Low ficolin-3 levels may play a role in the pathophysiology of cardiac insufficiency associated with CD.
Collapse
Affiliation(s)
| | - Fabiana Antunes Andrade
- Laboratory of Molecular Immunopathology, Clinical Hospital, Federal University of Paraná, Curitiba, Paraná, Brazil
| | - Marcia Holsbach Beltrame
- Laboratory of Human Molecular Genetics, Department of Genetics, Federal University of Paraná, Curitiba, Paraná, Brazil
| | - Indira Chakravarti
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, Maryland, USA
| | - Maria Regina Tizzot
- Laboratory of Molecular Immunopathology, Clinical Hospital, Federal University of Paraná, Curitiba, Paraná, Brazil
| | - Edneia Oliveira Cavalcanti
- Laboratory of Molecular Immunopathology, Clinical Hospital, Federal University of Paraná, Curitiba, Paraná, Brazil
| | | | - Paola Rosa Luz
- Laboratory of Molecular Immunopathology, Clinical Hospital, Federal University of Paraná, Curitiba, Paraná, Brazil
| | - Iara J Messias-Reason
- Laboratory of Molecular Immunopathology, Clinical Hospital, Federal University of Paraná, Curitiba, Paraná, Brazil
| |
Collapse
|
4
|
Komeno M, Pang X, Shimizu A, Molla MR, Yasuda-Yamahara M, Kume S, Rahman NIA, Soh JEC, Nguyen LKC, Ahmat Amin MKB, Kokami N, Sato A, Asano Y, Maegawa H, Ogita H. Cardio- and reno-protective effects of dipeptidyl peptidase III in diabetic mice. J Biol Chem 2021; 296:100761. [PMID: 33971198 PMCID: PMC8167299 DOI: 10.1016/j.jbc.2021.100761] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 04/27/2021] [Accepted: 05/05/2021] [Indexed: 01/09/2023] Open
Abstract
Diabetes mellitus (DM) causes injury to tissues and organs, including to the heart and kidney, resulting in increased morbidity and mortality. Thus, novel potential therapeutics are continuously required to minimize DM-related organ damage. We have previously shown that dipeptidyl peptidase III (DPPIII) has beneficial roles in a hypertensive mouse model, but it is unknown whether DPPIII has any effects on DM. In this study, we found that intravenous administration of recombinant DPPIII in diabetic db/db mice for 8 weeks suppressed the DM-induced cardiac diastolic dysfunctions and renal injury without alteration of the blood glucose level. This treatment inhibited inflammatory cell infiltration and fibrosis in the heart and blocked the increase in albuminuria by attenuating the disruption of the glomerular microvasculature and inhibiting the effacement of podocyte foot processes in the kidney. The beneficial role of DPPIII was, at least in part, mediated by the cleavage of a cytotoxic peptide, named Peptide 2, which was increased in db/db mice compared with normal mice. This peptide consisted of nine amino acids, was a digested fragment of complement component 3 (C3), and had an anaphylatoxin-like effect determined by the Miles assay and chemoattractant analysis. The effect was dependent on its interaction with the C3a receptor and protein kinase C-mediated RhoA activation downstream of the receptor in endothelial cells. In conclusion, DPPIII plays a protective role in the heart and kidney in a DM animal model through cleavage of a peptide that is a part of C3.
Collapse
Affiliation(s)
- Masahiro Komeno
- Division of Molecular Medical Biochemistry, Department of Biochemistry and Molecular Biology, Shiga University of Medical Science, Otsu, Japan
| | - Xiaoling Pang
- Division of Molecular Medical Biochemistry, Department of Biochemistry and Molecular Biology, Shiga University of Medical Science, Otsu, Japan; Department of Emergency, The Fourth Affiliated Hospital of China Medical University, Shenyang, China
| | - Akio Shimizu
- Division of Molecular Medical Biochemistry, Department of Biochemistry and Molecular Biology, Shiga University of Medical Science, Otsu, Japan
| | - Md Rasel Molla
- Division of Molecular Medical Biochemistry, Department of Biochemistry and Molecular Biology, Shiga University of Medical Science, Otsu, Japan
| | | | - Shinji Kume
- Department of Medicine, Shiga University of Medical Science, Otsu, Japan
| | - Nor Idayu A Rahman
- Division of Molecular Medical Biochemistry, Department of Biochemistry and Molecular Biology, Shiga University of Medical Science, Otsu, Japan
| | - Joanne Ern Chi Soh
- Division of Molecular Medical Biochemistry, Department of Biochemistry and Molecular Biology, Shiga University of Medical Science, Otsu, Japan
| | - Le Kim Chi Nguyen
- Division of Molecular Medical Biochemistry, Department of Biochemistry and Molecular Biology, Shiga University of Medical Science, Otsu, Japan
| | - Mohammad Khusni B Ahmat Amin
- Division of Molecular Medical Biochemistry, Department of Biochemistry and Molecular Biology, Shiga University of Medical Science, Otsu, Japan
| | - Nao Kokami
- Division of Molecular Medical Biochemistry, Department of Biochemistry and Molecular Biology, Shiga University of Medical Science, Otsu, Japan
| | - Akira Sato
- Division of Molecular Medical Biochemistry, Department of Biochemistry and Molecular Biology, Shiga University of Medical Science, Otsu, Japan
| | - Yoshihiro Asano
- Department of Cardiovascular Medicine, Osaka University Graduate School of Medicine, Suita, Japan
| | - Hiroshi Maegawa
- Department of Medicine, Shiga University of Medical Science, Otsu, Japan
| | - Hisakazu Ogita
- Division of Molecular Medical Biochemistry, Department of Biochemistry and Molecular Biology, Shiga University of Medical Science, Otsu, Japan.
| |
Collapse
|
5
|
Wang G, Zhang J, Dai Y, Xu Q, Zhu Q. Local renal complement activation mediates immune kidney injury by inducing endothelin-1 signalling and inflammation in trichloroethylene-sensitised mice. Toxicol Lett 2020; 333:130-139. [PMID: 32763311 DOI: 10.1016/j.toxlet.2020.07.036] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2020] [Revised: 07/30/2020] [Accepted: 07/31/2020] [Indexed: 12/21/2022]
Abstract
Trichloroethylene (TCE) is a widely used industrial solvent that causes trichloroethylene hypersensitivity syndrome (THS) with multi-system damage, including kidney injury. Clinical studies have shown that the complement system is important for TCE-induced kidney injury. Our previous study found excessive deposition of complement C3, mainly on the glomerulus, indicating that local renal complement is activated after TCE sensitisation. However, whether local renal complement activation mediates TCE-induced immune kidney injury and the underlying mechanisms remain unknown. Therefore, we established a TCE percutaneous sensitisation BALB/c mouse model to explore the mechanisms by pretreating with or without the complement activation antagonist, cathepsin L inhibitor (CatLi). As expected, more C3 and C3a were detected mainly on glomerulus of TCE positive sensitisation (TCE+) mice. Renal dysfunction and pathological damage were also clearly observed in TCE+ mice. Moreover, the mRNA and protein expression of ET-1 increased significantly with local renal complement activation after TCE sensitisation, leading to cytokines release and inflammation. In addition, activation of p38MAPK and NF-κBp65 pathways were detected in kidneys of TCE+ mice, and CatLi pretreatment decreased these changes through complement activation antagonisation. Our research uncovered a novel role of local renal complement activation during immune kidney injury after TCE sensitisation through induction of ET-1 signalling and inflammation.
