1
|
Huang M, Huiskes FG, de Groot NMS, Brundel BJJM. The Role of Immune Cells Driving Electropathology and Atrial Fibrillation. Cells 2024; 13:311. [PMID: 38391924 PMCID: PMC10886649 DOI: 10.3390/cells13040311] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Revised: 02/02/2024] [Accepted: 02/04/2024] [Indexed: 02/24/2024] Open
Abstract
Atrial fibrillation (AF) is the most common progressive cardiac arrhythmia worldwide and entails serious complications including stroke and heart failure. Despite decades of clinical research, the current treatment of AF is suboptimal. This is due to a lack of knowledge on the mechanistic root causes of AF. Prevailing theories indicate a key role for molecular and structural changes in driving electrical conduction abnormalities in the atria and as such triggering AF. Emerging evidence indicates the role of the altered atrial and systemic immune landscape in driving this so-called electropathology. Immune cells and immune markers play a central role in immune remodeling by exhibiting dual facets. While the activation and recruitment of immune cells contribute to maintaining atrial stability, the excessive activation and pronounced expression of immune markers can foster AF. This review delineates shifts in cardiac composition and the distribution of immune cells in the context of cardiac health and disease, especially AF. A comprehensive exploration of the functions of diverse immune cell types in AF and other cardiac diseases is essential to unravel the intricacies of immune remodeling. Usltimately, we delve into clinical evidence showcasing immune modifications in both the atrial and systemic domains among AF patients, aiming to elucidate immune markers for therapy and diagnostics.
Collapse
Affiliation(s)
- Mingxin Huang
- Department of Physiology, Amsterdam UMC, Location Vrije Universiteit, Amsterdam Cardiovascular Sciences, Heart Failure and Arrhythmias, 1081 HZ Amsterdam, The Netherlands; (M.H.); (F.G.H.)
- Department of Cardiology, Erasmus Medical Center, 3015 GD Rotterdam, The Netherlands;
| | - Fabries G. Huiskes
- Department of Physiology, Amsterdam UMC, Location Vrije Universiteit, Amsterdam Cardiovascular Sciences, Heart Failure and Arrhythmias, 1081 HZ Amsterdam, The Netherlands; (M.H.); (F.G.H.)
| | | | - Bianca J. J. M. Brundel
- Department of Physiology, Amsterdam UMC, Location Vrije Universiteit, Amsterdam Cardiovascular Sciences, Heart Failure and Arrhythmias, 1081 HZ Amsterdam, The Netherlands; (M.H.); (F.G.H.)
| |
Collapse
|
2
|
Rafaqat S, Rafaqat S, Ijaz H. The Role of Biochemical Cardiac Markers in Atrial Fibrillation. J Innov Card Rhythm Manag 2023; 14:5611-5621. [PMID: 37927395 PMCID: PMC10621624 DOI: 10.19102/icrm.2023.14101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 04/13/2023] [Indexed: 11/07/2023] Open
Abstract
Atrial fibrillation (AF) is the most common type of cardiac arrhythmia. Proteins are a component of cardiac biomarkers containing cell structures that are released into the circulation when a myocardial injury occurs. They are essential in the diagnosis, risk assessment, and treatment of patients who have chest pain, are thought to have acute coronary syndrome, or are experiencing acute heart failure exacerbations. There are numerous biochemical cardiac markers, but this article summarizes the basic role of major biochemical cardiac markers, including cardiac natriuretic peptides, cardiac troponins, C-reactive protein (CRP), creatine kinase-MB, heart-type fatty acid-binding protein, ischemia-modified albumin, lipoprotein (a), osteopontin (OPN), and soluble suppression of tumorigenicity 2 (sST2), in AF. Atrial natriuretic peptide may serve as an indicator of atrial integrity, which may help to select appropriate treatment approaches for AF. Higher levels of N-terminal pro-B-type natriuretic peptide and brain natriuretic peptide are predictive of incidental AF. Increased troponin T release may indicate better clinical results following AF ablation. Similarly, CRP increases the risk of the AF-increasing calcium (Ca) influx in atrial myocytes, but not because of atrial fibrosis. Patients with postoperative AF have lower FABP3 gene expression in the atrium. Lipoprotein (a) (Lp[a]) may play a causative role in the onset of AF and impact various cardiac tissues. Clinical trials for Lp(a)-lowering drugs should assess their impact on preventing AF. Also, OPN was highly expressed in the circulation of AF patients and further increased with the progression of AF. sST2 was a reliable predictor of new-onset AF and can improve the accuracy of the AF risk model. There is a greater chance that these cardiac biomarkers might be employed to enhance clinical risk stratification in AF.
