1
|
Hu W, Chen S, Zou X, Chen Y, Luo J, Zhong P, Ma D. Oral microbiome, periodontal disease and systemic bone-related diseases in the era of homeostatic medicine. J Adv Res 2024:S2090-1232(24)00362-X. [PMID: 39159722 DOI: 10.1016/j.jare.2024.08.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2024] [Revised: 08/03/2024] [Accepted: 08/12/2024] [Indexed: 08/21/2024] Open
Abstract
BACKGROUND Homeostasis is a state of self-regulation and dynamic equilibrium, maintaining the good physiological functions of each system in living organisms. In the oral cavity, the interaction between the host and the oral microbiome forms oral microbial homeostasis. Physiological bone remodeling and renewal can occur under the maintenance of oral microbial homeostasis. The imbalance of bone homeostasis is a key mechanism leading to the occurrence of systemic bone-related diseases. Considering the importance of oral microbial homeostasis in the maintenance of bone homeostasis, it still lacks a complete understanding of the relationship between oral microbiome, periodontal disease and systemic bone-related diseases. AIM OF REVIEW This review focuses on the homeostatic changes, pathogenic routes and potential mechanisms in the oral microbiome in periodontal disease and systemic bone-related diseases such as rheumatoid arthritis, osteoarthritis, osteoporosis and osteomyelitis. Additionally, this review discusses oral microbiome-based diagnostic approaches and explores probiotics, mesenchymal stem cells, and oral microbiome transplantation as promising treatment strategies. KEY SCIENTIFIC CONCEPTS OF REVIEW This review highlights the association between oral microbial homeostasis imbalance and systemic bone-related diseases, and highlights the possibility of remodeling oral microbial homeostasis for the prevention and treatment of systemic bone-related diseases.
Collapse
Affiliation(s)
- Weiqi Hu
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, No 366 Jiangnan Avenue South, Guangzhou, Guangdong Province 510280, China
| | - Shuoling Chen
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, No 366 Jiangnan Avenue South, Guangzhou, Guangdong Province 510280, China
| | - Xianghui Zou
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, No 366 Jiangnan Avenue South, Guangzhou, Guangdong Province 510280, China
| | - Yan Chen
- Department of Pediatric Dentistry, Stomatological Hospital, School of Stomatology, Southern Medical University, No 366 Jiangnan Avenue South, Guangzhou, Guangdong Province 510280, China
| | - Jiayu Luo
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, No 366 Jiangnan Avenue South, Guangzhou, Guangdong Province 510280, China
| | - Peiliang Zhong
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, No 366 Jiangnan Avenue South, Guangzhou, Guangdong Province 510280, China
| | - Dandan Ma
- Department of Endodontics, Stomatological Hospital, School of Stomatology, Southern Medical University, No 366 Jiangnan Avenue South, Guangzhou, Guangdong Province 510280, China.
| |
Collapse
|
2
|
Yahara H, Yanamoto S, Takahashi M, Hamada Y, Asaka T, Kitagawa Y, Moridera K, Noguchi K, Maruoka Y, Yahara K. Shotgun metagenomic analysis of saliva microbiome suggests Mogibacterium as a factor associated with chronic bacterial osteomyelitis. PLoS One 2024; 19:e0302569. [PMID: 38709734 PMCID: PMC11073694 DOI: 10.1371/journal.pone.0302569] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 04/08/2024] [Indexed: 05/08/2024] Open
Abstract
Osteomyelitis of the jaw is a severe inflammatory disorder that affects bones, and it is categorized into two main types: chronic bacterial and nonbacterial osteomyelitis. Although previous studies have investigated the association between these diseases and the oral microbiome, the specific taxa associated with each disease remain unknown. In this study, we conducted shotgun metagenome sequencing (≥10 Gb from ≥66,395,670 reads per sample) of bulk DNA extracted from saliva obtained from patients with chronic bacterial osteomyelitis (N = 5) and chronic nonbacterial osteomyelitis (N = 10). We then compared the taxonomic composition of the metagenome in terms of both taxonomic and sequence abundances with that of healthy controls (N = 5). Taxonomic profiling revealed a statistically significant increase in both the taxonomic and sequence abundance of Mogibacterium in cases of chronic bacterial osteomyelitis; however, such enrichment was not observed in chronic nonbacterial osteomyelitis. We also compared a previously reported core saliva microbiome (59 genera) with our data and found that out of the 74 genera detected in this study, 47 (including Mogibacterium) were not included in the previous meta-analysis. Additionally, we analyzed a core-genome tree of Mogibacterium from chronic bacterial osteomyelitis and healthy control samples along with a reference complete genome and found that Mogibacterium from both groups was indistinguishable at the core-genome and pan-genome levels. Although limited by the small sample size, our study provides novel evidence of a significant increase in Mogibacterium abundance in the chronic bacterial osteomyelitis group. Moreover, our study presents a comparative analysis of the taxonomic and sequence abundances of all genera detected using deep salivary shotgun metagenome data. The distinct enrichment of Mogibacterium suggests its potential as a marker to distinguish between patients with chronic nonbacterial osteomyelitis and chronic bacterial osteomyelitis, particularly at the early stages when differences are unclear.