Collapse
Affiliation(s)
- Guoxiu Wang
- Department of Dermatology, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China; Department of Nutrition and Food Hygiene, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Jiaxiang Zhang
- Department of Occupational Health and Environment Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Yuying Dai
- Department of Occupational Health and Environment Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Qiongying Xu
- Department of Occupational Health and Environment Health, School of Public Health, Anhui Medical University, Hefei, Anhui, China
| | - Qixing Zhu
- Department of Dermatology, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui, China.
| |
Collapse
|
6
|
Ragino YI, Stakhneva EM, Polonskaya YV, Kashtanova EV. The Role of Secretory Activity Molecules of Visceral Adipocytes in Abdominal Obesity in the Development of Cardiovascular Disease: A Review. Biomolecules 2020; 10:biom10030374. [PMID: 32121175 PMCID: PMC7175189 DOI: 10.3390/biom10030374] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2019] [Revised: 02/25/2020] [Accepted: 02/26/2020] [Indexed: 12/11/2022] Open
Abstract
Adipose tissue is considered one of the endocrine organs in the body because of its ability to synthesize and release a large number of hormones, cytokines, and growth and vasoactive factors that influence a variety of physiological and pathophysiological processes, such as vascular tone, inflammation, vascular smooth muscle cell migration, endothelial function, and vascular redox state. Moreover, genetic factors substantially contribute to the risk of obesity. Research into the biochemical effects of molecules secreted by visceral adipocytes as well as their molecular genetic characteristics is actively conducted around the world mostly in relation to pathologies of the cardiovascular system, metabolic syndrome, and diabetes mellitus. Adipokines could be developed into biomarkers for diagnosis, prognosis, and therapeutic targets in different diseases. This review describes the relevance of secretory activity molecules of visceral adipocytes in cardiovascular disease associated abdominal obesity.
Collapse
|
7
|
Cuvelliez M, Vandewalle V, Brunin M, Beseme O, Hulot A, de Groote P, Amouyel P, Bauters C, Marot G, Pinet F. Circulating proteomic signature of early death in heart failure patients with reduced ejection fraction. Sci Rep 2019; 9:19202. [PMID: 31844116 PMCID: PMC6914779 DOI: 10.1038/s41598-019-55727-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2019] [Accepted: 12/03/2019] [Indexed: 12/11/2022] Open
Abstract
Heart failure (HF) remains a main cause of mortality worldwide. Risk stratification of patients with systolic chronic HF is critical to identify those who may benefit from advanced HF therapies. The aim of this study is to identify plasmatic proteins that could predict the early death (within 3 years) of HF patients with reduced ejection fraction hospitalized in CHRU de Lille. The subproteome targeted by an aptamer-based technology, the Slow Off-rate Modified Aptamer (SOMA) scan assay of 1310 proteins, was profiled in blood samples from 168 HF patients, and 203 proteins were significantly modulated between patients who died of cardiovascular death and patients who were alive after 3 years of HF evaluation (Wilcoxon test, FDR 5%). A molecular network was built using these 203 proteins, and the resulting network contained 2281 molecules assigned to 34 clusters annotated to biological pathways by Gene Ontology. This network model highlighted extracellular matrix organization as the main mechanism involved in early death in HF patients. In parallel, an adaptive Least Absolute Shrinkage and Selection Operator (LASSO) was performed on these 203 proteins, and six proteins were selected as candidates to predict early death in HF patients: complement C3, cathepsin S and F107B were decreased and MAPK5, MMP1 and MMP7 increased in patients who died of cardiovascular causes compared with patients living 3 years after HF evaluation. This proteomic signature of 6 circulating plasma proteins allows the identification of systolic HF patients with a risk of early death.
Collapse
Affiliation(s)
- Marie Cuvelliez
- Univ. Lille, CHU Lille, Inserm, Institut Pasteur de Lille, U1167 - RID-AGE - Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement, F-59000, Lille, France.,FHU REMOD-HF, Lille, France
| | - Vincent Vandewalle
- Univ. Lille, CHU Lille, Inria Lille Nord-Europe, EA2694 - MODAL - MOdels for Data Analysis and Learning, F-59000, Lille, France.,Univ. Lille, « Institut Français de Bioinformatique », « Billille- plateforme de bioinformatique et bioanalyse de Lille », F-59000, Lille, France
| | - Maxime Brunin
- Univ. Lille, « Institut Français de Bioinformatique », « Billille- plateforme de bioinformatique et bioanalyse de Lille », F-59000, Lille, France
| | - Olivia Beseme
- Univ. Lille, CHU Lille, Inserm, Institut Pasteur de Lille, U1167 - RID-AGE - Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement, F-59000, Lille, France.,FHU REMOD-HF, Lille, France
| | - Audrey Hulot
- Univ. Lille, « Institut Français de Bioinformatique », « Billille- plateforme de bioinformatique et bioanalyse de Lille », F-59000, Lille, France
| | - Pascal de Groote
- Univ. Lille, CHU Lille, Inserm, Institut Pasteur de Lille, U1167 - RID-AGE - Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement, F-59000, Lille, France.,FHU REMOD-HF, Lille, France
| | - Philippe Amouyel
- Univ. Lille, CHU Lille, Inserm, Institut Pasteur de Lille, U1167 - RID-AGE - Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement, F-59000, Lille, France
| | - Christophe Bauters
- Univ. Lille, CHU Lille, Inserm, Institut Pasteur de Lille, U1167 - RID-AGE - Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement, F-59000, Lille, France.,FHU REMOD-HF, Lille, France
| | - Guillemette Marot
- Univ. Lille, CHU Lille, Inria Lille Nord-Europe, EA2694 - MODAL - MOdels for Data Analysis and Learning, F-59000, Lille, France.,Univ. Lille, « Institut Français de Bioinformatique », « Billille- plateforme de bioinformatique et bioanalyse de Lille », F-59000, Lille, France
| | - Florence Pinet
- Univ. Lille, CHU Lille, Inserm, Institut Pasteur de Lille, U1167 - RID-AGE - Facteurs de risque et déterminants moléculaires des maladies liées au vieillissement, F-59000, Lille, France. .,FHU REMOD-HF, Lille, France.
| |
Collapse
|
8
|
Regal JF, Lund JM, Wing CR, Root KM, McCutcheon L, Bemis LT, Gilbert JS, Fleming SD. Interactions between the complement and endothelin systems in normal pregnancy and following placental ischemia. Mol Immunol 2019; 114:10-18. [PMID: 31326653 DOI: 10.1016/j.molimm.2019.06.015] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Revised: 06/22/2019] [Accepted: 06/23/2019] [Indexed: 01/01/2023]
Abstract
Preeclampsia is characterized by new onset hypertension and fetal growth restriction and is associated with aberrant activation of the innate immune complement system and stressed or ischemic placenta. Previous studies have suggested a role for both endothelin and complement system activation products in new onset hypertension in pregnancy, but inter-relationships of the pathways are unclear. We hypothesized that complement activation following placental ischemia stimulates the endothelin pathway to cause hypertension and impair fetal growth. The Reduced Uterine Perfusion Pressure (RUPP) model results in hypertension and fetal growth restriction in a pregnant rat due to placental ischemia caused by mechanical obstruction of blood flow to uterus and placenta. The effect of inhibitor of complement activation soluble Complement Receptor 1 (sCR1) and endothelin A receptor (ETA) antagonist atrasentan on hypertension, fetal weight, complement activation (systemic circulating C3a and local C3 placental deposition) and endothelin [circulating endothelin and message for preproendothelin (PPE), ETA and endothelin B receptor (ETB) in placenta] in the RUPP rat model were determined. Following placental ischemia, sCR1 attenuated hypertension but increased message for PPE and ETA in placenta, suggesting complement activation causes hypertension via an endothelin independent pathway. With ETA antagonism the placental ischemia-induced increase in circulating C3a was unaffected despite inhibition of hypertension, indicating systemic C3a alone is not sufficient. In normal pregnancy, inhibiting complement activation increased plasma endothelin but not placental PPE message. Atrasentan treatment increased fetal weight, circulating endothelin and placental ETA message, and unexpectedly increased local complement activation in placenta (C3 deposition) but not C3a in circulation, suggesting endothelin controls local placental complement activation in normal pregnancy. Atrasentan also significantly decreased message for endogenous complement regulators Crry and CD55 in placenta and kidney in normal pregnancy. Results of our study indicate that complement/endothelin interactions differ in pregnancies complicated with placental ischemia vs normal pregnancy, as well as locally vs systemically. These data clearly illustrate the complex interplay between complement and endothelin indicating that perturbations of either pathway may affect pregnancy outcomes.