Collapse
Affiliation(s)
- Saira Rafaqat
- Department of Zoology, Lahore College for Women University, Lahore, Pakistan
| | - Sana Rafaqat
- Department of Biotechnology, Lahore College for Women University, Lahore, Pakistan
| | - Hafsa Ijaz
- Department of Zoology, Lahore College for Women University, Lahore, Pakistan
| |
Collapse
|
3
|
Kupusovic J, Kessler L, Bruns F, Bohnen JE, Nekolla SG, Weber MM, Lauenroth A, Rattka M, Hermann K, Dobrev D, Rassaf T, Wakili R, Rischpler C, Siebermair J. Visualization of fibroblast activation using 68Ga-FAPI PET/CT after pulmonary vein isolation with pulsed field compared with cryoballoon ablation. J Nucl Cardiol 2023; 30:2018-2028. [PMID: 36944827 PMCID: PMC10558367 DOI: 10.1007/s12350-023-03220-8] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 01/11/2023] [Indexed: 03/23/2023]
Abstract
BACKGROUND Pulsed-field ablation (PFA) is a novel ablation modality for atrial fibrillation (AF) ablating myocardium by electroporation without tissue-heating. With its different mechanism of tissue ablation, it is assumed that lesion creation is divergent to thermal energy sources. 68Ga-fibroblast-activation protein inhibitor (FAPI) PET/CT targets FAP-alpha expressed by activated fibroblasts. We aimed to assess 68Ga-FAPI uptake in pulmonary veins as surrogate for ablation damage after PFA and cryoballoon ablation (CBA). METHODS 26 patients (15 PFA, 11 CBA) underwent 68Ga-FAPI-PET/CT after ablation. Standardized uptake values (SUV) and fibroblast-activation volumes of localized tracer uptake were assessed. RESULTS Patient characteristics were comparable between groups. In PFA, focal FAPI uptake was only observed in 3/15 (20%) patients, whereas in the CBA cohort, 10/11 (90.9%) patients showed atrial visual uptake. We observed lower values of SUVmax (2.85 ± 0.56 vs 4.71 ± 2.06, P = 0.025) and FAV (1.13 ± 0.84 cm3 vs 3.91 ± 2.74 cm3, P = 0.014) along with a trend towards lower SUVpeak and SUVmean in PFA vs CBA patients, respectively. CONCLUSION Tissue response with respect to fibroblast activation seems to be less pronounced in PFA compared to established thermal ablation systems. This functional assessment might contribute to a better understanding of lesion formation in thermal and PFA ablation potentially contributing to better safety outcomes.
Collapse
Affiliation(s)
- Jana Kupusovic
- Department of Cardiology and Vascular Medicine, West German Heart and Vascular Center Essen, University of Duisburg-Essen, Hufelandstrasse 55, 45147, Essen, Germany
- Department of Cardiology and Vascular Medicine, University Hospital Frankfurt, Goethe-University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Lukas Kessler
- Department of Nuclear Medicine, University Hospital Essen, University of Duisburg-Essen, Hufelandstrasse 55, 45147, Essen, Germany
| | - Florian Bruns
- Department of Cardiology and Vascular Medicine, West German Heart and Vascular Center Essen, University of Duisburg-Essen, Hufelandstrasse 55, 45147, Essen, Germany
- Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany
| | - Jan-Eric Bohnen
- Department of Cardiology and Vascular Medicine, West German Heart and Vascular Center Essen, University of Duisburg-Essen, Hufelandstrasse 55, 45147, Essen, Germany
| | - Stephan G Nekolla
- Department of Nuclear Medicine, Klinikum Rechts der Isar, Technical University Munich, Munich, Germany
| | - Manuel M Weber
- Department of Nuclear Medicine, University Hospital Essen, University of Duisburg-Essen, Hufelandstrasse 55, 45147, Essen, Germany
| | - Anna Lauenroth
- Department of Nuclear Medicine, University Hospital Essen, University of Duisburg-Essen, Hufelandstrasse 55, 45147, Essen, Germany
| | - Manuel Rattka
- Department of Cardiology and Vascular Medicine, West German Heart and Vascular Center Essen, University of Duisburg-Essen, Hufelandstrasse 55, 45147, Essen, Germany
| | - Ken Hermann
- Department of Nuclear Medicine, University Hospital Essen, University of Duisburg-Essen, Hufelandstrasse 55, 45147, Essen, Germany
| | - Dobromir Dobrev
- Institute of Pharmacology, West German Heart and Vascular Center, University Duisburg-Essen, Essen, Germany
- Department of Molecular Physiology & Biophysics, Baylor College of Medicine, Houston, TX, USA
- Department of Medicine and Research Center, Montreal Heart Institute and Université de Montréal, Montréal, QC, Canada
| | - Tienush Rassaf
- Department of Cardiology and Vascular Medicine, West German Heart and Vascular Center Essen, University of Duisburg-Essen, Hufelandstrasse 55, 45147, Essen, Germany
| | - Reza Wakili
- Department of Cardiology and Vascular Medicine, West German Heart and Vascular Center Essen, University of Duisburg-Essen, Hufelandstrasse 55, 45147, Essen, Germany
- Department of Cardiology and Vascular Medicine, University Hospital Frankfurt, Goethe-University Frankfurt, Theodor-Stern-Kai 7, 60590, Frankfurt am Main, Germany
| | - Christoph Rischpler
- Department of Nuclear Medicine, University Hospital Essen, University of Duisburg-Essen, Hufelandstrasse 55, 45147, Essen, Germany.
- Department of Nuclear Medicine, Klinikum Stuttgart, Kriegsbergstr. 60, 70174, Stuttgart, Germany.
| | - Johannes Siebermair
- Department of Cardiology and Vascular Medicine, West German Heart and Vascular Center Essen, University of Duisburg-Essen, Hufelandstrasse 55, 45147, Essen, Germany
- Krankenhaus Goettlicher Heiland, Dornbacher Strasse. 20-30, 1170, Vienna, Austria
| |
Collapse
|
4
|
Qian Y, Fei Z, Nian F. The Association Between Rheumatoid Arthritis and Atrial Fibrillation: Epidemiology, Pathophysiology and Management. Int J Gen Med 2023; 16:1899-1908. [PMID: 37223618 PMCID: PMC10202215 DOI: 10.2147/ijgm.s406926] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 05/10/2023] [Indexed: 05/25/2023] Open
Abstract
Atrial fibrillation (AF) is the most common cardiac arrhythmia with a significant increase in morbidity and mortality worldwide. Rheumatoid arthritis (RA), as a systemic inflammatory disease, affecting 0.5-1.0% of the adult population, is associated with increased incidence of cardiac arrhythmias such as AF. Several epidemiologic studies find that the risk of AF is increased in RA when compared with the general population. Other studies are inconsistent. Considering that inflammation plays an important role in AF, RA may be involved in the occurrence and development of AF. This review summarizes the epidemiology, pathophysiology, and management of AF in patients with RA.