Collapse
Affiliation(s)
- Hiroko Yahara
- Genome Medical Science Project, Research Institute, National Center for Global Health and Medicine, Tokyo, Japan
| | - Souichi Yanamoto
- Department of Oral Oncology, Graduate School of Biomedical and Health Sciences, Hiroshima University, Hiroshima, Japan
| | - Miho Takahashi
- Department of Oral and Maxillofacial Surgery, Tokai University Hachioji Hospital, Tokyo, Japan
| | - Yuji Hamada
- Department of Oral and Maxillofacial Surgery, Tokai University Hachioji Hospital, Tokyo, Japan
| | - Takuya Asaka
- Department of Oral Diagnosis and Medicine, Hokkaido University Graduate School of Dental Medicine, Sapporo, Japan
| | - Yoshimasa Kitagawa
- Department of Oral Diagnosis and Medicine, Hokkaido University Graduate School of Dental Medicine, Sapporo, Japan
| | - Kuniyasu Moridera
- Department of Oral and Maxillofacial Surgery, School of Medicine, Hyogo Medical University, Hyogo, Japan
| | - Kazuma Noguchi
- Department of Oral and Maxillofacial Surgery, School of Medicine, Hyogo Medical University, Hyogo, Japan
| | - Yutaka Maruoka
- Department of Oral and Maxillofacial Surgery, Center Hospital of the National Center for Global Health and Medicine, Tokyo, Japan
| | - Koji Yahara
- Antimicrobial Resistance Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| |
Collapse
|
3
|
Aboushaala K, Wong AYL, Barajas JN, Lim P, Al-Harthi L, Chee A, Forsyth CB, Oh CD, Toro SJ, Williams FMK, An HS, Samartzis D. The Human Microbiome and Its Role in Musculoskeletal Disorders. Genes (Basel) 2023; 14:1937. [PMID: 37895286 PMCID: PMC10606932 DOI: 10.3390/genes14101937] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 10/06/2023] [Accepted: 10/09/2023] [Indexed: 10/29/2023] Open
Abstract
Musculoskeletal diseases (MSDs) are characterized as injuries and illnesses that affect the musculoskeletal system. MSDs affect every population worldwide and are associated with substantial global burden. Variations in the makeup of the gut microbiota may be related to chronic MSDs. There is growing interest in exploring potential connections between chronic MSDs and variations in the composition of gut microbiota. The human microbiota is a complex community consisting of viruses, archaea, bacteria, and eukaryotes, both inside and outside of the human body. These microorganisms play crucial roles in influencing human physiology, impacting metabolic and immunological systems in health and disease. Different body areas host specific types of microorganisms, with facultative anaerobes dominating the gastrointestinal tract (able to thrive with or without oxygen), while strict aerobes prevail in the nasal cavity, respiratory tract, and skin surfaces (requiring oxygen for development). Together with the immune system, these bacteria have coevolved throughout time, forming complex biological relationships. Changes in the microbial ecology of the gut may have a big impact on health and can help illnesses develop. These changes are frequently impacted by lifestyle choices and underlying medical disorders. The potential for safety, expenses, and efficacy of microbiota-based medicines, even with occasional delivery, has attracted interest. They are, therefore, a desirable candidate for treating MSDs that are chronic and that may have variable progression patterns. As such, the following is a narrative review to address the role of the human microbiome as it relates to MSDs.
Collapse
Affiliation(s)
- Khaled Aboushaala
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL 60612, USA; (K.A.); (J.N.B.); (P.L.); (A.C.); (C.-d.O.); (S.J.T.); (H.S.A.)
- International Spine Research and Innovation Initiative, Rush University Medical Center, Chicago, IL 60612, USA
| | - Arnold Y. L. Wong
- Department of Rehabilitation Sciences, The Hong Kong Polytechnic University, Hong Kong SAR, China;
| | - Juan Nicolas Barajas
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL 60612, USA; (K.A.); (J.N.B.); (P.L.); (A.C.); (C.-d.O.); (S.J.T.); (H.S.A.)