Collapse
Affiliation(s)
- Jean F Regal
- Department of Biomedical Sciences, 1035 University Dr., University of Minnesota Medical School, Duluth Campus, Duluth, Minnesota, 55812, USA.
| | - Jenna M Lund
- Department of Biomedical Sciences, 1035 University Dr., University of Minnesota Medical School, Duluth Campus, Duluth, Minnesota, 55812, USA.
| | - Cameron R Wing
- Department of Biomedical Sciences, 1035 University Dr., University of Minnesota Medical School, Duluth Campus, Duluth, Minnesota, 55812, USA.
| | - Kate M Root
- Department of Biomedical Sciences, 1035 University Dr., University of Minnesota Medical School, Duluth Campus, Duluth, Minnesota, 55812, USA.
| | - Luke McCutcheon
- Department of Biomedical Sciences, 1035 University Dr., University of Minnesota Medical School, Duluth Campus, Duluth, Minnesota, 55812, USA.
| | - Lynne T Bemis
- Department of Biomedical Sciences, 1035 University Dr., University of Minnesota Medical School, Duluth Campus, Duluth, Minnesota, 55812, USA.
| | - Jeffrey S Gilbert
- Department of Biomedical Sciences, 1035 University Dr., University of Minnesota Medical School, Duluth Campus, Duluth, Minnesota, 55812, USA.
| | - Sherry D Fleming
- Division of Biology, 18 Ackert, Kansas State University, 1717 Claflin Rd, Manhattan, Kansas, 66506, USA.
| |
Collapse
|
9
|
Mueller KAL, Patzelt J, Sauter M, Maier P, Gekeler S, Klingel K, Kandolf R, Seizer P, Gawaz M, Geisler T, Langer HF. Myocardial expression of the anaphylatoxin receptor C3aR is associated with cardiac inflammation and prognosis in patients with non-ischaemic heart failure. ESC Heart Fail 2018; 5:846-857. [PMID: 30168657 PMCID: PMC6165948 DOI: 10.1002/ehf2.12298] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 04/07/2018] [Indexed: 01/24/2023] Open
Abstract
Aim The aim of this study is to analyse the prognostic value of complement anaphylatoxin receptors in patients with non‐ischaemic cardiomyopathy undergoing endomyocardial biopsy. Methods and results In 102 patients (72.5% male patients, median age 54 years) with non‐ischaemic cardiomyopathy, myocardial expression of C3aR was assessed among other parameters. The primary study endpoint was a composite of death, heart transplantation, heart failure‐related re‐hospitalization, and deterioration of left ventricular ejection fraction within a mean follow‐up of 11.9 months. The number of cells, which stained positive for C3aR, was significantly increased in patients with inflammatory compared with non‐inflammatory cardiomyopathy (1.75 ± 0.31 cells in inflammatory cardiomyopathy vs. 0.94 ± 0.26 in non‐inflammatory cardiomyopathy, P = 0.049). Subsequently, positive expression for C3aR was judged based on a semi‐quantitative scoring system. Significantly, more patients with positive MHCII and CD68 expression showed an increased number of C3aR‐positive cells. C3aR expression based on this score was more pronounced in patients with human herpesvirus 6 viral genome detection. Kaplan–Meier curves illustrate that the C3aR‐negative group reached the primary endpoint significantly more often (mean follow‐up 11.9 months, log rank 5.963, P = 0.015). Lack of C3aR expression was a strong independent predictor for the primary endpoint in Cox regression analysis [hazard ratio 0.46 (0.26–0.82, P = 0.009)]. Conclusions C3aR‐positive cells are found more often in patients with inflammatory cardiomyopathy. The relevance of C3aR‐positive cells in patients with non‐ischaemic cardiomyopathy should be further evaluated as potential predictors or modulators of adverse cardiac remodelling, the substrate of progressive heart failure.
Collapse
Affiliation(s)
- Karin A L Mueller
- Department of Cardiovascular Medicine, University Hospital, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Johannes Patzelt
- Department of Cardiovascular Medicine, University Hospital, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Manuela Sauter
- Section for Cardioimmunology, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Philipp Maier
- Section for Cardioimmunology, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Sarah Gekeler
- Section for Cardioimmunology, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Karin Klingel
- Department for Molecular Pathology, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Reinhard Kandolf
- Department for Molecular Pathology, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Peter Seizer
- Department of Cardiovascular Medicine, University Hospital, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Meinrad Gawaz
- Department of Cardiovascular Medicine, University Hospital, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Tobias Geisler
- Department of Cardiovascular Medicine, University Hospital, Eberhard Karls University of Tübingen, Tübingen, Germany
| | - Harald F Langer
- Department of Cardiovascular Medicine, University Hospital, Eberhard Karls University of Tübingen, Tübingen, Germany.,Section for Cardioimmunology, Eberhard Karls University of Tübingen, Tübingen, Germany
| |
Collapse
|
10
|
Orrem HL, Nilsson PH, Pischke SE, Grindheim G, Garred P, Seljeflot I, Husebye T, Aukrust P, Yndestad A, Andersen GØ, Barratt‐Due A, Mollnes TE. Acute heart failure following myocardial infarction: complement activation correlates with the severity of heart failure in patients developing cardiogenic shock. ESC Heart Fail 2018; 5:292-301. [PMID: 29424484 PMCID: PMC5933968 DOI: 10.1002/ehf2.12266] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 12/22/2017] [Indexed: 02/06/2023] Open
Abstract
AIMS Heart failure (HF) is an impending complication to myocardial infarction. We hypothesized that the degree of complement activation reflects severity of HF following acute myocardial infarction. METHODS AND RESULTS The LEAF trial (LEvosimendan in Acute heart Failure following myocardial infarction) evaluating 61 patients developing HF within 48 h after percutaneous coronary intervention-treated ST-elevation myocardial infarction herein underwent a post hoc analysis. Blood samples were drawn from inclusion to Day 5 and at 42 day follow-up, and biomarkers were measured with enzyme immunoassays. Regional myocardial contractility was measured by echocardiography as wall motion score index (WMSI). The cardiogenic shock group (n = 9) was compared with the non-shock group (n = 52). Controls (n = 44) were age-matched and sex-matched healthy individuals. C4bc, C3bc, C3bBbP, and sC5b-9 were elevated in patients at inclusion compared with controls (P < 0.01). The shock group had higher levels compared with the non-shock group for all activation products except C3bBbP (P < 0.05). At Day 42, all products were higher in the shock group (P < 0.05). In the shock group, sC5b-9 correlated significantly with WMSI at baseline (r = 0.68; P = 0.045) and at Day 42 (r = 0.84; P = 0.036). Peak sC5b-9 level correlated strongly with WMSI at Day 42 (r = 0.98; P = 0.005). Circulating endothelial cell activation markers sICAM-1 and sVCAM-1 were higher in the shock group during the acute phase (P < 0.01), and their peak levels correlated with sC5b-9 peak level in the whole HF population (r = 0.32; P = 0.014 and r = 0.30; P = 0.022, respectively). CONCLUSIONS Complement activation discriminated cardiogenic shock from non-shock in acute ST-elevation myocardial infarction complicated by HF and correlated with regional contractility and endothelial cell activation, suggesting a pathogenic role of complement in this condition.