Collapse
Affiliation(s)
- Yezhou Qian
- Department of Cardiology, The First Hospital of Jiaxing, The Affiliated Hospital of Jiaxing University, Jiaxing, People’s Republic of China
| | - Zhangli Fei
- Department of Rheumatology, The First Hospital of Jiaxing, The Affiliated Hospital of Jiaxing University, Jiaxing, People’s Republic of China
| | - Feige Nian
- Department of Rheumatology, The First Hospital of Jiaxing, The Affiliated Hospital of Jiaxing University, Jiaxing, People’s Republic of China
| |
Collapse
|
5
|
Wu L, Jiang Z, Meulendijks ER, Baylan U, Waas ISE, Bugiani M, Tuinman PR, Fronczek J, Heunks LMA, de Groot JR, van Rossum AC, Niessen HWM, Krijnen PAJ. Atrial inflammation and microvascular thrombogenicity are increased in deceased COVID-19 patients. Cardiovasc Pathol 2023; 64:107524. [PMID: 36649811 PMCID: PMC9839463 DOI: 10.1016/j.carpath.2023.107524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
BACKGROUND Histopathological studies have shown inflammation, cardiomyocyte injury, and microvascular thrombosis in the ventricular myocardium of patients with coronavirus disease 2019 (COVID-19). However, although atrial dysfunction is common in COVID-19, little is known about histopathological changes in the atria of the heart. We therefore analyzed inflammation, cardiomyocyte injury, and microvascular thrombogenicity in the atria of deceased patients with COVID-19. METHODS Atrial tissue was obtained from autopsied COVID-19 (n=16) patients and control patients (n=10) and analyzed using immunohistochemistry. The infiltration of CD45+ leukocytes, CD3+ T lymphocytes, CD68+ macrophages, MPO+ neutrophils, and Tryptase+ mast cells were quantified as well as cardiomyocyte damage and microvascular thrombosis. In addition, Tissue Factor (TF) and Factor XII (FXII) were quantified as markers of microvascular thrombogenicity. RESULTS The numbers of lymphocytes, macrophages, and neutrophils were significantly increased in the atrial myocardium and epicardial atrial adipose tissue of COVID-19 patients compared with the control group. This was accompanied by dispersed cardiomyocyte injury, the occasional presence of microvascular thrombosis, and an increased presence of TF and FXII in the microvascular endothelium. CONCLUSIONS Severe COVID-19 induces inflammation, cardiomyocyte injury, and microvascular thrombosis in the atria of the heart.
Collapse
Affiliation(s)
- Linghe Wu
- Department of Pathology, Amsterdam University Medical Centre (AUMC), Location VUmc, Amsterdam, The Netherlands; Amsterdam Cardiovascular Sciences, AUMC, Location VUmc, Amsterdam, The Netherlands; Department of Pathology, AUMC, location AMC, Amsterdam, The Netherlands.
| | - Zhu Jiang
- Department of Pathology, Amsterdam University Medical Centre (AUMC), Location VUmc, Amsterdam, The Netherlands; Amsterdam Cardiovascular Sciences, AUMC, Location VUmc, Amsterdam, The Netherlands; Department of Pathology, AUMC, location AMC, Amsterdam, The Netherlands
| | - Eva R Meulendijks
- Department of Cardiology, AUMC, location VUmc, Amsterdam, The Netherlands
| | - Umit Baylan
- Department of Pathology, AUMC, location AMC, Amsterdam, The Netherlands
| | - Ingeborg S E Waas
- Department of Pathology, AUMC, location AMC, Amsterdam, The Netherlands
| | - Marianna Bugiani
- Department of Pathology, Amsterdam University Medical Centre (AUMC), Location VUmc, Amsterdam, The Netherlands; Department of Pathology, AUMC, location AMC, Amsterdam, The Netherlands
| | - Pieter R Tuinman
- Department of Intensive Care Medicine, AUMC, location VUmc, Amsterdam, The Netherlands
| | - Judith Fronczek
- Department of Forensic Medicine, Victorian Institute of Forensic Medicine, Monash Monash University, Southbank, Victoria, Australia
| | - Leo M A Heunks
- Department of Intensive Care Medicine, AUMC, location VUmc, Amsterdam, The Netherlands
| | - Joris R de Groot
- Department of Cardiology, AUMC, location VUmc, Amsterdam, The Netherlands
| | | | - Hans W M Niessen
- Department of Pathology, Amsterdam University Medical Centre (AUMC), Location VUmc, Amsterdam, The Netherlands; Amsterdam Cardiovascular Sciences, AUMC, Location VUmc, Amsterdam, The Netherlands; Department of Pathology, AUMC, location AMC, Amsterdam, The Netherlands; Department of Cardiac Surgery, AUMC, location VUmc, Amsterdam, The Netherlands
| | - Paul A J Krijnen
- Department of Pathology, Amsterdam University Medical Centre (AUMC), Location VUmc, Amsterdam, The Netherlands; Amsterdam Cardiovascular Sciences, AUMC, Location VUmc, Amsterdam, The Netherlands; Department of Pathology, AUMC, location AMC, Amsterdam, The Netherlands
| |
Collapse
|
6
|
Avagimyan A, Gvianishvili T, Gogiashvili L, Kakturskiy L, Sarrafzadegan N, Aznauryan A. Chemotherapy, hypothyroidism and oral dysbiosis as a novel risk factor of cardiovascular pathology development. Curr Probl Cardiol 2023; 48:101051. [PMID: 34800544 DOI: 10.1016/j.cpcardiol.2021.101051] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2021] [Revised: 11/04/2021] [Accepted: 11/05/2021] [Indexed: 02/01/2023]
Abstract
Cardiovascular disease (CVD) remains the leading cause of morbidity and mortality in the population, as well as the economic burden of the health care system. Currently, CVDs account for more than 17.6 million deaths a year and are projected to exceed 23.6 million by 2030. Unstable atheroma, and its rupture, underlies the pathology of most cardiovascular complications, particularly acute coronary syndrome, mortality from which, compared with other CV events, remains the leading one. Despite numerous efforts by WHO, national health systems, and medical authorities, the incidence and mortality from cardiovascular events remain critically high. Thus, the search for new risk factors for the development of CV pathology looks very relevant. Our working group decided to amalgamate our research data, which reflects the study of modern risk factors from the Armenian, Russian, Georgian, and Iranian medical schools. In particular, the aspects of cardiotoxic effects of chemotherapy, hypothyroidism, and oral dysbiosis are discussed.
