1
|
Li YQ, Sun L, Li J. Macropinocytosis-dependent endocytosis of Japanese flounder IgM + B cells and its regulation by CD22. FISH & SHELLFISH IMMUNOLOGY 2019; 84:138-147. [PMID: 30266605 DOI: 10.1016/j.fsi.2018.09.068] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2018] [Revised: 09/02/2018] [Accepted: 09/24/2018] [Indexed: 06/08/2023]
Abstract
B cells in fish are proven to be endocytic and have a great contribution to innate immunity like phagocytosis. In this study, the endocytic capacity and the corresponding internalization pathways of IgM+ B cells in Japanese flounder (Paralichthys olivaceus) were investigated. The results showed that IgM+ B cells in peripheral blood leukocytes (PBL) and splenic leukocytes (SL) exhibited different abilities to ingest 0.5 μm and 1 μm latex beads through macropinocytosis-dependent endocytic pathway. Japanese flounder CD22 (PoCD22) co-stimulatory signals were identified to be essential for the innate immune responses in B cells. Most of IgM+ B cells and some IgM- cells were demonstrated to be PoCD22 positive. When PoCD22 was blocked by antibody, the endocytic activities and reactive oxygen species (ROS) activities of SL IgM+ B cells were significantly increased, while the endocytic and ROS activities of PBL IgM+ B cells were significant decreased. These results collectively suggest that Japanese flounder IgM+ B cells are able to employ macropinocytosis-dependent endocytic pathway, which is under the regulation of CD22.
Collapse
Affiliation(s)
- Yi-Qun Li
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology & Biotechnology and Laboratory for Marine Fisheries Sciences and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China; University of Chinese Academy of Sciences, Beijing, China
| | - Li Sun
- CAS Key Laboratory of Experimental Marine Biology, Institute of Oceanology, Center for Ocean Mega-Science, Chinese Academy of Sciences, Qingdao, China; Laboratory for Marine Biology & Biotechnology and Laboratory for Marine Fisheries Sciences and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China.
| | - Jun Li
- Laboratory for Marine Biology & Biotechnology and Laboratory for Marine Fisheries Sciences and Food Production Processes, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266071, China; School of Biological Sciences, Lake Superior State University, Sault Ste. Marie, MI, 49783, USA.
| |
Collapse
|
2
|
Liu F, Lu X, Dai W, Lu Y, Li C, Du S, Chen Y, Weng D, Chen J. IL-10-Producing B Cells Regulate T Helper Cell Immune Responses during 1,3-β-Glucan-Induced Lung Inflammation. Front Immunol 2017; 8:414. [PMID: 28428789 PMCID: PMC5382153 DOI: 10.3389/fimmu.2017.00414] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 03/23/2017] [Indexed: 12/16/2022] Open
Abstract
With the rapid development of industry and farm, fungi contamination widely exists in occupational environment. Inhalation of fungi-contaminated organic dust results in hypersensitivity pneumonitis. 1,3-β-Glucan is a major cell wall component of fungus and is considered as a biomarker of fungi exposure. Current studies showed that 1,3-β-glucan exposure induced lung inflammation, which involved uncontrolled T helper (Th) cell immune responses, such as Th1, Th2, Th17, and regulatory T cell (Treg). A recently identified IL-10-producing B cells (B10) was reported in regulating immune homeostasis. However, its regulatory role in hypersensitivity pneumonitis is still subject to debate. In our study, we comprehensively investigated the role of B10 and the relationship between B10 and Treg in 1,3-β-glucan-induced lung inflammation. Mice with insufficient B10 exhibited more inflammatory cells accumulation and severer pathological inflammatory changes. Insufficient B10 led to increasing Th1, Th2, and Th17 responses and restricted Treg function. Depletion of Treg before the onset of inflammation could suppress B10. Whereas, Treg depletion only at the late stage of inflammation failed to affect B10. Our study demonstrated that insufficient B10 aggravated the lung inflammation mediated by dynamic shifts in Th immune responses after 1,3-β-glucan exposure. The regulatory function of B10 on Th immune responses might be associated with Treg and IL-10. Treg could only interact with B10 at an early stage.
Collapse
Affiliation(s)
- Fangwei Liu
- Division of Pneumoconiosis, School of Public Health, China Medical University, Shenyang, China
| | - Xiaowei Lu
- Division of Pneumoconiosis, School of Public Health, China Medical University, Shenyang, China
| | - Wujing Dai
- Division of Pneumoconiosis, School of Public Health, China Medical University, Shenyang, China
| | - Yiping Lu
- Division of Pneumoconiosis, School of Public Health, China Medical University, Shenyang, China
| | - Chao Li
- Division of Pneumoconiosis, School of Public Health, China Medical University, Shenyang, China
| | - Sitong Du
- Division of Pneumoconiosis, School of Public Health, China Medical University, Shenyang, China
| | - Ying Chen
- Division of Pneumoconiosis, School of Public Health, China Medical University, Shenyang, China
| | - Dong Weng
- Division of Pneumoconiosis, School of Public Health, China Medical University, Shenyang, China.,Department of Respiratory Medicine, Shanghai Pulmonary Hospital, Tongji University School of Medicine, Shanghai, China
| | - Jie Chen
- Division of Pneumoconiosis, School of Public Health, China Medical University, Shenyang, China
| |
Collapse
|