Collapse
Affiliation(s)
- Hilde L. Orrem
- Department of ImmunologyOslo University Hospital, RikshospitaletOsloNorway
| | - Per H. Nilsson
- Department of ImmunologyOslo University Hospital, RikshospitaletOsloNorway
- K.G. Jebsen Inflammatory Research CentreUniversity of OsloOsloNorway
- Linnaeus Centre for Biomaterials ChemistryLinnaeus UniversityKalmarSweden
| | - Søren E. Pischke
- Department of ImmunologyOslo University Hospital, RikshospitaletOsloNorway
- Division of Emergencies and Critical Care, Department of Anesthesiology, RikshospitaletOslo University HospitalOsloNorway
| | - Guro Grindheim
- Division of Emergencies and Critical Care, Department of Anesthesiology, RikshospitaletOslo University HospitalOsloNorway
| | - Peter Garred
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Rigshospitalet, Faculty of Health and Medical SciencesUniversity of CopenhagenCopenhagenDenmark
| | - Ingebjørg Seljeflot
- Center for Clinical Heart ResearchOslo University Hospital, UllevålOsloNorway
- Department of CardiologyOslo University Hospital, UllevålOsloNorway
- Institute of Clinical Medicine, Faculty of MedicineUniversity of OsloOsloNorway
| | - Trygve Husebye
- Department of CardiologyOslo University Hospital, UllevålOsloNorway
- Institute of Clinical Medicine, Faculty of MedicineUniversity of OsloOsloNorway
- Center of Heart Failure ResearchUniversity of OsloOsloNorway
| | - Pål Aukrust
- K.G. Jebsen Inflammatory Research CentreUniversity of OsloOsloNorway
- Research Institute of Internal MedicineOslo University HospitalOsloNorway
- Section of Clinical Immunology and Infectious DiseasesOslo University HospitalOsloNorway
- Institute of Clinical Medicine, Faculty of MedicineUniversity of OsloOsloNorway
| | - Arne Yndestad
- K.G. Jebsen Inflammatory Research CentreUniversity of OsloOsloNorway
- Research Institute of Internal MedicineOslo University HospitalOsloNorway
- Institute of Clinical Medicine, Faculty of MedicineUniversity of OsloOsloNorway
- Center of Heart Failure ResearchUniversity of OsloOsloNorway
| | - Geir Ø. Andersen
- Center for Clinical Heart ResearchOslo University Hospital, UllevålOsloNorway
- Department of CardiologyOslo University Hospital, UllevålOsloNorway
- Center of Heart Failure ResearchUniversity of OsloOsloNorway
| | - Andreas Barratt‐Due
- Department of ImmunologyOslo University Hospital, RikshospitaletOsloNorway
- Division of Emergencies and Critical Care, Department of Anesthesiology, RikshospitaletOslo University HospitalOsloNorway
| | - Tom E. Mollnes
- Department of ImmunologyOslo University Hospital, RikshospitaletOsloNorway
- K.G. Jebsen Inflammatory Research CentreUniversity of OsloOsloNorway
- Institute of Clinical Medicine, Faculty of MedicineUniversity of OsloOsloNorway
- Research Laboratory Nordland Hospital, Bodø and K.G. Jebsen TRECUniversity of TromsøTromsøNorway
- Centre of Molecular Inflammation ResearchNorwegian University of Science and TechnologyTrondheimNorway
| |
Collapse
|
11
|
Horvath P, Tarnoki DL, Tarnoki AD, Karlinger K, Lazar Z, Losonczy G, Kunos L, Bikov A. Complement system activation in obstructive sleep apnea. J Sleep Res 2018; 27:e12674. [DOI: 10.1111/jsr.12674] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 11/19/2017] [Accepted: 01/15/2018] [Indexed: 12/12/2022]
Affiliation(s)
- Peter Horvath
- Department of Pulmonology; Semmelweis University; Budapest Hungary
| | - David L. Tarnoki
- Department of Radiology; Semmelweis University; Budapest Hungary
| | - Adam D. Tarnoki
- Department of Radiology; Semmelweis University; Budapest Hungary
| | - Kinga Karlinger
- Department of Radiology; Semmelweis University; Budapest Hungary
| | - Zsofia Lazar
- Department of Pulmonology; Semmelweis University; Budapest Hungary
| | - Gyorgy Losonczy
- Department of Pulmonology; Semmelweis University; Budapest Hungary
| | - Laszlo Kunos
- Department of Pulmonology; Semmelweis University; Budapest Hungary
| | - Andras Bikov
- Department of Pulmonology; Semmelweis University; Budapest Hungary
| |
Collapse
|
12
|
Suffritti C, Tobaldini E, Schiavon R, Strada S, Maggioni L, Mehta S, Sandrone G, Toschi-Dias E, Cicardi M, Montano N. Complement and contact system activation in acute congestive heart failure patients. Clin Exp Immunol 2017; 190:251-257. [PMID: 28707730 DOI: 10.1111/cei.13011] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/05/2017] [Indexed: 12/13/2022] Open
Abstract
Recent experimental data indicate a pathogenic role of complement activation in congestive heart failure (CHF). The aim of this study was to evaluate contact and complement systems activation in patients hospitalized for an acute episode of CHF. Forty-two of 80 consecutive patients admitted at our hospital with confirmed diagnosis of acute CHF were enrolled. They underwent blood sampling within 24 h from admission (T0) and at clinical stability (T1). Patients were stratified for ejection fraction (EF) based on echocardiographic test. We measured plasma levels of C3, C4, sC5b-9 and cleaved high molecular weight kininogen (contact activation marker). At T1, C3 levels increased significantly compared to T0 (97 ± 2 versus 104 ± 3% of total pooled plasma, P < 0·01). Classifying patients according to EF, only patients with preserved EF presented a significant increase of C3 from T0 to T1 (99 ± 3 versus 108 ± 4%, P = 0·03). When the sample was stratified according to clinical outcome, C3 (98 ± 3 versus 104 ± 4%, P = 0·03) and sC5b-9 levels (204 ± 10 versus 230 ± 11 ng/ml, P = 0·03) were increased in patients who had positive outcome after hospitalization. CHF patients with preserved EF and positive outcome after hospitalization showed higher levels of sC5b-9 in the T1 period compared with T0 (211 ± 14 versus 243 ± 14 ng/ml, P = 0·04). Our results suggest that the complement system reacts differently if CHF occurs with preserved or reduced EF. This finding is interesting if we consider the difference in epidemiology, pathogenesis and possible therapeutic approaches of these two clinical entities.