Collapse
Affiliation(s)
- Ashot Avagimyan
- Lecturer of Anatomical Pathology Department, Yerevan State Medical University after M. Heratsi, Yerevan, Republic of Armenia
| | - Tamuna Gvianishvili
- Ivane Javakhishvili Tbilisi State University, Researcher of Department of Clinical and Experimental Pathology, Alexandre Natishvili Institute of Morphology, Ivane Javakhishvili Tbilisi State University, Tbilisi, Georgia
| | - Liana Gogiashvili
- Head of Department of Clinical and Experimental Pathology, Alexandre Natishvili Institute of Morphology, Ivane Javakhishvili Tbilisi State University, Tbilisi, Georgia
| | - Lev Kakturskiy
- Scientific Director of FSBI Research Institute of Human Morphology, President of Russian Society of Pathology, Moscow, Russia
| | - Nizal Sarrafzadegan
- Director of Isfahan Cardiovascular Research Institute, Isfahan University of Medical Science, Isfahan, Iran
| | - Artashes Aznauryan
- Histology Department, Yerevan State Medical University after M. Heratsi, Yerevan, Republic of Armenia
| |
Collapse
|
7
|
Deng CY, Zou AL, Sun L, Ji Y. Development and Validation of a Postoperative Prognostic Nomogram to Predict Recurrence in Patients with Persistent Atrial Fibrillation: A Retrospective Cohort Study. CARDIOVASCULAR INNOVATIONS AND APPLICATIONS 2023. [DOI: 10.15212/cvia.2023.0001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/13/2023] Open
Abstract
Background: Patients with persistent atrial fibrillation (PsAF) have a high risk of recurrence after catheter radiofrequency ablation. Nevertheless, no effective prognostic tools have been developed to identify these high-risk patients to date. This study sought to develop and validate a simple linear predictive model for predicting postoperative recurrence in patients with PsAF.
Methods: From June 2013 to June 2021, patients with PsAF admitted to our hospital were enrolled in this single-center, retrospective, observational study. The characteristics substantially associated with recurrence in patients with PsAF were screened through univariate and multivariate logistic regression analysis. The receiver operating characteristic curve was used to assess the predictive significance of the nomogram model after nomogram development. Furthermore, to assess the clinical value of the nomogram, we performed calibration curve and decision curve analyses.
Results: A total of 209 patients were included in the study, 42 (20.10%) of whom were monitored up to 1 year for recurrent AF. The duration of AF episodes, left atrial diameter, BMI, CKMB, and alcohol consumption were found to be independent risk factors (P<0.05) and were integrated into the nomogram model development. The area under the curve was 0.895, the sensitivity was 93.3%, and the specificity was 71.4%, thus indicating the model’s excellent predictive ability. The C-index of the predictive nomogram model was 0.906. Calibration curve and decision curve analyses further revealed that the model had robust prediction and strong discrimination ability.
Conclusion: This simple, practical, and innovative nomogram can help clinicians in evaluation of the risk of PsAF recurrence after catheter ablation, thus facilitating preoperative evaluation, postoperative monitoring and ultimately the construction of more personalized therapeutic protocols.
Collapse
Affiliation(s)
- Cong-Ying Deng
- Department of Cardiovascular Medicine, The Affiliated Changzhou No. 2 People’s Hospital of Nanjing Medical University, Changzhou, Jiangsu, China
| | - Ai-Lin Zou
- Department of Cardiovascular Medicine, The Affiliated Changzhou No. 2 People’s Hospital of Nanjing Medical University, Changzhou, Jiangsu, China
| | - Ling Sun
- Department of Cardiovascular Medicine, The Affiliated Changzhou No. 2 People’s Hospital of Nanjing Medical University, Changzhou, Jiangsu, China
| | - Yuan Ji
- Department of Cardiovascular Medicine, The Affiliated Changzhou No. 2 People’s Hospital of Nanjing Medical University, Changzhou, Jiangsu, China
| |
Collapse
|
8
|
Wang X, Meng L, Zhao Y, Liu X. Development and external validation of a prognostic model for occult atrial fibrillation in patients with ischemic stroke. Front Neurol 2023; 13:1034350. [PMID: 36742052 PMCID: PMC9891292 DOI: 10.3389/fneur.2022.1034350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Accepted: 12/05/2022] [Indexed: 01/20/2023] Open
Abstract
Objective Currently, the risk of occult atrial fibrillation (AF) could not be predicted in patients with acute ischemic stroke (AIS) using a simple scoring system. Therefore, in this study, we developed and externally validated a nomogram to predict occult AF in patients with AIS. Methods In this study, we prospectively conducted a development cohort study with data collected at our stroke center from July 2017 to February 2018, and an external validation cohort from March 2019 to December 2019. Results Follow-up data were collected from 177 participants (56.5% older than 65 years, 29.4% female) for generating the nomogram model. Multivariate logistic regression analysis was performed with AF as the dependent variable indicated that age >65 years, heart rate >100, C-reactive protein (CRP), N-terminal pro-B-type natriuretic peptide (NT-proBNP) >270, hemorrhagic transformation (HT) as independent variables for predicting the development of AF, and a nomogram was generated based on these factors. The area under the receiver operating characteristic curve (AUC-ROC) for the model was 0.937, the C-index was 0.926, and the AUC-ROC for the validation cohort was 0.913. Conclusion To our knowledge, this is the first nomogram developed and externally validated in a stroke center cohort for individualized prediction of risk of developing AIS in patients with occult AF. This nomogram could provide valuable information for the screening of occult AF after a stroke.