- International Spine Research and Innovation Initiative, Rush University Medical Center, Chicago, IL 60612, USA
| | - Perry Lim
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL 60612, USA; (K.A.); (J.N.B.); (P.L.); (A.C.); (C.-d.O.); (S.J.T.); (H.S.A.)
- International Spine Research and Innovation Initiative, Rush University Medical Center, Chicago, IL 60612, USA
| | - Lena Al-Harthi
- Department of Microbial Pathogens and Immunity, Rush University Medical Center, Chicago, IL 60612, USA;
| | - Ana Chee
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL 60612, USA; (K.A.); (J.N.B.); (P.L.); (A.C.); (C.-d.O.); (S.J.T.); (H.S.A.)
- International Spine Research and Innovation Initiative, Rush University Medical Center, Chicago, IL 60612, USA
| | - Christopher B. Forsyth
- Department of Internal Medicine, Rush University Medical Center, Chicago, IL 60612, USA;
| | - Chun-do Oh
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL 60612, USA; (K.A.); (J.N.B.); (P.L.); (A.C.); (C.-d.O.); (S.J.T.); (H.S.A.)
- International Spine Research and Innovation Initiative, Rush University Medical Center, Chicago, IL 60612, USA
| | - Sheila J. Toro
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL 60612, USA; (K.A.); (J.N.B.); (P.L.); (A.C.); (C.-d.O.); (S.J.T.); (H.S.A.)
- International Spine Research and Innovation Initiative, Rush University Medical Center, Chicago, IL 60612, USA
| | | | - Howard S. An
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL 60612, USA; (K.A.); (J.N.B.); (P.L.); (A.C.); (C.-d.O.); (S.J.T.); (H.S.A.)
- International Spine Research and Innovation Initiative, Rush University Medical Center, Chicago, IL 60612, USA
| | - Dino Samartzis
- Department of Orthopedic Surgery, Rush University Medical Center, Chicago, IL 60612, USA; (K.A.); (J.N.B.); (P.L.); (A.C.); (C.-d.O.); (S.J.T.); (H.S.A.)
- International Spine Research and Innovation Initiative, Rush University Medical Center, Chicago, IL 60612, USA
| |
Collapse
|
4
|
Costi S, Germinario S, Pandolfi M, Pellico MR, Amati A, Gattinara M, Chighizola CB, Caporali R, Marino A. Chronic Nonbacterial Osteomyelitis and Inflammatory Bowel Disease: A Literature Review-Based Cohort. CHILDREN 2023; 10:children10030502. [PMID: 36980060 PMCID: PMC10047775 DOI: 10.3390/children10030502] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2023] [Revised: 02/27/2023] [Accepted: 03/01/2023] [Indexed: 03/06/2023]
Abstract
Background: Chronic nonbacterial osteomyelitis (CNO) is a rare autoinflammatory bone disorder that mainly involves children and adolescents. The association with other inflammatory disorders, such as inflammatory bowel disease (IBD), psoriasis, and arthritis, has been reported in the literature. In particular, the relationship between bone and intestinal inflammation is still poorly understood. For this purpose, our review aims to describe the cases reported in the literature concerning this association and to compare them with data from our single-center cohort of patients. Methods: We conducted a literature review of published cases of CNO associated with IBD. Eligible articles were identified through a Medline search in the PubMed database until December 2022. We retrospectively reviewed medical records of patients with CNO referred to G. Pini Hospital and compared them with the literature-review-based cohort. Results: Fifty-seven patients with a defined diagnosis of CNO and associated IBD were described in the literature (female 55%). The median age of onset of the disease (CNO or IBD) was 11 years. In 32/53 (60%), a diagnosis of Crohn’s disease (CD) was made, while 18 (34%) patients were classified as suffering from ulcerative colitis (UC) and 3 (6%) from undifferentiated IBD. The diagnosis of CNO preceded the diagnosis of IBD in 59% of cases; while in 24%, IBD anticipated CNO; and in 17%, the two conditions appeared simultaneously. The median time between the two events was 24 months. In our Italian cohort (n = 23 patients), no diagnosis of IBD was made. No significant differences were found when comparing clinical and demographical characteristics of the Italian vs. review-based cohort, except for a significant involvement of rachis in the Italian group. Conclusions: The correlation between autoinflammatory bone disease and intestinal inflammation should be further investigated. It is essential to promote awareness among pediatric rheumatologists and gastroenterologists about this possible association to facilitate the diagnosis and better optimize treatment.