Collapse
Affiliation(s)
- C Suffritti
- Departments of Biomedical and Clinical Sciences 'L. Sacco', University of Milan, Milan, Italy
| | - E Tobaldini
- Department of Internal Medicine, Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico, Milan, Italy.,Department of Clinical Sciences and Community of Health, University of Milan, Milan, Italy
| | - R Schiavon
- Internal Medicine, L. Sacco Hospital, University of Milan, Milan, Italy
| | - S Strada
- Internal Medicine, L. Sacco Hospital, University of Milan, Milan, Italy
| | - L Maggioni
- Departments of Biomedical and Clinical Sciences 'L. Sacco', University of Milan, Milan, Italy
| | - S Mehta
- Biomedical Research and Environmental Sciences, JES Tech, Houston, TX, USA
| | - G Sandrone
- Internal Medicine, L. Sacco Hospital, University of Milan, Milan, Italy
| | - E Toschi-Dias
- Heart Institute (InCor), University of Sao Paulo Medical School, Sao Paulo, Brazil
| | - M Cicardi
- Departments of Biomedical and Clinical Sciences 'L. Sacco', University of Milan, Milan, Italy
| | - N Montano
- Department of Internal Medicine, Fondazione IRCCS Cà Granda, Ospedale Maggiore Policlinico, Milan, Italy.,Department of Clinical Sciences and Community of Health, University of Milan, Milan, Italy
| |
Collapse
|
13
|
Downregulation of the Complement Cascade In Vitro, in Mice and in Patients with Cardiovascular Disease by the BET Protein Inhibitor Apabetalone (RVX-208). J Cardiovasc Transl Res 2017; 10:337-347. [PMID: 28567671 PMCID: PMC5585290 DOI: 10.1007/s12265-017-9755-z] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Accepted: 05/17/2017] [Indexed: 12/11/2022]
Abstract
Apabetalone (RVX-208) is an epigenetic regulator developed to treat cardiovascular disease (CVD) that targets BET proteins. Through transcriptional regulation RVX-208 modulates pathways that underlie CVD including reverse cholesterol transport, vascular inflammation, coagulation, and complement. Using transcriptomics and proteomics we show that complement is one of the top pathways downregulated by RVX-208 in primary human hepatocytes (PHH) and in plasma from CVD patients. RVX-208 reduces basal and cytokine-driven expression of complement factors in PHH and in chimeric mice with humanized livers. Plasma proteomics of CVD patients shows that RVX-208 decreases complement proteins and regulators, including complement activators SAP and CRP. Circulating activated fragments C5a, C3b, and C5b-C6 are reduced by 51, 32, and 10%, respectively, indicating decreased activity of complement in patients. As complement components are linked to CVD and metabolic syndrome, including major acute cardiac events, modulating their levels and activity by RVX-208 may alleviate risks associated with these diseases.
Collapse
|
14
|
Trendelenburg M, Stallone F, Pershyna K, Eisenhut T, Twerenbold R, Wildi K, Dubler D, Schirmbeck L, Puelacher C, Rubini Gimenez M, Sabti Z, Osswald L, Breidthardt T, Müller C. Complement activation products in acute heart failure: Potential role in pathophysiology, responses to treatment and impacts on long-term survival. EUROPEAN HEART JOURNAL-ACUTE CARDIOVASCULAR CARE 2017; 7:348-357. [DOI: 10.1177/2048872617694674] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Background: Previous studies have indicated a correlation between heart failure, inflammation and poorer outcome. However, the pathogenesis and role of inflammation in acute heart failure (AHF) is incompletely studied and understood. The aim of our study was to explore the potential role of innate immunity – quantified by complement activation products (CAPs) – in pathophysiology, responses to treatment and impacts on long-term survival in AHF. Methods: In a prospective study enrolling 179 unselected patients with AHF, plasma concentrations of C4d, C3a and sC5b-9 were measured in a blinded fashion on the first day of hospitalisation and prior to discharge. The final diagnosis, including the AHF phenotype, was adjudicated by two independent cardiologists. Long-term follow-up was obtained. Findings in AHF were compared to that obtained in 75 healthy blood donors (control group). Results: Overall, concentrations of all three CAPs were significantly higher in patients with AHF than in healthy controls (all p < 0.001). In an age-adjusted subgroup analysis, significant differences could be confirmed for concentrations of C4d and sC5b-9, and these parameters further increased after 6 days of in-hospital treatment ( p < 0.001). In contrast, C3a levels in AHF patients did not differ from those of the control group in the age-adjusted subgroup analysis and remained constant during hospitalisation. Concentrations of C4d, C3a and sC5b-9 were significantly higher when AHF was triggered by an infection as compared to other triggers ( p < 0.001). In addition, CAP levels significantly correlated with each other ( r = 0.64–0.76), but did not predict death within 2 years. Conclusions: Activation of complement with increased plasma levels of C4d and sC5b-9 at admission and increasing levels during AHF treatment seems to be associated with AHF, particularly when AHF was triggered by an infection. However, CAPs do not have a prognostic value in AHF.
Collapse
Affiliation(s)
- Marten Trendelenburg
- Division of Internal Medicine, University Hospital Basel, University of Basel, Switzerland
- Laboratory for Clinical Immunology, University of Basel, Department of Biomedicine, University Hospital Basel, Switzerland
| | - Fabio Stallone
- Division of Internal Medicine, University Hospital Basel, University of Basel, Switzerland
- Department of Cardiology, Cardiovascular Research Institute Basel (CRIB), University Hospital Basel, University of Basel, Switzerland
- Cardiovascular Research Institute Basel (CRIB), University Hospital Basel, University of Basel, Switzerland
| | - Kateryna Pershyna
- Department of Cardiology, Cardiovascular Research Institute Basel (CRIB), University Hospital Basel, University of Basel, Switzerland
- Cardiovascular Research Institute Basel (CRIB), University Hospital Basel, University of Basel, Switzerland
| | - Timo Eisenhut
- Department of Cardiology, Cardiovascular Research Institute Basel (CRIB), University Hospital Basel, University of Basel, Switzerland
- Cardiovascular Research Institute Basel (CRIB), University Hospital Basel, University of Basel, Switzerland
| | - Raphael Twerenbold
- Department of Cardiology, Cardiovascular Research Institute Basel (CRIB), University Hospital Basel, University of Basel, Switzerland
- Cardiovascular Research Institute Basel (CRIB), University Hospital Basel, University of Basel, Switzerland
| | - Karin Wildi
- Department of Cardiology, Cardiovascular Research Institute Basel (CRIB), University Hospital Basel, University of Basel, Switzerland
- Cardiovascular Research Institute Basel (CRIB), University Hospital Basel, University of Basel, Switzerland
- Department of Intensive Care Medicine, University Hospital Basel, University of Basel, Switzerland
| | - Denise Dubler
- Laboratory for Clinical Immunology, University of Basel, Department of Biomedicine, University Hospital Basel, Switzerland
| | - Lucia Schirmbeck
- Laboratory for Clinical Immunology, University of Basel, Department of Biomedicine, University Hospital Basel, Switzerland
| | - Christian Puelacher
- Department of Cardiology, Cardiovascular Research Institute Basel (CRIB), University Hospital Basel, University of Basel, Switzerland
- Cardiovascular Research Institute Basel (CRIB), University Hospital Basel, University of Basel, Switzerland
| | - Maria Rubini Gimenez
- Department of Cardiology, Cardiovascular Research Institute Basel (CRIB), University Hospital Basel, University of Basel, Switzerland
- Cardiovascular Research Institute Basel (CRIB), University Hospital Basel, University of Basel, Switzerland
| | - Zaid Sabti
- Department of Cardiology, Cardiovascular Research Institute Basel (CRIB), University Hospital Basel, University of Basel, Switzerland