Collapse
|
9
|
Tian Y, Liu S, Zhang Y, Yang J, Guo P, Zhang H, Yu X, Zou T. Immune infiltration and immunophenotyping in atrial fibrillation. Aging (Albany NY) 2023; 15:213-229. [PMID: 36602538 PMCID: PMC9876632 DOI: 10.18632/aging.204470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Accepted: 12/20/2022] [Indexed: 01/05/2023]
Abstract
Atrial fibrillation (AF) is a relatively common arrhythmia in clinical practice. Although significant progress has been achieved in the treatment of AF and its associated complications, research on AF prevention lags behind, mainly due to the lack of a deep understanding of AF pathogenesis. In recent years, as our knowledge has grown, the role of the inflammatory/immune response in the occurrence and progression of AF has gradually gained attention. In this paper, based on existing gene expression data in the Gene Expression Omnibus database, a detailed description of immune infiltration status in AF is presented using a series of analytical methods, including differential analysis, Gene Ontology categorization, Kyoto Encyclopedia of Genes and Genomes enrichment analysis, and weighted gene coexpression network analysis, and analysis tools such as CIBERSORTx and Cytoscape. Several new AF/immune infiltrations-related signature genes were identified, and the AF/immune infiltration pathology was classified based on these immune signature genes, thus providing novel insights into the pathogenesis of AF based on the inflammatory response.
Collapse
Affiliation(s)
- Yuqing Tian
- Department of Cardiology, Affiliated Hospital of Panzhihua University, Panzhihua 617000, Sichuan, P.R. China
- Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730, P.R. China
| | - Shiying Liu
- Department of Plastic Surgery, Affiliated Hospital of Panzhihua University, Panzhihua 617000, Sichuan, P.R. China
| | - Yanan Zhang
- Department of Critical Care Medicine, The Affiliated Hospital of Qingdao University, Qingdao 266000, Shandong, P.R. China
| | - Jiefu Yang
- Department of Cardiology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Science, Beijing 100730, P.R. China
| | - Peiyao Guo
- Department of Cardiology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Science, Beijing 100730, P.R. China
- Peking University Fifth School of Clinical Medicine, Beijing Hospital, Beijing 100730, P.R. China
| | - Hongchao Zhang
- Department of Cardiology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Science, Beijing 100730, P.R. China
| | - Xue Yu
- Department of Cardiology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Science, Beijing 100730, P.R. China
| | - Tong Zou
- Department of Cardiology, Beijing Hospital, National Center of Gerontology, Institute of Geriatric Medicine, Chinese Academy of Medical Science, Beijing 100730, P.R. China
| |
Collapse
|
10
|
Friebel J, Witkowski M, Wegner M, Blöbaum L, Lammel S, Schencke PA, Jakobs K, Puccini M, Reißner D, Steffens D, Moos V, Schutheiss HP, Landmesser U, Rauch U. Cytotoxic CD8 + T Cells Are Involved in the Thrombo-Inflammatory Response during First-Diagnosed Atrial Fibrillation. Cells 2022; 12:cells12010141. [PMID: 36611934 PMCID: PMC9818535 DOI: 10.3390/cells12010141] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2022] [Revised: 12/23/2022] [Accepted: 12/26/2022] [Indexed: 12/31/2022] Open
Abstract
BACKGROUND Atrial myopathy and atrial fibrillation (AF) accompany thrombo-inflammation. This facilitates disease progression and promotes major adverse cardiovascular events (MACEs). Thrombin receptor (protease-activated receptor 1, PAR1) signalling is central in mediating thrombo-inflammation. We hypothesised that PAR1 signalling links coagulation and inflammation through cytotoxic CD8+ T lymphocytes in patients presenting with first-diagnosed AF (FDAF). METHODS A total of 210 patients were studied. We included data and blood samples from patients presenting with FDAF (n = 160), cardiac tissue from patients with paroxysmal AF (n = 32) and 20 controls. RESULTS During early AF, a pro-inflammatory and cytotoxic subset of T lymphocytes (CD8+) circulated more frequently when compared to patients with chronic cardiovascular disease but without AF, accompanied by elevated plasma levels of CD8+ effector molecules, which corresponded to biomarkers of adverse cardiac remodelling and atrial dysfunction. Activation of tissue factor (TF) and PAR1 was associated with pro-inflammatory and cytotoxic effector functions. PAR1-related CD8+ cell activation was more frequent in FDAF patients that experienced a MACE. CONCLUSIONS In patients with FDAF, the TF-factor Xa-factor IIa-axis contributes to thrombo-inflammation via PAR1 in CD8+ T cells. Intervening in this cascade might be a promising synergistic approach to reducing disease progression and the vascular complications of AF.