Collapse
Affiliation(s)
- Stefania Costi
- Unit of Pediatric Rheumatology, ASST G. Pini-CTO, 20122 Milan, Italy
| | | | | | | | | | | | - Cecilia Beatrice Chighizola
- Unit of Pediatric Rheumatology, ASST G. Pini-CTO, 20122 Milan, Italy
- Department of Clinical Sciences and Community Health, Research Center for Pediatric and Adult Rheumatic Diseases (RECAP.RD), University of Milan, 20122 Milan, Italy
| | - Roberto Caporali
- Unit of Pediatric Rheumatology, ASST G. Pini-CTO, 20122 Milan, Italy
- Department of Clinical Sciences and Community Health, Research Center for Pediatric and Adult Rheumatic Diseases (RECAP.RD), University of Milan, 20122 Milan, Italy
- Department of Rheumatology and Medical Sciences, ASST G. Pini-CTO, 20122 Milan, Italy
| | - Achille Marino
- Unit of Pediatric Rheumatology, ASST G. Pini-CTO, 20122 Milan, Italy
- Correspondence:
| |
Collapse
|
5
|
Rausch P, Hartmann M, Baines JF, von Bismarck P. Analysis of the fecal and oral microbiota in chronic recurrent multifocal osteomyelitis. Arthritis Res Ther 2022; 24:54. [PMID: 35193655 PMCID: PMC8862485 DOI: 10.1186/s13075-021-02711-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2021] [Accepted: 12/20/2021] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Chronic recurrent multifocal osteomyelitis (CRMO) is a rare autoinflammatory bone disease for which a lack of bacterial involvement is a key diagnostic feature to distinguish it from other symptomatically related diseases. However, the growing evidence suggesting an involvement of the host-associated microbiota in rheumatic disorders together with the now wide accessibility of modern culture-independent methods warrant a closer examination of CRMO. METHODS In this study, we show through bacterial 16S rRNA gene profiling that numerous features of the oral- and fecal microbial communities differentiate children with and without CRMO. RESULTS Notably, communities in diseased children are characterized by a lack of potential probiotic bacteria in the fecal community and an overabundance of known pathobionts in the oral microbial communities. Of special interest is the HACEK group, a set of commonly known oral pathogens that are implicated in the development of several acute and chronic diseases such as osteitis and rheumatoid arthritis. Furthermore, we observe that gut bacterial communities in the diseased children appear to reflect an altered host physiology more strongly than the oral community, which could suggest an oral disease origin followed by propagation and/or responses beyond the oral cavity. CONCLUSIONS Bacterial communities, in particular the oral microbiota, may serve as an indicator of underlying susceptibility to CRMO, or play a yet undefined role in its development.
Collapse
Affiliation(s)
- Philipp Rausch
- Institute for Clinical Molecular Biology (IKMB), Kiel University, Kiel, Germany
- Laboratory of Genomics and Molecular Biomedicine, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Meike Hartmann
- Clinic for General Pediatrics, University Hospital Schleswig-Holstein, Kiel, Germany
| | - John F Baines
- Max Planck Institute for Evolutionary Biology, Plön, Germany.
- Institute for Experimental Medicine, Kiel University, Kiel, Germany.
| | - Philipp von Bismarck
- Clinic for General Pediatrics, University Hospital Schleswig-Holstein, Kiel, Germany.
| |
Collapse
|
6
|
Chen J, Xiong A, Ma Y, Qin C, Ho CL. Impact of the Host-Microbiome on Osteomyelitis Pathogenesis. Front Mol Biosci 2021; 8:702484. [PMID: 34434965 PMCID: PMC8381018 DOI: 10.3389/fmolb.2021.702484] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Accepted: 07/30/2021] [Indexed: 01/04/2023] Open
Abstract
The microbiome is a collection of genomes from microbiota, including all microorganisms in a niche, through direct and indirect interactions with the host. Certain microorganisms can exist in areas conventionally considered to be sterile, such as the bone matrix. Osseous microbiota dysbiosis caused by host-microbiome perturbation or external infections may ultimately lead to osteomyelitis, a bone inflammatory disorder. Our review covers the current discoveries on the impact of host-microbiome on osteomyelitis and some common osseous diseases. Some studies suggest that the microbiotas from both osseous and non-osseous tissues (e.g., blood or gut) impact the pathogenicity of osteomyelitis and other osseous diseases (e.g., rheumatoid arthritis). We believe that this review will provide readers with a better understanding on the role of the microbiome to the host’s bone health.
Collapse
Affiliation(s)
- Jun Chen
- Department of Biomedical Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, China
| | - Ailin Xiong
- Department of Orthopaedic Trauma, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Yuhao Ma
- Department of Biomedical Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, China
| | - Chenghe Qin
- Department of Orthopaedic Trauma, Guangdong Second Provincial General Hospital, Guangzhou, China
| | - Chun Loong Ho
- Department of Biomedical Engineering, Southern University of Science and Technology (SUSTech), Shenzhen, China
| |
Collapse
|