- Cardiovascular Research Institute Basel (CRIB), University Hospital Basel, University of Basel, Switzerland
| | - Luca Osswald
- Department of Cardiology, Cardiovascular Research Institute Basel (CRIB), University Hospital Basel, University of Basel, Switzerland
- Cardiovascular Research Institute Basel (CRIB), University Hospital Basel, University of Basel, Switzerland
| | - Tobias Breidthardt
- Division of Internal Medicine, University Hospital Basel, University of Basel, Switzerland
- Department of Cardiology, Cardiovascular Research Institute Basel (CRIB), University Hospital Basel, University of Basel, Switzerland
- Cardiovascular Research Institute Basel (CRIB), University Hospital Basel, University of Basel, Switzerland
| | - Christian Müller
- Department of Cardiology, Cardiovascular Research Institute Basel (CRIB), University Hospital Basel, University of Basel, Switzerland
- Cardiovascular Research Institute Basel (CRIB), University Hospital Basel, University of Basel, Switzerland
| |
Collapse
|
15
|
Széplaki G, Boros AM, Szilágyi S, Osztheimer I, Jenei Z, Kosztin A, Nagy KV, Karády J, Molnár L, Tahin T, Zima E, Gellér L, Prohászka Z, Merkely B. Complement C3a predicts outcome in cardiac resynchronization therapy of heart failure. Inflamm Res 2016; 65:933-940. [DOI: 10.1007/s00011-016-0976-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Revised: 06/23/2016] [Accepted: 07/19/2016] [Indexed: 12/19/2022] Open
|
16
|
Pozsonyi Z, Förhécz Z, Gombos T, Karádi I, Jánoskuti L, Prohászka Z. Copeptin (C-terminal pro arginine-vasopressin) is an independent long-term prognostic marker in heart failure with reduced ejection fraction. Heart Lung Circ 2014; 24:359-67. [PMID: 25618448 DOI: 10.1016/j.hlc.2014.10.008] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2013] [Revised: 07/15/2014] [Accepted: 10/21/2014] [Indexed: 01/10/2023]
Abstract
BACKGROUND The level of copeptin, a stable fragment of pro-arginine-vasopressin (AVP), correlates with disease severity. It is an established, short-term prognostic marker for patients with heart failure with reduced ejection fraction (HFREF). We aimed to examine the association between copeptin and long-term mortality. We also studied the clinical usefulness of copeptin as a prognostic biomarker by analysing the improvement of net reclassification. METHODS Copeptin concentrations were measured in a cohort of 195 consecutive patients with HFREF. Disease severity and clinical parameters were determined at baseline, and all-cause mortality was recorded after five-year follow-up. RESULTS One hundred and ten patients died during the five-year follow-up (five-year mortality rate: 0.56). Univariate analysis identified copeptin (HR 2.168 [95% CI 1.740-2.700]) as a predictor of mortality. The final, multivariable Cox survival model identified a number of independent predictors of death. These included higher NHYA functional class, previous MI, at least one hospitalisation for worsening HF (within the two years before inclusion into the study), elevated blood urea nitrogen, NT-proBNP-, and copeptin levels, as well as increased red blood cell distribution width, and decreased GFR. The addition of copeptin alone to the baseline predictive model (NT-proBNP only) resulted in a minor (8.21%) improvement, whereas the final, multivariable model showed a significant increase in net reclassification (10.26%, p=0.015). CONCLUSIONS These data indicate that copeptin is an independent long-term prognostic marker in HFREF, with possible clinical relevance for multimarker risk prediction algorithms.
Collapse
Affiliation(s)
- Zoltán Pozsonyi
- 3(rd) Department of Internal Medicine, Semmelweis University, Kutvolgyi ut 4, Budapest, H-1114, Hungary.
| | - Zsolt Förhécz
- 3(rd) Department of Internal Medicine, Semmelweis University, Kutvolgyi ut 4, Budapest, H-1114, Hungary
| | - Tímea Gombos
- 3(rd) Department of Internal Medicine, Semmelweis University, Kutvolgyi ut 4, Budapest, H-1114, Hungary
| | - István Karádi
- 3(rd) Department of Internal Medicine, Semmelweis University, Kutvolgyi ut 4, Budapest, H-1114, Hungary
| | - Lívia Jánoskuti
- 3(rd) Department of Internal Medicine, Semmelweis University, Kutvolgyi ut 4, Budapest, H-1114, Hungary
| | - Zoltán Prohászka
- 3(rd) Department of Internal Medicine, Semmelweis University, Kutvolgyi ut 4, Budapest, H-1114, Hungary
| |
Collapse
|
17
|
Jenei ZM, Zima E, Csuka D, Munthe-Fog L, Hein E, Széplaki G, Becker D, Karádi I, Prohászka Z, Garred P, Merkely B. Complement activation and its prognostic role in post-cardiac arrest patients. Scand J Immunol 2014; 79:404-9. [PMID: 24612379 DOI: 10.1111/sji.12167] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2013] [Accepted: 02/23/2014] [Indexed: 12/23/2022]
Abstract
Cardiac arrest causes generalized ischaemia/hypoxia, and subsequent resuscitation inflicts reperfusion injury, the pathology of which is not fully understood. Moreover, predicting the prognosis of comatose, post-cardiac arrest patients is a complex clinical challenge. We hypothesized that the extent of complement activation might be a reliable predictor of mortality in this population. Forty-six comatose cardiac arrest patients were enrolled into our prospective cohort study, conducted in a tertiary care university clinic. All subjects were cooled to 32-34 °C body temperature for 24 h and then allowed to rewarm to normothermia. All patients underwent diagnostic coronary angiography. On admission, at 6 and 24 h, blood samples were taken from the arterial catheter. In these, complement products (C3a, C3, C4d, C4, SC5b9 and Bb) were measured by ELISA in blood samples. Patients were followed up for 30 days; 22 patients (47.8%) died by the end of this period. We observed that complement activation (determined as the C3a to C3 ratio) was higher in non-survivors than in survivors at each time point. In the multivariate Cox regression analysis, the C3a/C3 ratio determined 24 h after the initiation of therapeutic hypothermia predicted 30-day mortality regardless of age, sex and the APACHE II score. Complement activation occurs in post-cardiac arrest patients, and its extent correlates with 30-day survival. The C3a/C3 ratio might prove useful for estimating the prognosis of comatose post-cardiac arrest patients.
Collapse
Affiliation(s)
- Z M Jenei
- 3rd Department of Internal Medicine, Semmelweis University, Budapest, Hungary
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
18
|
A vital role for complement in heart disease. Mol Immunol 2014; 61:126-34. [PMID: 25037633 DOI: 10.1016/j.molimm.2014.06.036] [Citation(s) in RCA: 53] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2014] [Revised: 06/14/2014] [Accepted: 06/25/2014] [Indexed: 12/19/2022]
Abstract
Heart diseases are common and significant contributors to worldwide mortality and morbidity. During recent years complement mediated inflammation has been shown to be an important player in a variety of heart diseases. Despite some negative results from clinical trials using complement inhibitors, emerging evidence points to an association between the complement system and heart diseases. Thus, complement seems to be important in coronary heart disease as well as in heart failure, where several studies underscore the prognostic importance of complement activation. Furthermore, patients with atrial fibrillation often share risk factors both with coronary heart disease and heart failure, and there is some evidence implicating complement activation in atrial fibrillation. Moreover, Chagas heart disease, a protozoal infection, is an important cause of heart failure in Latin America, and the complement system is crucial for the protozoa-host interaction. Thus, complement activation appears to be involved in the pathophysiology of a diverse range of cardiac conditions. Determination of the exact role of complement in the various heart diseases will hopefully help to identify patients that might benefit from therapeutic complement intervention.