Collapse
Affiliation(s)
- Julian Friebel
- Charité Center 11—Department of Cardiology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 12203 Berlin, Germany
- Berlin Institute of Health at Charité—Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 10785 Berlin, Germany
- Department of Cardiac Anesthesiology and Intensive Care Medicine, German Heart Center, 13353 Berlin, Germany
| | - Marco Witkowski
- Charité Center 11—Department of Cardiology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 12203 Berlin, Germany
- Department of Cardiovascular & Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA
| | - Max Wegner
- Charité Center 11—Department of Cardiology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 12203 Berlin, Germany
| | - Leon Blöbaum
- Charité Center 11—Department of Cardiology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 12203 Berlin, Germany
| | - Stella Lammel
- Charité Center 11—Department of Cardiology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 12203 Berlin, Germany
| | - Philipp-Alexander Schencke
- Charité Center 11—Department of Cardiology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 12203 Berlin, Germany
| | - Kai Jakobs
- Charité Center 11—Department of Cardiology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 12203 Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 10785 Berlin, Germany
| | - Marianna Puccini
- Charité Center 11—Department of Cardiology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 12203 Berlin, Germany
| | - Daniela Reißner
- Charité Center 11—Department of Cardiology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 12203 Berlin, Germany
| | - Daniel Steffens
- Charité Center 11—Department of Cardiology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 12203 Berlin, Germany
| | - Verena Moos
- Medical Department I, Gastroenterology, Infectious Diseases and Rheumatology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 12203 Berlin, Germany
| | | | - Ulf Landmesser
- Charité Center 11—Department of Cardiology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 12203 Berlin, Germany
- Berlin Institute of Health at Charité—Universitätsmedizin Berlin, Charitéplatz 1, 10117 Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 10785 Berlin, Germany
| | - Ursula Rauch
- Charité Center 11—Department of Cardiology, Charité—Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 12203 Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), Partner Site Berlin, 10785 Berlin, Germany
- Correspondence: ; Tel.: +49-30-450-513794
| |
Collapse
|
11
|
Wei B, Huang X, Lu Y, Xie D, Wei G, Wen W. Screening of atrial fibrillation diagnostic markers based on a GEO database chip and bioinformatics analysis. J Thorac Dis 2022; 14:4773-4784. [PMID: 36647491 PMCID: PMC9840052 DOI: 10.21037/jtd-22-1457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Accepted: 11/24/2022] [Indexed: 12/23/2022]
Abstract
Background Study have shown that atrial fibrillation (AF) is a disease with genetic risk, and its pathogenesis is still unclear. This study sought to screen the gene microarray data of AF patients and to perform a bioinformatics analysis to identify AF signature diagnostic genes. Methods The AF gene sets from the Gene Expression Omnibus (GEO) database were screened, and the differentially expressed genes (DEGs) were identified after the normalization of the data set by R software. We conducted a gene set enrichment analysis, a protein-protein interaction (PPI) network analysis, a gene-gene interaction (GGI) network analysis, and an immuno-infiltration analysis. The core genes were identified from the DEGs, and base on receiver operating characteristic, the top 5 core genes in the 2 data sets were selected as diagnostic factors and a nomogram was constructed. The miRNA of the core genes were predicted and an immune cell correlation analysis was performed. Results A total of 20 DEGs were identified. The functions of these DEGs were mainly related to muscle contraction, autophagosome, and bone morphogenetic protein (BMP) binding, and focused on the calcium signaling pathway, ferroptosis, the extracellular matrix-receptor interaction, and other pathways. A total of 5 core genes [i.e., GPR22 (G protein-coupled receptor 22), COG5 (component of oligomeric golgi complex 5), GALNT16 (polypeptide N-acetylgalactosaminyltransferase 16), OTOGL (otogelin-like), and MCOLN3 (mucolipin 3)] were identified, and a linear model for risk prediction was constructed, which has good prediction ability. Plasma cells and Macrophages M2 were significantly increased in AF, while T cells follicular helper and Dendritic cells activated were significantly decreased. Conclusions In our study, we identified 5 potential diagnostic key genes (i.e., GPR22, COG5, GALNT16, OTOGL, and MCOLN3). Our findings may provide a theoretical basis for susceptibility analyses and target drug development in AF.
Collapse
Affiliation(s)
- Bixiao Wei
- Clinical Laboratory, The People’s Hospital of Baise, Baise, China;,Clinical Laboratory Center, The First Affiliated Hospital of Jinan University, Guangzhou, China;,Clinical Laboratory, The Affiliated Shunde Hospital of Jinan University, Foshan, China
| | - Xiaofang Huang
- Department of Radiology, The People’s Hospital of Baise, Baise, China
| | - Yiming Lu
- Clinical Laboratory, The People’s Hospital of Baise, Baise, China
| | - Delong Xie
- Clinical Laboratory, The People’s Hospital of Baise, Baise, China
| | - Guangji Wei
- Clinical Laboratory, The People’s Hospital of Baise, Baise, China
| | - Wangrong Wen
- Clinical Laboratory Center, The First Affiliated Hospital of Jinan University, Guangzhou, China;,Clinical Laboratory, The Affiliated Shunde Hospital of Jinan University, Foshan, China
| |
Collapse
|
12
|
Yao Y, Yang M, Liu D, Zhao Q. Immune remodeling and atrial fibrillation. Front Physiol 2022; 13:927221. [PMID: 35936905 PMCID: PMC9355726 DOI: 10.3389/fphys.2022.927221] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2022] [Accepted: 06/30/2022] [Indexed: 11/13/2022] Open
Abstract
Atrial fibrillation (AF) is a highly prevalent arrhythmia that causes high morbidity and mortality. However, the underlying mechanism of AF has not been fully elucidated. Recent research has suggested that, during AF, the immune system changes considerably and interacts with the environment and cells involved in the initiation and maintenance of AF. This may provide a new direction for research and therapeutic strategies for AF. In this review, we elaborate the concept of immune remodeling based on available data in AF. Then, we highlight the complex relationships between immune remodeling and atrial electrical, structural and neural remodeling while also pointing out some research gaps in these field. Finally, we discuss several potential immunomodulatory treatments for AF. Although the heterogeneity of existing evidence makes it ambiguous to extrapolate immunomodulatory treatments for AF into the clinical practice, immune remodeling is still an evolving concept in AF pathophysiology and further studies within this field are likely to provide effective therapies for AF.
Collapse
Affiliation(s)
- Yajun Yao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Mei Yang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Dishiwen Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
| | - Qingyan Zhao
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan, China
- Cardiovascular Research Institute of Wuhan University, Wuhan, China
- Hubei Key Laboratory of Cardiology, Wuhan, China
- *Correspondence: Qingyan Zhao,
| |
Collapse
|
13
|
Wu L, Fiet MD, Raaijmakers DR, Woudstra L, van Rossum AC, Niessen HWM, Krijnen PAJ. Transient atrial inflammation in a murine model of Coxsackievirus B3-induced myocarditis. Int J Exp Pathol 2022; 103:149-155. [PMID: 35363404 PMCID: PMC9264345 DOI: 10.1111/iep.12438] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2021] [Revised: 02/21/2022] [Accepted: 03/06/2022] [Indexed: 12/02/2022] Open
Abstract
Atrial dysfunction is a relatively common complication of acute myocarditis, although its pathophysiology is unclear. There is limited information on myocarditis‐associated histological changes in the atria and how they develop in time. The aim of this study therefore was to investigate inflammation, fibrosis and viral genome in the atria in time after mild CVB3‐induced viral myocarditis (VM) in mice. C3H mice (n = 68) were infected with 105 PFU of Coxsackievirus B3 (CVB3) and were compared with uninfected mice (n = 10). Atrial tissue was obtained at days 4, 7, 10, 21, 35 or 49 post‐infection. Cellular infiltration of CD45+ lymphocytes, MAC3+ macrophages, Ly6G+ neutrophils and mast cells was quantified by (immuno)histochemical staining. The CVB3 RNA was determined by in situ hybridization, and fibrosis was evaluated by elastic van Gieson (EvG) staining. In the atria of VM mice, the numbers of lymphocytes on days 4 and 7 (p < .05) and days 10 (p < .01); macrophages on days 7 (p < .01) and 10 (p < .05); neutrophils on days 4 (p < .05); and mast cells on days 4 and 7 (p < .05) increased significantly compared with control mice and decreased thereafter to basal levels. No cardiomyocyte death was observed, and the CVB3 genome was detected in only one infected mouse on Day 4 post‐infection. No significant changes in the amount of atrial fibrosis were found between VM and control mice. A temporary increase in inflammation is induced in the atria in the acute phase of CVB3‐induced mild VM, which may facilitate the development of atrial arrhythmia and contractile dysfunction.
Collapse
Affiliation(s)
- Linghe Wu
- Department of Pathology, Amsterdam University Medical Centers, location VUmc, Amsterdam, The Netherlands.,Department of Pathology, Amsterdam University Medical Centers, location AMC, Amsterdam, The Netherlands.,Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - Mitchell D Fiet
- Department of Pathology, Amsterdam University Medical Centers, location VUmc, Amsterdam, The Netherlands.,Department of Pathology, Amsterdam University Medical Centers, location AMC, Amsterdam, The Netherlands.,Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| | - Daan R Raaijmakers
- Department of Pathology, Amsterdam University Medical Centers, location AMC, Amsterdam, The Netherlands
| | - Linde Woudstra
- Department of Reproductive Medicine, Reinier de Graaf Hospital, Voorburg, The Netherlands
| | - Albert C van Rossum
- Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands.,Department of Cardiac Surgery, Amsterdam UMC, location VUmc, Amsterdam, The Netherlands.,Department of Cardiology, Amsterdam UMC, location VUmc, Amsterdam, The Netherlands
| | - Hans W M Niessen
- Department of Pathology, Amsterdam University Medical Centers, location VUmc, Amsterdam, The Netherlands.,Department of Pathology, Amsterdam University Medical Centers, location AMC, Amsterdam, The Netherlands.,Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands.,Department of Cardiology, Amsterdam UMC, location VUmc, Amsterdam, The Netherlands
| | - Paul A J Krijnen
- Department of Pathology, Amsterdam University Medical Centers, location VUmc, Amsterdam, The Netherlands.,Department of Pathology, Amsterdam University Medical Centers, location AMC, Amsterdam, The Netherlands.,Amsterdam Cardiovascular Sciences, Amsterdam, The Netherlands
| |
Collapse
|
14
|
The presence of cardiotropic viral genomes is not increased in atrial tissue of atrial fibrillation patients. Neth Heart J 2022; 30:377-382. [PMID: 35099775 PMCID: PMC9270523 DOI: 10.1007/s12471-022-01660-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/08/2021] [Indexed: 11/25/2022] Open
Abstract
Background Infections with potentially cardiotropic viruses are associated with the development of atrial fibrillation (AF). However, whether direct viral infection of the atria is involved in the pathogenesis of AF is unclear. We have therefore analysed the presence of cardiotropic viral genomes in AF patients. Methods Samples of left atrial tissue were obtained from 50 AF patients (paroxysmal, n = 20; long-standing persistent/permanent, n = 30) during cardiac surgery and from autopsied control patients (n = 14). Herein, the presence of PVB19, EBV, CMV, HHV‑6, adenovirus and enterovirus genomes was determined by polymerase chain reaction. The densities of CD45+ and CD3+ cells and fibrosis in the atria were quantified by (immuno)histochemistry. Results Of the tested viruses only the PVB19 genome was detected in the atria of 10% of patients, paroxysmal AF (2 of 20) and long-standing persistent/permanent AF (3 of 30). Conversely, in 50% of controls (7 of 14) PVB19 genome was found. No significant association was found between PVB19 and CD45+ and CD3+ cells, or between the presence of PVB19 and fibrosis, in either control or AF patients. Conclusion The presence of viral genomes is not increased in the atria of AF patients. These results do not support an important role for viral infection of the atria in the pathogenesis of AF. Supplementary Information The online version of this article (10.1007/s12471-022-01660-4) contains supplementary material, which is available to authorized users.