Collapse
|
19
|
Hertle E, van Greevenbroek MM, Arts IC, van der Kallen CJ, Geijselaers SL, Feskens EJ, Jansen EH, Schalkwijk CG, Stehouwer CD. Distinct associations of complement C3a and its precursor C3 with atherosclerosis and cardiovascular disease. The CODAM study. Thromb Haemost 2014; 111:1102-11. [PMID: 24500020 DOI: 10.1160/th13-10-0831] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2013] [Accepted: 01/13/2014] [Indexed: 12/17/2022]
Abstract
Complement C3 is a novel risk factor for cardiovascular disease (CVD), but the underlying mechanism is currently unknown. We determined the associations of the anaphylatoxin C3a, the activation product of C3, and of C3 itself with estimates of atherosclerosis and CVD. We studied associations of C3a and C3 with carotid intima-media thickness (cIMT), ankle-arm blood pressure index (AAIx) and CVD in cross-sectional analyses among 545 participants of the Cohort on Diabetes and Atherosclerosis Maastricht (CODAM) study (62% men, 59.4 ± 6.9 years) and examined effect modification by smoking. We conducted linear and logistic regression analyses with adjustments for age, sex, glucose metabolism status, lipids, adiposity, renal function, blood pressure, pack-years smoked, physical activity, use of medication and investigated mediation by inflammation. C3a was independently associated with cIMT (β=0.032 mm, [95% confidence interval: 0.004; 0.060]) and AAIx (β=-0.022, [-0.043; -0.001]), but C3 was not. Effect modification by smoking was only observed for CVD (P(smoking*C3a)=0.008, P(smoking*C3)=0.018), therefore these associations were stratified for smoking behaviour. Both C3a (odds ratio [OR] =2.96, [1.15; 7.62]) and C3 (OR =1.98, [1.21; 3.22]) were independently associated with CVD in heavy smokers. The association of C3 with CVD was independent of C3a. Low-grade inflammation did partially explain the association of C3a with AAIx, but not the other observed associations. This suggests that C3a and C3 have distinct roles in pathways leading to CVD. C3a may promote atherosclerosis and additionally advance CVD in heavy smokers. Conversely, C3 may be associated with CVD in heavy smokers via pathways other than atherosclerosis.
Collapse
Affiliation(s)
- Elisabeth Hertle
- Elisabeth Hertle, MSc, PhD candidate, Department of Internal Medicine and CARIM School for Cardiovascular Diseases, Maastricht University Medical Centre, Universiteitssingel 50, P.O. Box 616, 6200 MD Maastricht, The Netherlands, Tel.: +31 43 388 2462, Fax: +31 43 387 5006, E-mail:
| | | | | | | | | | | | | | | | | |
Collapse
|
20
|
Complement C3c as a biomarker in heart failure. Mediators Inflamm 2013; 2013:716902. [PMID: 24489446 PMCID: PMC3892932 DOI: 10.1155/2013/716902] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2013] [Revised: 12/08/2013] [Accepted: 12/09/2013] [Indexed: 12/20/2022] Open
Abstract
Introduction. Experimental data indicates an important role of the innate immune system in cardiac remodeling and heart failure (HF). Complement is a central effector pathway of the innate immune system. Animals lacking parts of the complement system are protected from adverse remodeling. Based on these data, we hypothesized that peripheral complement levels could be a good marker for adverse remodeling and prognosis in patients with HF. Methods and Results. Since complement activation converges on the complement factor C3, we measured serum C3c, a stable C3-conversion product, in 197 patients with stable systolic HF. Subgroups with normal and elevated C3c levels were compared. C3c levels were elevated in 17% of the cohort. Patients with elevated C3c levels exhibited a trend to better survival, slightly higher LVEF, and lower NTpro-BNP values in comparison to patients with normal C3c values. No differences were found regarding NYHA functional class. Significantly more patients with elevated C3c had preexisting diabetes. The prevalence of CAD, arterial hypertension, and atrial fibrillation was not increased in patients with elevated C3c. Conclusion. Elevated C3c levels are associated with less adverse remodeling and improved survival in patients with stable systolic heart failure.
Collapse
|
21
|
Hofmann U, Frantz S. How can we cure a heart "in flame"? A translational view on inflammation in heart failure. Basic Res Cardiol 2013; 108:356. [PMID: 23740214 PMCID: PMC3709073 DOI: 10.1007/s00395-013-0356-y] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2013] [Revised: 04/03/2013] [Accepted: 04/08/2013] [Indexed: 01/12/2023]
Abstract
The prevalence of chronic heart failure is still increasing making it a major health issue in the 21st century. Tremendous evidence has emerged over the past decades that heart failure is associated with a wide array of mechanisms subsumed under the term “inflammation”. Based on the great success of immuno-suppressive treatments in auto-immunity and transplantation, clinical trials were launched targeting inflammatory mediators in patients with chronic heart failure. However, they widely lacked positive outcomes. The failure of the initial study program directed against tumor necrosis factor-α led to the search for alternative therapeutic targets involving a broader spectrum of mechanisms besides cytokines. We here provide an overview of the current knowledge on immune activation in chronic heart failure of different etiologies, summarize clinical studies in the field, address unresolved key questions, and highlight some promising novel therapeutic targets for clinical trials from a translational basic science and clinical perspective.
Collapse
Affiliation(s)
- Ulrich Hofmann
- Department of Internal Medicine I, University Hospital Würzburg, Oberdürrbacher Straße 6, 97080, Würzburg, Germany.
| | | |
Collapse
|
22
|
Klos A, Wende E, Wareham KJ, Monk PN. International Union of Basic and Clinical Pharmacology. [corrected]. LXXXVII. Complement peptide C5a, C4a, and C3a receptors. Pharmacol Rev 2013; 65:500-43. [PMID: 23383423 DOI: 10.1124/pr.111.005223] [Citation(s) in RCA: 178] [Impact Index Per Article: 16.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The activation of the complement cascade, a cornerstone of the innate immune response, produces a number of small (74-77 amino acid) fragments, originally termed anaphylatoxins, that are potent chemoattractants and secretagogues that act on a wide variety of cell types. These fragments, C5a, C4a, and C3a, participate at all levels of the immune response and are also involved in other processes such as neural development and organ regeneration. Their primary function, however, is in inflammation, so they are important targets for the development of antiinflammatory therapies. Only three receptors for complement peptides have been found, but there are no satisfactory antagonists as yet, despite intensive investigation. In humans, there is a single receptor for C3a (C3a receptor), no known receptor for C4a, and two receptors for C5a (C5a₁ receptor and C5a₂ receptor). The most recently characterized receptor, the C5a₂ receptor (previously known as C5L2 or GPR77), has been regarded as a passive binding protein, but signaling activities are now ascribed to it, so we propose that it be formally identified as a receptor and be given a name to reflect this. Here, we describe the complex biology of the complement peptides, introduce a new suggested nomenclature, and review our current knowledge of receptor pharmacology.