Collapse
|
15
|
Couselo-Seijas M, Rodríguez-Mañero M, González-Juanatey JR, Eiras S. Updates on epicardial adipose tissue mechanisms on atrial fibrillation. Obes Rev 2021; 22:e13277. [PMID: 34002458 DOI: 10.1111/obr.13277] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 04/19/2021] [Indexed: 02/06/2023]
Abstract
Obesity is a well-known risk factor for atrial fibrillation (AF). Local epi-myocardial or intra-myocardial adiposity caused by aging, obesity, or cardiovascular disease (CVD) is considered to be a better predictor of the risk of AF than general adiposity. Some of the described mechanisms suggest that epicardial adipose tissue (EAT) participates in structural remodeling owing to its endocrine activity or its infiltration between cardiomyocytes. Epicardial fat also wraps up the ganglionated plexi that reach the myocardium. Although the increment of volume/thickness and activity of EAT might modify autonomic activity, autonomic system dysfunction might also change the endocrine activity of epicardial fat in a feedback response. As a result, new preventive therapeutic strategies are focused on reducing adiposity and weight loss before AF ablation or inhibiting autonomic neurotransmitter secretion on fat pads during open-heart surgery to reduce the recurrence or postoperative risk of AF. In this manuscript, we review some of the novel findings regarding the pathophysiology and associated risk factors of AF, with special emphasis on the role of EAT in the electrical, structural, and molecular mechanisms of AF initiation and maintenance. In addition, we have included a brief note provided on epicardial fat preclinical models that could be useful for identifying new therapeutic targets.
Collapse
Affiliation(s)
- Marinela Couselo-Seijas
- Translational Cardiology group, Health Research Institute, Santiago de Compostela, Spain.,University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Moisés Rodríguez-Mañero
- Translational Cardiology group, Health Research Institute, Santiago de Compostela, Spain.,CIBERCV, Madrid, Spain.,Cardiovascular Department, University Hospital of Santiago de Compostela, Santiago de Compostela, Spain
| | - José R González-Juanatey
- University of Santiago de Compostela, Santiago de Compostela, Spain.,CIBERCV, Madrid, Spain.,Cardiovascular Department, University Hospital of Santiago de Compostela, Santiago de Compostela, Spain.,Cardiology group, Health Research Institute, Santiago de Compostela, Spain
| | - Sonia Eiras
- Translational Cardiology group, Health Research Institute, Santiago de Compostela, Spain.,CIBERCV, Madrid, Spain
| |
Collapse
|
16
|
Xie JYY, Noeman M, Pimenta D, Little C. C-reactive protein as a predictor for developing post-operative atrial fibrillation. Europace 2021; 23:159. [PMID: 33156929 DOI: 10.1093/europace/euaa303] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 09/14/2020] [Indexed: 11/13/2022] Open
Affiliation(s)
- Jessica Ying-Yi Xie
- University College London Medical School, Gower Street, Bloomsbury, London, UK
| | - Maryam Noeman
- University College London Medical School, Gower Street, Bloomsbury, London, UK
| | - Dominic Pimenta
- University College London Medical School, Gower Street, Bloomsbury, London, UK
| | - Callum Little
- Cardiology Department, Royal Free Hospital, Royal Free London NHS Foundation Trust, London, UK
| |
Collapse
|
17
|
Noubiap JJ, Sanders P, Nattel S, Lau DH. Biomarkers in Atrial Fibrillation: Pathogenesis and Clinical Implications. Card Electrophysiol Clin 2021; 13:221-233. [PMID: 33516400 DOI: 10.1016/j.ccep.2020.10.006] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Biomarkers derived from the key components of the pathophysiology of atrial fibrillation (AF) and its complications have the potential to play an important role in earlier characterization of AF phenotype and in risk prediction of adverse clinical events, which may translate into improved management strategies. C-reactive protein, natriuretic peptides, cardiac troponins, growth differentiation factor-15, and fibroblast growth factor-23 have been shown to be the most promising biomarkers in AF. Some biomarkers have already been included in clinical risk scores to predict postoperative AF, thromboembolism, major bleeding, and death. Considerably more work is needed to bring these novel biomarkers into routine clinical management of patients with AF.
Collapse
Affiliation(s)
| | - Prashanthan Sanders
- Centre for Heart Rhythm Disorders, University of Adelaide, Adelaide, Australia; Department of Cardiology, Royal Adelaide Hospital, Adelaide, Australia
| | - Stanley Nattel
- Department of Medicine, Montreal Heart Institute and Université de Montréal, Montréal, Canada
| | - Dennis H Lau
- Centre for Heart Rhythm Disorders, University of Adelaide, Adelaide, Australia; Department of Cardiology, Royal Adelaide Hospital, Adelaide, Australia.
| |
Collapse
|