Collapse
Affiliation(s)
- Andreas Klos
- Department for Medical Microbiology, Medical School Hannover, Hannover, Germany
| | | | | | | |
Collapse
|
23
|
Prohászka Z, Munthe-Fog L, Ueland T, Gombos T, Yndestad A, Förhécz Z, Skjoedt MO, Pozsonyi Z, Gustavsen A, Jánoskuti L, Karádi I, Gullestad L, Dahl CP, Askevold ET, Füst G, Aukrust P, Mollnes TE, Garred P. Association of ficolin-3 with severity and outcome of chronic heart failure. PLoS One 2013; 8:e60976. [PMID: 23596511 PMCID: PMC3626638 DOI: 10.1371/journal.pone.0060976] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2013] [Accepted: 03/05/2013] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Inflammatory mechanisms involving complement activation has been shown to take part in the pathophysiology of congestive heart failure, but the initiating mechanisms are unknown. We hypothesized that the main initiator molecules of the lectin complement pathway mannose-binding lectin (MBL), ficolin-2 and ficolin-3 were related to disease severity and outcome in chronic heart failure. METHODS AND RESULTS MBL, ficolin-2 and ficolin-3 plasma concentrations were determined in two consecutive cohorts comprising 190 patients from Hungary and 183 patients from Norway as well as controls. Disease severity and clinical parameters were determined at baseline, and all-cause mortality was registered after 5-years follow-up. In univariate analysis a low level of ficolin-3, but not that of MBL or ficolin-2, was significantly associated with advanced heart failure (New York Heart Association Class IV, p<0.001 for both cohorts) and showed inverse correlation with B- type natriuretic peptide (BNP) levels (r = -0.609, p<0.001 and r = -0.467, p<0.001, respectively). In multivariable Cox regression analysis, adjusted for age, gender and BNP, decreased plasma ficolin-3 was a significant predictor of mortality (HR 1.368, 95% CI 1.052-6.210; and HR 1.426, 95% CI 1.013-2.008, respectively). Low ficolin-3 levels were associated with increased complement activation product C3a and correspondingly decreased concentrations of complement factor C3. CONCLUSIONS This study provides evidence for an association of low ficolin-3 levels with advanced heart failure. Concordant results from two cohorts show that low levels of ficolin-3 are associated with advanced heart failure and outcome. The decrease of ficolin-3 was associated with increased complement activation.
Collapse
Affiliation(s)
- Zoltán Prohászka
- IIIrd Department of Internal Medicine, Semmelweis University, and Research Group of Inflammation Biology and Immunogenomics, Hungarian Academy of Sciences, Budapest, Hungary
| | - Lea Munthe-Fog
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Section 7631, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, Denmark
| | - Thor Ueland
- The Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Medical Faculty, University of Oslo, Norway
| | - Timea Gombos
- IIIrd Department of Internal Medicine, Semmelweis University, and Research Group of Inflammation Biology and Immunogenomics, Hungarian Academy of Sciences, Budapest, Hungary
| | - Arne Yndestad
- The Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Medical Faculty, University of Oslo, Norway
- Center for Heart Failure Research, Oslo University Hospital Rikshospitalet, Medical Faculty, University of Oslo, Norway
| | - Zsolt Förhécz
- IIIrd Department of Internal Medicine, Semmelweis University, and Research Group of Inflammation Biology and Immunogenomics, Hungarian Academy of Sciences, Budapest, Hungary
| | - Mikkel-Ole Skjoedt
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Section 7631, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, Denmark
| | - Zoltan Pozsonyi
- IIIrd Department of Internal Medicine, Semmelweis University, and Research Group of Inflammation Biology and Immunogenomics, Hungarian Academy of Sciences, Budapest, Hungary
| | - Alice Gustavsen
- Department of Immunology, Oslo University Hospital Rikshospitalet, Medical Faculty, University of Oslo, Norway
| | - Lívia Jánoskuti
- IIIrd Department of Internal Medicine, Semmelweis University, and Research Group of Inflammation Biology and Immunogenomics, Hungarian Academy of Sciences, Budapest, Hungary
| | - István Karádi
- IIIrd Department of Internal Medicine, Semmelweis University, and Research Group of Inflammation Biology and Immunogenomics, Hungarian Academy of Sciences, Budapest, Hungary
| | - Lars Gullestad
- Center for Heart Failure Research, Oslo University Hospital Rikshospitalet, Medical Faculty, University of Oslo, Norway
- Department of Cardiology, Oslo University Hospital Rikshospitalet, Medical Faculty, University of Oslo, Norway
| | - Christen P. Dahl
- The Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Medical Faculty, University of Oslo, Norway
- Center for Heart Failure Research, Oslo University Hospital Rikshospitalet, Medical Faculty, University of Oslo, Norway
- Department of Cardiology, Oslo University Hospital Rikshospitalet, Medical Faculty, University of Oslo, Norway
| | - Erik T. Askevold
- The Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Medical Faculty, University of Oslo, Norway
- Center for Heart Failure Research, Oslo University Hospital Rikshospitalet, Medical Faculty, University of Oslo, Norway
- Department of Cardiology, Oslo University Hospital Rikshospitalet, Medical Faculty, University of Oslo, Norway
| | - George Füst
- IIIrd Department of Internal Medicine, Semmelweis University, and Research Group of Inflammation Biology and Immunogenomics, Hungarian Academy of Sciences, Budapest, Hungary
| | - Pål Aukrust
- The Research Institute of Internal Medicine, Oslo University Hospital Rikshospitalet, Medical Faculty, University of Oslo, Norway
- Section of Clinical Immunology and Infectious Diseases, Oslo University Hospital Rikshospitalet, Medical Faculty, University of Oslo, Norway
| | - Tom E. Mollnes
- Department of Immunology, Oslo University Hospital Rikshospitalet, Medical Faculty, University of Oslo, Norway
| | - Peter Garred
- Laboratory of Molecular Medicine, Department of Clinical Immunology, Section 7631, Rigshospitalet, Faculty of Health Sciences, University of Copenhagen, Denmark
| |
Collapse
|
24
|
Tuomainen PO, Magga J, Timonen P, Miettinen K, Kurttila M, Vanninen E, Laitinen T, Timonen K, Punnonen K, Parviainen I, Uusaro A, Vuolteenaho O, Kivikko M, Peuhkurinen K. Intermittent levosimendan treatment in patients with severe congestive heart failure. Clin Res Cardiol 2013; 102:485-93. [DOI: 10.1007/s00392-013-0554-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Accepted: 02/27/2013] [Indexed: 01/19/2023]
|
25
|
Progress and Trends in Complement Therapeutics. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 735:1-22. [PMID: 22990692 DOI: 10.1007/978-1-4614-4118-2_1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The past few years have proven to be a highly successful and exciting period for the field of complement-directed drug discovery and development. Driven by promising experiences with the first marketed complement drugs, increased knowledge about the involvement of complement in health and disease, and improvements in structural and analytical techniques as well as animal models of disease, the field has seen a surge in creative approaches to therapeutically intervene at various stages of the cascade. An impressive panel of compounds that show promise in clinical trials is meanwhile being lined up in the pipelines of both small biotechnology and big pharmaceutical companies. Yet with this new focus on complement-targeted therapeutics, important questions concerning target selection, point and length of intervention, safety, and drug delivery emerge. In view of the diversity of the clinical disorders involving abnormal complement activity or regulation, which include both acute and chronic diseases and affect a wide range of organs, diverse yet specifically tailored therapeutic approaches may be needed to shift complement back into balance. This chapter highlights the key changes in the field that shape our current perception of complement-targeted drugs and provides a brief overview of recent strategies and emerging trends. Selected examples of complement-related diseases and inhibitor classes are highlighted to illustrate the diversity and creativity in field.
Collapse
|